
Abstract
Medical research in regenerative medicine and cell-
based therapy has brought encouraging perspectives 
for the use of stem cells in clinical trials. Multiple types 
of stem cells, from progenitors to pluripotent stem 
cells, have been investigated. Among these, dental pulp 
stem cells (DPSCs) are mesenchymal multipotent cells 
coming from the dental pulp, which is the soft tissue 
within teeth. They represent an interesting adult stem 
cell source because they are recovered in large amount 
in dental pulps with non-invasive techniques compared 
to other adult stem cell sources. DPSCs can be obtained 
from discarded teeth, especially wisdom teeth extracted 
for orthodontic reasons. To shift from promising pre-
clinical results to therapeutic applications to human, 
DPSCs must be prepared in clinical grade lots and 
transformed into advanced therapy medicinal products 
(ATMP). As the production of patient-specific stem cells 
is costly and time-consuming, allogenic biobanking of 
clinical grade human leukocyte antigen (HLA)-typed 
DPSC lines provides efficient innovative therapeutic 
products. DPSC biobanks represent industrial and 
therapeutic innovations by using discarded biological 
tissues (dental pulps) as a source of mesenchymal 
stem cells to produce and store, in good manufacturing 
practice (GMP) conditions, DPSC therapeutic batches. In 
this review, we discuss about the challenges to transfer 
biological samples from a donor to HLA-typed DPSC 
therapeutic lots, following regulations, GMP guidelines 
and ethical principles. We also present some clinical 
applications, for which there is no efficient therapeutics 
so far, but that DPSCs-based ATMP could potentially 
treat.
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Core tip: To achieve clinical applications, stem cell-based 
therapy must shift from lab experimentation to clinical 
grade stem cells. We present here the development 
of advanced therapy medicinal products (ATMP) by 
the banking of dental pulp stem cells (DPSCs) for 
allogenic use. The dental pulp represents an efficient 
tool for industrial applications due to its accessibility 
after wisdom teeth extraction for orthodontic purpose. 
DPSC therapeutic batches can be produced in good 
manufacturing practice condition after human leukocyte 
antigen typing and stored in allogenic biobanks. We 
propose some clinical applications, for which there is no 
efficient therapeutics so far, but that DPSCs-based ATMP 
could potentially treat.
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INTRODUCTION
Adult organisms contain postnatal somatic stem cells 
that are involved in symmetrical and asymmetrical cell 
divisions, allowing stem cell compartment maintenance 
and cell differentiation[1]. Thus, adult stem cells provide 
replacement and repair cells for normal turnover or 
injured tissues[2]. As these stem cells are able to renew 
particular tissues, they have motivated research on 
how to apply them in the clinic. Because of their self-
renewal and ability to regenerate tissue, stem cells 
could provide long-lasting clinical benefits to recipients. 
Among these potentially beneficial cells, mesenchymal 
stromal cells are spindle-shaped, plastic-adherent cells 
isolated from bone marrow, adipose tissue, dental pulp 
and many other tissue sources[3,4]. They are also called 
mesenchymal stem cells (MSCs) in reference to their 
significant self-renewing properties and ability to form 
skeletal and connective tissue, and are suggested to be 
responsible for the normal turnover and maintenance of 
adult mesenchymal tissues[2,5]. MSCs are now the focus 
of intensive efforts in order to elucidate their nature and 
properties, and to develop cell-based therapies with real 
clinical applications[6]. Moreover, MSCs provide promising 
therapeutic benefits as they primarily mediate positive 
effects through paracrine mechanisms independent of 
cell differentiation[7]. Many preclinical and clinical trials 
have been completed and the major hurdles are now 
cell engraftment and survival, stem cell fate control, and 
donor-patient compatibility for allogenic applications. 
Several current efforts are directed at promoting the 
registration and banking of stem cell lines and providing 
associated data[8,9]. Banking MSCs, with shared materi-
als and data, is an important step for the efficient 
progress of stem cell research and clinical translation. 
Emphasis on clinical applications is increasing, with 

an aim of establishing clinical grade, human leukocyte 
antigen (HLA)-matched banks for clinical translation[10].

