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Abstract

Modern strains of Mycobacterium tuberculosis from the Americas are closely related to those 

from Europe, supporting the assumption that human tuberculosis was introduced post-contact1. 

This notion, however, is incompatible with archaeological evidence of pre-contact tuberculosis in 

the New World2. Comparative genomics of modern isolates suggests that M. tuberculosis attained 

its worldwide distribution following human dispersals out of Africa during the Pleistocene epoch3, 

although this has yet to be confirmed with ancient calibration points. Here we present three 1,000-

year-old mycobacterial genomes from Peruvian human skeletons, revealing that a member of the 

M. tuberculosis complex caused human disease before contact. The ancient strains are distinct 

from known human-adapted forms and are most closely related to those adapted to seals and sea 

lions. Two independent dating approaches suggest a most recent common ancestor for the M. 

tuberculosis complex less than 6,000 years ago, which supports a Holocene dispersal of the 

disease. Our results implicate sea mammals as having played a role in transmitting the disease to 

humans across the ocean.

Mycobacterium tuberculosis has had a long history with humans, although consensus has 

not been reached on when this interaction began1,3,4. Previous models held that the human-

adapted pathogen evolved from a zoonotic transfer of Mycobacterium bovis following 

animal domestication during the Neolithic age5. Comparative genomic analyses, however, 

suggest that the bovine form and those adapted to other animal hosts are in fact derived from 

human strains3,6. This supports a rather different disease history where humans may have 

been the most susceptible host species for early progenitors of strains currently circulating. 

Today the majority of M. tuberculosis diversity exists in Africa7, implying that the pathogen 

probably originated from a monoclonal expansion therein and achieved its worldwide 

distribution via human movements1,3,4. The observations that M. tuberculosis strains tend to 

be associated with human populations8 and that selection in the bacterium exists at loci 

associated with host immune responses9 indicate that host and pathogen have had sufficient 

time to co-evolve. Dating approaches that use human demographic events for calibration 

generate substitution rates that differ by over an order of magnitude depending on the 

model3,10, and would thus contribute to vastly different coalescence estimates for all M. 

tuberculosis lineages, collectively referred to as the M. tuberculosis complex (MTBC).
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Given the pathogen’s phylogeography, current models are unable to explain the abundant 

archaeological evidence for the presence of tuberculosis in the Americas before European 

contact. Strains currently circulating in the Americas are most closely related to those of 

European origin, and this has been used to support a European dissemination from either 

early settlement or trade associations1. This model, however, is incompatible with 

bioarchaeological data indicating the presence of tuberculosis in the pre-contact New 

World2 (see Supplementary Information). Molecular investigations using ancient pre-

Columbian material have identified short conserved regions of mobile elements considered 

to be diagnostic for tuberculosis, although these markers offer no information about 

phylogenetic placement, and are thus difficult to authenticate as ancient11. While a 

Pleistocene dispersal following human movements out of Africa could explain its presence 

in the pre-contact New World3,4, the dominance of European-derived lineages in the 

Americas today makes this difficult to reconcile without data to support a complete strain 

replacement within the past 500 years.

Genomic reconstructions of ancient pathogens provide robust evidence of DNA authenticity 

and permit genome-level comparisons12. The success of DNA capture13 and genomic 

assembly of an historical MTBC strain via metagenomic sequencing14 implies that DNA 

preservation of this pathogen may be adequate to address outstanding evolutionary questions 

requiring use of archaeological material. Here we apply these techniques to demonstrate that 

a previously uncharacterized member of the MTBC caused human infection in the Americas 

before European contact.

We screened 68 skeletal samples representing New World pre- and post-contact sites 

(Supplementary Table 1). All individuals showed skeletal indicators associated with 

tuberculosis infections. Samples were processed via established protocols and were screened 

for M. tuberculosis DNA by an in-solution capture assay designed for the rpoB, gyrA, gyrB, 

katG, and mpt40 genes (Supplementary Table 2). Capture products for samples and negative 

controls were sequenced on an Illumina MiSeq and mapped to the corresponding regions in 

the M. tuberculosis H37Rv reference genome (NC_000962.2). No tuberculosis-specific 

fragments were found in our negative controls. Only three of the 68 samples, referred to here 

as samples 54, 58, and 64, showed convincing preservation of tuberculosis DNA (see 

Supplementary Information, Extended Data Fig. 1, and Supplementary Table 1): all three 

samples were recovered from excavations in Peru and derive from Chiribaya cultures 

associated with the Middle Horizon/Late Intermediate period (AD 750–1350) (Fig. 1). 