DENTAL PULP STEM CELLS 
Teeth are formed of two main parts, the crown and the 
root, that can be defined by anatomic criteria. They are 
linked by the periodontal ligament to the supporting 
alveolar bone, which is composed of both compact 
and trabecular bone. The dental crown consists of 
enamel, dentin, and dental pulp tissue. During tooth 
growth and development, ameloblasts form enamel 
and odontoblasts generate primary dentin. After tooth 
eruption, ameloblasts disappear from the surface of 
the enamel; consequently, enamel formation ceases to 
occur naturally in vivo. In contrast, odontoblasts, along 
the inner surface of the dentin inside the pulp chamber, 
continue to deposit dentin matrix to form secondary 
dentin throughout life. In addition to secondary dentin, 
odontoblasts can form tertiary (reparative) dentin 
in response to several stimuli, such as mechanical, 
chemical, and/or bacterial stimulation. Even when 
odontoblasts have been damaged, the reparative dentin 
can be formed in the dental pulp to protect against 
further disruption of the pulp tissue. This reparative 
dentinogenesis has been thought to be mediated by 
newly generated odontoblasts arising from dental 
pulp tissue. These findings led to the speculation that 
odontogenic progenitor cells or stem cells may exist in 
dental pulp tissue[11]. The first type of dental stem cell 
was subsequently isolated from the human pulp tissue 
and given the name dental pulp stem cells (DPSCs)[12]. 
Dental pulp is a soft connective tissue entrapped within 
the dental crown, and divided into four layers. The 
external layer is made up of odontoblasts producing 
dentin; the second layer is poor in cells and rich in 
collagen fibers; and the third layer contains progenitor 
cells and undifferentiated cells, some of which are 
considered stem cells. From this layer, undifferentiated 
cells migrate to various districts where they can 
differentiate under different stimuli and make new 
differentiated cells and tissues. The innermost layer is 
the core of the pulp and comprises the vascular area 
and nerves[13]. Dental pulp is an interesting source of 
adult stem cells because of the large amount of cells 
present and the non-invasiveness of the isolation 
methods compared to other adult tissue sources[13-15]. 
MSCs defined as dental stem cells can be obtained from 
human permanent and primary teeth, human wisdom 
teeth[12], human exfoliated deciduous teeth[16], apical 
papilla[17], the periodontal ligament[18,19] and the dental 
follicle[20,21].

Dental pulp tissue from human third molar, exfo-
liated deciduous or supernumerary teeth represent an 
easily accessible source for harvesting MSCs as these 
teeth are often discarded.

Stem cells that reside in dental pulp (DPSCs) have 
been described as a population of MSCs, as they match 
the definition given by the Mesenchymal and Tissue 
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Stem Cell Committee of the International Society for 
Cellular Therapy[3]: DPSC are plastic-adherent when 
maintained in standard culture conditions; they express 
some specific surface molecules such as CD105, CD73, 
CD90 and lack expression of CD45, CD34, CD14, CD19 
and HLA-DR surface molecules; and they have the 
ability to differentiate into osteoblasts, adipocytes and 
chondroblasts in vitro[11,12,18,22-24]. Moreover, DPSCs can 
differentiate into a large array of cells and tissues[25-28] 
and a comparison of their multipotency with Bone 
Marrow Stem Cells has demonstrated that proliferation, 
availability, and cell number of DPSCs were greater than 
for bone marrow MSCs[24,29].

In addition, DPSCs were also found to undergo 
myogenic and neurogenic differentiation capacities 
in vitro, expressing respective gene markers and 
exhibiting neuron-like cell morphologies. The plasti-
city and multipotential capability of DPSCs can be 
explained by the fact that dental pulp is made of 
both ectodermic and mesenchymal components, and 
contains neural crest-derived cells[13]. Concerning 
cell surface molecules, the persistence of negative 
results for CD45 demonstrates that these cells are not 
derived from a hematopoietic source, although they 
are of mesenchymal origin[25]. Like all MSCs, DPSCs 
are also heterogeneous and the various markers may 
be expressed differently by subpopulations of these 
stem cells[24]. A selected subpopulation of CD34+/CD45- 
DPSCs, which represented roughly 10% of dental pulp 
cells, has also been described. These cells displayed 
an increased capacity of self-expanding and differentia-
ting in pre-osteoblasts, and were able to self-maintain 
and renew for long time[17]. Although MSCs were ori-
ginally described as CD34 negative, it seems that this 
subpopulation of DPSCs expresses the CD34 cell surface 
antigen in the manner reserved for the most primitive 
stromal stem cells (other than hematopoietic) that 
was gradually lost after the differentiation of lineage 
committed progenitors[30].

DPSCS BIOBANKING
The term “biobank” describes various facilities that store 
biological samples, from small tissue collections to wide 
repositories featuring a variety of tissues and biological 
sample types[31,32].

Storage and collection of biological material might 
be accompanied by various medical and epidemiological 
data that are used for current research and for poten-
tial future works[33]. Biobanking has been defined 
as a structured resource for genetic and medical re-
search and their therapeutic applications. It includes 
human biological material and extensive associated 
information[34,35].

Several types of biobanks can be distinguished, 
according to the purpose and target: case control, 
clinical trial, tissue, biomolecular resource center, 
stem cells[36]. Stem cell biobanks have received much 
attention as a new biologic resource for both research 

and clinical applications, leading to the development 
of stem cell banks around the world[37]. Stem cells 
of dental origin represent a promising source of new 
stem cells as, in western countries, 80% of teenagers 
and/or young adults have their wisdom teeth extracted. 
Furthermore, dental pulp is naturally protected within 
the pulp chamber, the inner cavity of the tooth, in 
a sterile environment. Pulp from one wisdom tooth 
generally contains between 200000 and 300000 
DPSCs[38]. Studies have indicated that DPSC isolation 
was feasible for 5 d after tooth extraction[39]. Efficient 
results were obtained by cryopreserving second-
passage DPSC cultures, but could also be achieved by 
isolating and cryopreserving entire pulp tissues, with 
digestion and culture performed post-thaw[40]. Such 
minimal processing may be of interest for the banking 
of samples for which there are no immediate plans for 
expansion and use. Furthermore, cell recovery could 
be achieved by mechanical disruption with a single-use 
device, in accordance with the GMP (European Good 
Manufacturing Practices) standard. Dental pulp and 
DPSC recovery is represented in Figure 1.

Immunologic considerations: Allogenic use and 
immunomodulation
Immune mechanisms confer immediate protection 
against foreign organisms (innate immunity) and 
specific immune responses to neutralize pathogens 
(adaptive immunity). The immune system recognizes 
tissue compatibility and can raise an effective immune 
response against pathogens or incompatible allogenic 
tissues. Tissue compatibility or incompatibility is 
determined from allelic similarities or disparities at 
genetic loci that encode the major histocompatibility 
complex (MHC) antigens, also called the HLA system. 
The HLA system encodes two major classes of highly 
polymorphic cell surface glycoproteins: HLA class I 
molecules are expressed on all nucleated cells and HLA 
class II molecules are expressed on antigen-presenting 
cells, thymic epithelial cells, and B lymphocytes. These 
immunological principles, which apply to organ or tissue 
transplantation, can be extended to transplantation 
of DPSCs or DPSC-derived tissue, especially for HLA 
class I molecules (HLA-A, HLA-B and HLA-C)[41]. Thus, 
a major clinical challenge to DPSC banking will be 
to overcome the immunological barriers to the trans-
plantation of DPSC-derived tissues in order to prevent 
rejection[42,43]. Ensuring HLA compatibility is certainly 
the most interesting method of minimizing the risk of 
rejection. Embryonic stem cells have been shown to 
express very low levels of HLA class I proteins, with a 
moderate increase during differentiation[44]. Regarding 
MSCs, HLA expression remains unclear, but they have 
been extensively studied for their immunomodulatory 
properties[45-49]. Indeed, MSCs exert a profound inhi-
bitory effect on T cell proliferation in vitro and in vivo, 
with similar effects on B cells, dendritic cells and natural 
killer cells[50]. Moreover, T-cell inhibition is not restricted 
by HLA type, and immunosuppressive effects are 
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HLA matches for a wide percentage of populations. 
Estimates of the number of homozygous cell lines 
needed have mainly been established considering 
embryonic stem cells, for the main proteins HLA-A, 
HLA-B and HLA-DR. Data from cadaveric organ donors, 
cord blood bank or in vitro fertilization-derived embryos 
led to the estimate that approximately 150-190 human 
embryonic stem cell lines with various HLA genotypes, 
or a collection of 10-30 homozygous lines for the 
common HLA types, would be sufficient to provide 
HLA-matches for a wide part of the population in the 
United Kingdom[54], Japan[55,56], the United States[57] or 
China[58]. Because of the low incidence (1.5%) of HLA-
homozygous individuals in the normal population[54], a 
systematic collection of discarded wisdom teeth would 
be of prime interest. The determination of the HLA 
types of 100 DPSC lines from teeth collected in Japan 
revealed 2 homozygous lines for all the 3 considered 
HLA loci. These 2 homozygous lines therefore have the 
potential to cover approximately 20% of the Japanese 
population with a perfect match[59].