Radiocarbon dates ranging from AD 1028 to AD 1280 (at not less than 98.5% probability) 

(Supplementary Table 3) confirm that they predate European contact. Spectra of DNA 

damage displayed a pattern expected of ancient molecules15. For comparison, non-enriched 

libraries were sequenced on an Illumina MiSeq producing 34,780 to 112,428 reads for each 

of the three samples, of which 4.6% to 1.6% mapped to the human genome (hg19). In 

contrast, a maximum of only 1.8% of the reads mapped to the M. tuberculosis reference 

genomes (Supplementary Table 1), indicating that DNA capture would be necessary for 

genome retrieval.

DNA libraries treated with uracil DNA glycosylase were generated to remove and repair 

damaged nucleotides, and were subsequently used for full genome hybridization capture 
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(Agilent). Array probes were designed to accommodate known genetic diversity in the 

MTBC, as well as portions of the Mycobacterium avium and Mycobacterium kansasii 

genomes (Supplementary Table 4). Enriched products were sequenced on one lane of an 

Illumina HiSeq 2000. For comparison against a larger data set of 259 modern MTBC 

genomes including the outgroup Mycobacterium canettii3, all ancient reads were mapped 

against a computationally constructed ancestor for the MTBC9. The recently published 

genome from an eighteenth century Hungarian mummy14, as well as 14 animal strains from 

the Mycobacterium caprae, Mycobacterium microti, and Mycobacterium pinnipedii 

lineages, were added, along with a strain recently isolated from a wild chimpanzee16. 

Standard mapping resulted in heterozygous positions for the mummy, Peruvian samples 54 

and 64, and all modern samples (Extended Data Fig. 2). Increased mapping stringency 

removed many heterozygous positions for the Peruvian samples, suggesting they derived 

from non-tuberculosis reads; however, the Hungarian mummy and eight modern samples 

still displayed heterozygosity consistent with mixed strains14 (Extended Data Fig. 3). Our 

more stringent mapping reduced overall genomic coverage for all samples. The final data set 

thus consisted of 262 genomes with a minimum of 75% coverage, four of which were 

ancient (Supplementary Table 5). A minimum of 20-fold average coverage was obtained for 

each of the Peruvian genomes (Fig. 2 and Supplementary Table 6), implying a 40-to 120-

fold enrichment (Supplementary Table 6).

Single nucleotide polymorphism (SNP) analyses were performed by comparing all genomes 

against the constructed ancestor. This identified 53,177 SNPs for the entire data set, which 

ranged between 489 and 1,415 per genome (Supplementary Table 8). As input for 

phylogenetic assessments we used an alignment of 22,480 variable positions after removing 

all positions with missing data. Tree reconstructions revealed that our Peruvian genomes did 

not cluster with other human strains, but rather were more closely related to the animal 

lineage (Extended Data Figs 4–6), sharing 76 SNPs with modern M. pinnipedii strains (Fig. 

3). Genomic architecture revealed a region of difference (RD) deletion pattern common to 

all animal lineages (Supplementary Table 7), as well as absence of the M. microti-specific 

RDmic and presence of the M. pinnipedii-specific RDseal. To our knowledge, M. pinnipedii 

strains have been isolated only from seal species restricted to the Southern Hemisphere17. 

Here they were harvested from captive and wild animals from South America and Australia. 