Methods and good manufacturing practices
The production and marketing of stem cell-based 
therapy faces imperative steps, including product chara-
cterization, safety testing and clinical trials design. 
At both national and international levels, numerous 
standards and regulations must be followed in order 

mediated through soluble factors and the generation 
of regulatory cells[47,51]. These findings suggest that 
MSCs can induce peripheral tolerance, enhancing their 
potential for therapeutic applications[45,48]. A higher 
immunosuppression of T-cell alloreactivity has also 
been demonstrated in DPSCs in comparison with bone 
marrow stem cells[52]. These properties distinguish 
DPSCs as one of the most accessible cell sources for 
cell-based therapy in regenerative medicine and inflam-
mation-related diseases[46]. 

To overcome rejection and use DPSCs in transplan-
tation medicine, the formation of a histocompatibility 
bank is an attractive option, where DPSCs are stored 
after HLA isotyping. Ideally, considering the large 
numbers of wisdom teeth extracted from genetically 
diverse populations, adequate levels of isotype matching 
with patients may be achieved. The establishment of an 
HLA-organized DPSC allogenic bank could be sufficient 
to provide stem cells for a large number of patients. 
The concept of haplobanking with HLA homozygous cell 
lines would also limit the number of HLA mismatches[53]. 
Several studies have been conducted to determine 
the number of donors needed to cover the population 
of a country. These findings are dependent on ethnic 
disparities of the population and the type of stem cells 
considered. The creation of a bank containing highly 
selected homozygous lines is an attractive approach to 
HLA matching. Selected homozygous lines can provide 
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Figure 1  Dental Pulp tissue and dental pulp stem cell recovery. Wisdom teeth are extracted in aseptic conditions and transferred to the cell bank in a sterile 
transport tube. The teeth are then cracked opened and the pulps are mechanically disrupted in a tissue grinder/homogenizer. The cell suspensions obtained are 
screened for expression of stemness markers by flow cytometry, before storage in liquid nitrogen. DPSC: Dental pulp stem cell.

Collart-Dutilleul PY et al . Allogenic banking of dental stem cells
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Information about 
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Tooth extraction

tices[63] from the donor (patient having his/her tooth 
extracted, in aseptic condition) to the storage tank. The 
critical step of enzymatic pulp tissue digestion can be 
replaced by mechanical disruption in single use devices, 
such as a tissue grinder/homogenizer. Fetal bovine 
serum usually required for in vitro expansion can be 
replaced by human serum supplements derived from 
peripheral blood serum, peripheral blood plasma, or 
platelet lysate[64]. Moreover, genetic stability has been 
demonstrated for DPSCs for up to 9 cell passages[65,66].

Legal and practical issues (consent, confidentiality, 
commercialization)
Translation of DPSC research into clinical applications 
relies on abundant in vitro and in vivo preclinical 
data. However, when it comes to potential therapeutic 
applications, some barriers can appear, due to res-
trictions specified in the consent document used for 
the collection of biological materials, questions about 
ownership of the collected DPSCs, and the confidentiality 
of the information associated with the cell lines[10]. 
The constitution of an allogenic DPSC bank contains 

to translate DPSCs into clinical products. There are 
variations in these international and national guidelines, 
and in the regulations that are applied to the collection 
and storage of human tissue, personal data and medical 
records[32]. The Food and Drug Administration, in the 
United States, and the European Medicines Agency 
(EMA), in Europe, are responsible for creating and 
enforcing these regulations. In Europe, stem cells for 
clinical therapies are classified under advanced therapy 
medicinal products (ATMP) unless they are minimally 
manipulated and intended for homologous use[60]. A 
Committee for advanced therapies (CAT) has even 
been created to evaluate cell production marketing by 
assessing the quality, safety and efficacy of ATMPs, 
in accordance with the regulatory framework. EMA 
regulation defines the current Good Manufacturing 
Practices (cGMP) guidelines to manufacture ATMPs[61]. 
Even though clinical grade production of DPSCs needs 
to be implemented, DPSCs can be isolated, stored, 
and eventually expanded by applying rational modifi-
cations to the commonly used methods[15,62], in order 
to continue complying with good manufacturing prac-
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Figure 2  Process flowchart for current Good Manufacturing Practices manufacturing of dental pulp stem cell lots/therapeutic products. The chart is 
divided into 4 areas: Hospital for tooth recovery, Cell Bank, Research Institute and Hospital for clinical applications: (1) Hospital: direct contact between patients and 
authorized medical staff, such as Medical Doctor (MD) or Doctor of Dental Surgery (DDS). Clinical sample and donor’s personal data are recovered; (2) Cell Bank: 
current Good Manufacturing Practices manufacturing of Advanced Therapy Medicinal Products (ATMP) from the biological samples (dental pulps). All data concerning 
the donors are anonymous; (3) Research Institute: dental pulp stem cell (DPSC) lots are used for animal experiments to develop new therapeutics; and (4) Hospital: 
clinical grade DPSC lots are used for therapeutics. Red arrows represent critical parameters related to each step of processing (informed consent, quality, safety, 
confidentiality). HLA: Human leukocyte antigen.
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in the United States and 300000 persons in Europe. 
Numerous preclinical studies have been conducted to 
graft stem cells of various origins into injured spinal 
cords, such as neural stem cells[85], embryonic stem 
cells[86-88], with encouraging results[89]. DPSCs, due to 
their embryologic origin, express some markers of both 
mesenchymal and neuroectodermic origin[12,16]. Indeed, 
DPSCs originate from migrating cranial neural crest 
cells. During embryonic development, these neural 
crest cells differentiate into a wide variety of cell types, 
including neurons of the peripheral nervous system[27]. 
MSCs have been thought to be usable in the treatment 
of spinal cord injuries, and adult human DPSCs could 
provide an ideal source of stem cells for therapeutic 
applications in such neurological pathologies[90]. The 
efficiency of DPSCs in improving neural regeneration 
has been shown in vitro[72,73,91] and in vivo after spinal 
cord injury[92-94]. These preclinical data enhance the 
therapeutic potential of intrathecally administrated HLA-
typed DPSC lots in treatment of nerve tissue injuries.

Sjögren’s syndrome
Sjögren’s syndrome is an autoimmune pathology affe-
cting 0.2% to 3% of the general population[95]. It is 
a chronic inflammation of the salivary and lacrimal 
glands, characterized by lymphocytic infiltration of the 
exocrine glands with a polyclonal B cell activation[96]. 
Although the pathogenesis of primary Sjögren’s synd-
rome remains unclear, T cells and B cells have been 
shown to be involved. Pharmacological treatments have 
limited efficiency, with only the capacity to temporarily 
ameliorate symptoms, and with no modification of the 
overall course of the disease[97]. Given the lack of disease-
modifying drugs, treatment options are now focused on 
biotherapies[98]. As detailed above, immunomodulatory 
properties of MSCs have been demonstrated in vitro 
and in vivo, suggesting a therapeutic potential for 
autoimmune disease treatments[47], especially through 
anti-inflammatory cytokines production and T regulatory 
cells promotion[99]. These immunomodulatory properties 
have also been demonstrated for DPSCs, identifying 
them as a cell source for cell-based therapy of immune 
and inflammation-related diseases[47]. Intravenous 
injection and local injection of DPSC lots into salivary 
glands represents a potential novel immunotherapeutic 
tool for autoimmune Sjögren’s syndrome.

Irradiated salivary glands
Cancers that originate from the aerodigestive epithe-
lium, including carcinomas of the head and neck, are 
the leading causes of cancer-related mortality world-
wide, accounting for about 2 million deaths and 500000 
new cancers diagnosed annually[100,101]. Treatment 
involves chemotherapy, radiotherapy, and surgery. 
Radiation-induced salivary hypofunction is one of 
the major developments that affect survivors. Even 
though radiotherapy is focused on the cancerous area, 
radiations often affect salivary glands, causing severe 
hyposialia and oral dryness after orofacial cancer 

procedures to ensure anonymity, although authorized 
parties can access some clinically relevant information.

The rights of donors and the interests of researchers 
are protected by incorporating relevant government 
legislation (ethical committee review) and procedures 
(e.g., anonymity and consent). It is crucial to explain 
the use and transfer of cells and data at the time of 
informed consent, especially highlighting features that 
distinguish collection for research from collection for a 
biobank[67]. The whole process, from the patient coming 
for tooth extraction to storage of DPSC lots, is presented 
in Figure 2.