The three ancient strains share five unique SNPs, all of which are non-synonymous 

(Supplementary Table 9); this indicates that these strains derive from a common progenitor, 

with subsequent accumulation of 10–23 substitutions along the three strain-specific 

branches. To investigate possible signals of adaptation, we screened these five shared SNPs 

for putative functional effects. Our computational analysis predicted a functional impact of 

the P44L mutation in Rv2258c, encoding a methyltransferase involved in ubiquinone 

metabolism (Supplementary Table 9). The SNP in the ctpA gene at codon 62 (D62N) was 

not predicted to have a functional impact; however, we identified two other non-

synonymous SNPs (D62G and D62E), also not predicted to have functional impacts, in the 

same codon of ctpA at different positions, each in a lineage 4 modern strain. The occurrence 

of homoplasies is uncommon in the MTBC, and therefore potentially indicates positive 

selective pressure18. A site-wise analysis of positive selection on codon 62 of ctpA 

confirmed that all three SNPs may be under diversifying selection (Supplementary Table 
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10). The ctp genes encode efflux ion pumps that are thought to prevent metal accumulation 

in the bacterium19, hence adaptation may relate to host metal-ion availability. This notion is 

supported by the existence of homoplasies in other genes of the efflux pump family in 

modern MTBC strains (Supplementary Table 9).

Bayesian dating analysis used radiocarbon dates as tip calibration (Supplementary Table 3). 

The Hungarian mummy sample was excluded because of the presence of multiple strains. A 

clock test rejected the molecular clock for all 258 modern genomes (P= 5×10−147) 

(Extended Data Fig. 7). Dating analysis using a relaxed clock model and a constant 

population size generated a mutation rate of 4.6×10−8 substitutions per site per year (3×10−8 

to 6.2×10−8 95% highest posterior density (HPD) interval). Bayesian skyline plots revealed 

constant population sizes for the animal strains and clear indications of expansions in the 

human-adapted lineages (Extended Data Fig. 8b). An expansion model had a negligible 

influence on the mutation rate, generating 4.9×10−8 substitutions per site per year (3.4×10−8 

to 6.4×10−8 95% HPD), which corresponds to 0.20 and 0.21 substitutions per genome per 

year for a constant and expanding population model, respectively. This rate agrees well with 

estimates of MTBC evolution in modern epidemiological contexts20, and is more than 

tenfold faster than those using human dispersals out of Africa as calibration3. Our mutation 

rates date the most recent common ancestor (MRCA) for the MTBC (excluding M. canettii) 

at 4,449 years before present (yr BP) (2,990–6,062 yr BP 95% HPD) and 4,064 yr BP 

(2,951–5,339 yr BP 95% HPD) for constant size and expansion models, respectively 

(Extended Data Fig. 8a). This dating was corroborated by an independent analysis using the 

sequences from the Hungarian mummy14 sample as the only ancient calibration point. We 

separated the individual variants of the two mummy strains by reconstructing them onto the 

MTBC lineage 4 phylogeny (Extended Data Fig. 9). Lengths from the terminal branches 

were estimated by using the number of heterozygous variants not present in the modern 

strains, under the assumption that both isolates were equidistant from the root of the tree. 

The year of death 1797 and estimated ages for the penultimate nodes were used as priors for 

Bayesian phylogenetic reconstruction. Using only synonymous variants, a relaxed clock, and 

constant population size, we estimate the age of the MRCA of the MTBC (excluding M. 

canettii) to be 5268.5 yr BP (2689.6–8417.7 95% HPD) with a synonymous substitution rate 

of 7.07×10−8 (3.70× 10−8 to 1.12×10−7 95% HPD) per site per year (Extended Data Fig. 10 

and Supplementary Table 11). This higher substitution rate may be due to lower selective 

pressure on synonymous sites.

Our results provide unequivocal evidence of human infection caused by members of the 

MTB Cinpre-Columbian South America. Our MRCA, which is at least an order of 

magnitude younger than previous estimates3,4, presented us with a challenge to explain how 

a mammalian pathogen could have reached human populations in the Americas about 

10,000 years after inundation of the Bering land bridge21. The fact that our ancient genomes 

share a common ancestor with strains that are restricted to seals and sea lions17 provides a 

plausible, if unexpected, route of entry into the New World: within the past 2,500 years 

pinnipeds probably contracted the disease from an African host species, carried the disease 

across ocean waters, and exploitation of marine mammals among coastal peoples of South 

America facilitated a zoonotic transfer of the bacterium within the first millennium AD. This 
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parallels similar zoo-noses of marine parasites acquired from seal consumption among 

archaeological coastal populations22 (Supplementary Information).