Allogenic DPSC biobanking brings together a mul-
titude of data on individuals, including health and 
lifestyle. Thus, the way the informed consent is obtained 
should reflect the personal information used for medical 
research, taking into account that the patient was 
originally coming for a routine tooth extraction. As 
informed consent is derived from the standard that 
every donor has the right to self-determination, the 
patient must be informed about the nature of bioban-
king, the procedures in which the tooth he has donated 
might be involved, and the expected outcome of the 
research[36,68]. The physical and intellectual property of 
biological samples collected must be clearly established 
and explained[69].

INNOVATIVE THERAPEUTICS
Upon discovery of stem cells in the dental pulp, DPSCs 
demonstrated their ability to regenerate a complex 
consisting of a mineralized matrix of odontoblasts and 
connective tissue containing blood vessels similar to 
that observed in normal human tooth[12]. Since then, 
the use range of potential medical applications based on 
DPSCs include the repair and regeneration of bone[13,70], 
the central nervous system[27,71,72], liver tissue[73], heart 
tissue[74], eyes[75], muscles[76,77], and salivary gland 
cells[78,79]. Overall, it holds great potential in the field 
of regenerative medicine and tissue engineering[13,23] 
alone or combined with various biomaterials[80-84]. Some 
have proposed that DPSCs may have greater potential 
than the current MSC gold standard, the bone marrow-
derived MSC[29]. 

Allogenic banking of DPSCs could boost industrial 
and therapeutic innovations by providing tools for 
unsolved medical problems, including the production 
of advanced therapy medicinal products (ATMP). We 
present here some clinical applications, for which there 
is no efficient therapeutics so far, but that DPSCs-based 
ATMP could potentially treat.

Spinal cord injuries
Chronic medullary lesion, a result of spinal cord trauma, 
is characterized by neurologic deficiency without evo-
lution. Six months after trauma, these lesions are 
considered chronic, with no chance of improvement. 
According to the Christopher Reeves foundation, 
these spinal cord lesions affect 1.2 million persons 
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root dentine. It aims to prepare the canal space to 
facilitate disinfection by irrigants and medicaments. 
Prevention of reinfection is then achieved through the 
provision of a fluid-tight root canal filling and a coronal 
restoration[120]. The potential possibility of regeneration 
of pulp tissue by cell therapy is a promising approach 
for the future treatment of pulpitis or peri-apical disease 
assuring longevity of teeth and improved quality of life. 
It has been demonstrated that transplantation of DPSC 
was capable of inducing complete pulp regeneration 
in a root canal after pulpectomy[121]. Thus, the use of 
DPSC, combined with a supporting scaffold, could be 
used to treat and heal infected root canals, providing 
an interesting alternative to the actual inert fillings used 
in endodontics. Root canals anatomy limits the use of 
rigid scaffold systems in pulp regeneration: scaffolds 
for pulp regeneration should be injectable, with fibrous 
structures that ideally mimic the extracellular matrix of 
the pulp tissue and support stem cells growth.

Induced pluripotent stem generation from DPSC
Pluripotent stem cells can be induced from fibroblasts 
by retroviral introduction of Oct3/4, Sox2, c-Myc and 
Klf4[122]. These induced pluripotent stem (iPS) cells 
are similar to embryonic stem cells in morphology, 
proliferation and differentiation capacities[123]. They 
proliferate extensively and differentiate into virtually 
any desired cell type, providing an unlimited source of 
replacement cells for human therapy[124]. It has been 
shown that DPSCs could be also reprogrammed into 
iPS cells, with a higher efficiency rate than dermal 
fibroblasts. DPSCs-derived iPS cells were indistingui-
shable from human embryonic stem cells, highlighting 
the potential of DPSCs as an alternative source for 
generating iPS cells[125,126]. Many reprogrammed cell lines 
could easily be established from DPSCs obtained from 
young patients with a low risk of bacterial contamination 
and genetic modification, as extracted wisdom teeth 
are generally aseptically obtained from the mandible 
and are protected from ultraviolet and other damage 
by surrounding hard tissues. It was shown that iPS cells 
could be efficiently generated from DPSCs using the 
conventional 4 reprogramming factors (Oct3/4, Sox2, 
c-Myc and Klf4)[59,125,126], as well as using only 3 factors 
(Oct3/4, Sox2 and Klf4)[59], or even using only 2 non-
oncogenic factors (Oct4 and Sox2)[30]. Interestingly, 
the efficiency rate of reprogramming was related to the 
donor’s age, with higher rate for younger patients with 
wisdom teeth still under maturation[59].