Owing to the abundance of publications reporting morphological evidence of pre-Columbian 

tuberculosis in the region, the coasts of Peru and northern Chile have long been recognized 

in the archaeological literature as locations where tuberculosis first came into view in the 

New World2. Some have even suggested marine mammals as a potential source of the 

infection23. The three individuals considered here show pathological changes consistent 

with either pulmonary or disseminated tuberculosis, so a non-contagious infection acquired 

from consumption of contaminated animal products in each case cannot be ruled out. In the 

absence of these data, however, the five unique derived positions shared by the ancient 

Peruvian genomes may provide preliminary evidence of host specificity. All three genomes 

share a common ancestor that predates the radiocarbon age of our skeletal material by more 

than 100 years, and two SNPs show potential signals of adaptation. These observations 

could support a single zoonotic transfer from pinnipeds to humans between AD 700 and AD 

1000 (Fig. 3). Subsequent host adaptation and dissemination is a compelling prospect for 

future work. If confirmed, this would constitute the first example of a zoonotic transfer 

followed by re-adaptation to the human host in the MTBC.

Such a model could explain the abundance of tuberculosis-like lesions in the region that 

accumulate beginning at approximately AD 700 (refs 24, 25). The later appearance of 

similar skeletal lesions in North America that first appear at about AD 900 is consistent with 

either a transcontinental spread of the pathogen via established trade routes26 or a later 

independent introduction of tuberculosis from a different source. The lack of representation 

of this or any other American-specific strain in modern groups supports replacement by a 

European strain after contact that quickly moved through indigenous populations on account 

of additional adverse factors such as social marginalization, food insecurity, and potentially 

facilitative co-circulating infections that reached epidemic levels, such as those recorded in 

northern North America during the decline of the fur trade27. Our data also indicate a 

subsequent introduction of M. pinnipedii to Australian seal colonies within the past 700 

years (Fig. 3); the potential for similar zoonotic transfers, therefore, exists in Oceanian 

populations, although lesions suggestive of tuberculosis have not been identified in relevant 

skeletal material2.

M. pinnipedii has caused infection in several mammalian host species, including humans, in 

the context of zoo outbreaks28. Further sampling of animal-adapted MTBC from both 

modern and ancient contexts will be of great value in determining its range of potential host 

species and in clarifying directions of transmission. While a human transfer of the bacterium 

to marine mammals cannot be ruled out from our data, we consider this extremely unlikely: 

humans did not herd or farm seals, and close, regular contacts would be required for 

anthroponotic transmission, as is observed in domestic cattle29.

The above assertion of an introduction of MTBC via pinnipeds followed by human 

adaptation and subsequent transmission throughout the Americas can only be confirmed by 

comparison with additional North and South American pre-Columbian MTBC genomes 

from non-coastal groups, which remain elusive despite the inclusion of suitable material in 

Bos et al. Page 6

Nature. Author manuscript; available in PMC 2015 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



our screening (Supplementary Table 1). In addition, our dating analyses are based on two 

independent approaches, although each relies on (effectively) a single calibration point. 

Mutation rate heterogeneity is documented in other clonal pathogens30, and the rejection of 

our molecular clock indicates that MTBC evolution is not constant among lineages. 

Additional calibration points from ancient MTBC lineages around the world will be 

essential to evaluate the legitimacy of our proposed models. Such caveats are of paramount 

importance considering the many investigations that report on members of the MTBC 

identified in skeletal samples that predate our inferred MRCA, or American material from 

periods that predate our proposed time of MTBC entry. Such claims could only be 

reconciled with what we propose here if (1) rate heterogeneity or horizontal gene transfer is 

obscuring our dating analysis, perhaps as a result of human population expansions which 

increase the availability of susceptible hosts and allow selection to operate more quickly, (2) 

the pathogens identified in the earlier archaeological material are in fact not members of the 

MTBC, but rather are ancestral forms that have since undergone replacements, or (3) certain 

techniques for MTBC identification in archaeological material lack specificity.
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Extended Data

Extended Data Figure 1. 
Coverage and damage plots for the M. tuberculosis capture regions for samples 54, 58, and 

64.
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Extended Data Figure 2. Histograms of SNP allele frequency distributions for the ancient 
samples and the Hungarian mummy sample using standard mapping parameters
The x axis denotes the frequency of reads covering a SNP position in which the SNP was 

detected. The y axis denotes the number of observed SNP calls with the respective 

frequency. All variants with a SNP allele frequency below 90% are shown.
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Extended Data Figure 3. Histograms of SNP allele frequency distributions for the ancient 
samples, the Hungarian mummy sample, and two modern isolates using stricter mapping and 
filtering parameters
The x axis denotes the frequency of reads covering a SNP position in which the SNP was 

detected. The y axis denotes the number of observed SNP calls with the respective 

frequency. All variants with a SNP allele frequency below 90% are shown.
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Extended Data Figure 4. Maximum parsimony analysis
a, Maximum parsimony tree of all 262 samples of the complete data set. Positions with 

missing data were excluded. b, Subtree of the full maximum parsimony tree showing the 

lineage 6 and animal strains. Positions with missing data were excluded. Branches are 

labelled with the absolute number of substitutions. Internal nodes are labelled with bootstrap 

statistics obtained from 1,000 replicates.

Extended Data Figure 5. Maximum likelihood analysis
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a, Maximum likelihood tree of all 262 samples of the complete data set. Positions with 

missing data were excluded. b, Maximum likelihood subtree showing the lineage 6 and 

animal strains. Positions with missing data were excluded. Internal nodes are labelled with 

bootstrap statistics obtained from 200 replicates.

Extended Data Figure 6. Neighbour joining analysis
a, Neighbour joining tree of all 262 samples of the complete data set. Positions with missing 

data were excluded. b, Neighbour joining subtree showing the lineage 6 and animal strains. 

Positions with missing data were excluded. Internal nodes are labelled with bootstrap 

statistics obtained from 1,000 replicates.
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Extended Data Figure 7. Maximum clade credibility tree of M. tuberculosis
The tree was estimated using the uncorrelated log-normal relaxed clock model in BEAST 

1.7.5 (ref. 31). The radiocarbon dates of the ancient Peruvian strains were used as temporal 

estimates to date the tree. Branch lengths are scaled to years. Branch colours indicate the 

estimated branch substitution rate on the logarithmic scale shown in the legend at the left.
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Extended Data Figure 8. 
a, Posterior distributions of times to most recent common ancestor (TMRCA) for different 

MTBC branches, and exponential growth and constant size models. b, Bayesian skyline plot 

showing estimated effective population sizes for the human lineages. c, Bayesian skyline 

plot showing estimated effective population sizes for the animal lineages.
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Extended Data Figure 9. Maximum likelihood phylogeny of L4 lineage including modern and 
ancient strains
The mixed samples are separated out into Hungarian 1 and 2. SNPs were mapped back onto 

the phylogeny, and branches marked in red are those defined by variants found to be mixed 

in the Hungarian sample. This allowed us to determine the ancestral nodes and branches for 

each of the two strains on the tree. The dotted lines represent the unknown length of the 

terminal branches, with the stars representing the theoretical penultimate node for which age 

priors were determined.
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Extended Data Figure 10. Maximum clade credibility tree produced using BEAST31

Produced using TreeAnnotator from 9,000 trees. Branch lengths are scaled by age. The 

mean age (yr BP) of the MRCA plus 95% HPD, and the position of the separated Hungarian 

ancient strains, are marked on the phylogeny.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Archaeological description of the skeletal samples
a, Map of Peru showing locations of archaeological sites; CGIAR SRTM 90m Digital 

Elevation Database version 4.1 (http://srtm.csi.cgiar.org). b, c, Skeletal lesions of active 

tuberculosis from two individuals positive for M. tuberculosis DNA (b, individual 58; c, 

individual 64). Arrows show vertebral lesions, collapse, fusion, and kyphosis.
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Figure 2. Coverage plots for three ancient genomes
Inner ring: purple, AT content; gold, GC content. Coverage rings for samples 64, 58, and 54 

shown in red, green, and blue, respectively. Vertical lines indicate locations of unique SNPs. 

SNPs were identified before exclusion of positions with missing data from the full 262 

genome data set.
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Figure 3. Phylogenetic analysis
a, Bayesian maximum clade credibility tree of 261 MTBC genomes (excluding Hungarian 

mummy), with estimated divergence dates shown in years before present using a model of 

population expansion. b, Maximum parsimony tree for lineage 6 and animal-adapted MTBC 

genomes with SNPs that define all branches. Bootstrap values in grey italics. Deletions 

specific to the animal lineages are shown as triangles.
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