With respect to safety, it would be ideal not to 
use retrovirus vectors for transient expression of the 
reprogramming genes. DPSCs are assumed to offer 
high efficiency of iPS cell generation even with the 
use of non-integrating vectors such as Sendai viruses 
or modified mRNA. Clinical use of iPS in regenerative 
medicine is very promising. However, time-efficiency 
and financial considerations argue in favor of the use of 
allogenic rather than autologous iPS lines. Similarly to 
DPSCs, biobanking of iPS lines would be a reasonable 

treatment; hyposalivation underlying xerostomia after 
radiotherapy is still a major problem in the treatment of 
head and neck cancer. To date, the only treatment for 
this oral dryness is the use of artificial saliva to supply 
salivary glands, a treatment with limited efficiency. 
Salivary stem cell (salisphere) transplantation has been 
shown to functionally restore salivary gland efficiency 
after radiation-induced impairment of salivary gland 
function and consequential xerostomia[79]. Furthermore, 
it was demonstrated that DPSCs used as a cell source 
for the treatment of salivary gland hypofunction could 
partially revert this hypofunction[80]. Thus, stem cell-
based therapy has great potential in prevention or 
treatment of radiation-induced hyposalivation[102]. New 
therapeutic strategies are now being considered using 
stem cells injected intravenously or directly into salivary 
glands to allow salivary gland cell reactivation[103-106].

Acute periodontitis
Periodontal diseases are highly prevalent diseases 
that can affect up to 90% of the population worldwide. 
They have various forms, from gingivitis, the mildest 
form caused by dental plaque, to periodontitis, which 
induces the loss of connective tissue and bone support, 
and causes tooth loss in adults[107]. Acute periodontitis 
is an inflammatory disease of the periodontium trig-
gered by the host’s immune response and resulting 
in the progressive loss of gingival tissue, periodontal 
ligament and supporting alveolar bone[108]. Actual 
therapeutics consist of the control of bacterial infection 
and the stabilization of tissue loss. Regenerative 
treatment using bone grafts, gingiva grafts, and 
growth factors offer interesting possibilities, but only 
in specific indications[109-111], and with unpredicta-
ble results[112]. In this context, topical application of 
stem cells in periodontal lesions appeared to be a 
promising strategy to regenerate periodontium[113]. 
In vitro studies demonstrated the ability of DPSCs 
to differentiate into osteoblast and cementoblast 
lineage, and to participate in periodontal ligament and 
cementum regeneration[114,115]. In vivo experiments 
enhanced the therapeutic potential of dental stem 
cell grafting to regenerate periodontal tissues[116-118]. 
Allogenic transplantation could enhance periodontal 
tissue repair and limit local inflammation through MSC 
immunomodulation[108,119]. 

Endodontic regeneration
Dental pulp, the soft connective tissue described above, 
is the tissue entrapped within the teeth, in which 
are recovered DPSCs. In case of dental decay, this 
tissue can be infected and become necrotic, because 
it is encased in a thick dentin wall, and consists of a 
microcirculatory system originating from a very small 
opening at the apex of the root. This anatomical 
configuration limits the development vascular supply 
during pulp regeneration. Endodontic treatment, when 
needed, includes the removal of vital and necrotic 
tissues from the root canal system, along with infected 
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banking.
Although producing and storing patient-specific 

stem cells could resolve immunological problems, 
this procedure would be costly, laborious, and time-
consuming. Allogenic DPSC banking containing clinical 
grade stem cell lines offers an alternative and provides 
stem cell lines from which it will be possible to choose 
a HLA match for the patient to be treated. There are 
variations in national and international regulations for 
the collection and storage of human tissue, but ethical 
principles related to biobanks always include safety, 
informed consent and confidentiality. The recovery of 
DPSC doesn’t involve any invasive procedure as they 
come from already extracted teeth. Thus, the main 
concerns are: (1) for the donor, clear explanations about 
the banking project and confidentiality of all personal 
and medical data; and (2) for the patient, safety of 
DPSC lots produced in accordance to guidelines. To 
date, despite promising preclinical data, clinical trials 
using DPSCs have not been widely reported. Allogenic 
biobanks represent a new strategy that aims to develop 
the clinical applications of the DPSC potential, involving 
both researchers and clinicians.
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