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Diabetes leads to complications in select organ systems
primarily by disrupting the vasculature of the target organs.
These complications include both micro- (cardiomyopathy,
retinopathy, nephropathy, and neuropathy) and macro-
(atherosclerosis) angiopathies. Bone marrow angiopathy is
also evident in both experimental models of the disease as
well as in human diabetes. In addition to vascular disruption,
bone loss and increased marrow adiposity have become
hallmarks of the diabetic bone phenotype. Emerging
evidence now implicates enhanced marrow adipogenesis and
changes to cellular makeup of the marrow in a novel
mechanistic link between various secondary complications of
diabetes. In this review, we explore the mechanisms of
enhanced marrow adipogenesis in diabetes and the link
between changes to marrow cellular composition, and
disruption and depletion of reparative stem cells.

Diabetes and Its Complications

Diabetes is an incredibly prevalent disease, afflicting an esti-
mated 220 million people in North America and 347 million
people worldwide.1,2 Prevalence estimates have increased sharply
since 1980 and are predicted to continue rising.3 As diabetes is a
significant cause of morbidity and mortality, the economic bur-
den is truly staggering and estimated to reach $17 billion a year
by 2020 in Canada, and $116 billion in the United States.4,5

The main concern here is that nearly three-fourths of all diabetic
patients suffer from at least one secondary complication of the

disease.6 These secondary complications stem from the effects of
sustained levels of hyperglycemia on the vascular system of select
organs.7,8 Vascular endothelial cells lining blood vessel walls are
the first to encounter high levels of circulating glucose.7-9 Sus-
tained uptake of glucose by vessel endothelial cells results in
impaired cellular function, resulting in microvascular and macro-
vascular changes.8,9 One of the earliest defects apparent in target
organs of diabetic complications is a diminished capacity for
vasodilation due to the unbalanced production of vasodilators
and vasoconstrictors.7-9 Decreased levels of the vasodilator nitric
oxide, coupled increased production of the powerful vasoconstric-
tor endothelin-1, results in impaired vasoregulation. This
functional alteration is accompanied by sustained structural
remodelling of the vessels in target organs manifesting as retinopa-
thy, nephropathy, neuropathy, cardiomyopathy, and accelerated
atherosclerosis.7-9 Initiation as well as the progression of these
complications also entails an impaired repair/regenerative mecha-
nism.10,11 Vascular repair is largely dependent on the prolifera-
tion, mobilization and differentiation of bone marrow-derived
progenitor cells.12 The angiogenic potential (reparative function)
of these precursor cells is diminished in vasculopathies and may
be resultant from diabetes-induced changes to the cellular compo-
sition of the marrow where these stem/progenitor cells reside.13-15

Diabetic Marrow Dysfunction: Consequences
of Enhanced Adipogenesis and Impaired

Osteoblast-Genesis

Bone marrow is a rich source of stem cells. At least two differ-
ent stem cell populations reside in the marrow: hematopoietic
stem cells and multipotential stem cells (also known as mesenchy-
mal/mesodermal stem cells, mesenchymal/marrow stromal cells;
MSCs). Both of these stem cell types consist of a hierarchy of
cells. MSCs are believed to give rise to endothelial cells,
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mesenchymal progenitor cells (MPCs; cells restricted to the mes-
enchymal lineage), adipocytes and osteoblasts. MSC progeny
also create a cellular environment to maintain stem cell self-
renewal in the marrow (Fig. 1).

Long-standing diabetes leads to cellular changes in the bone
marrow, the functional significance of which is just being realized.
These cellular changes include enhanced adipogenesis of MPCs as
observed in both type 1 and 2 models of diabetes.16,17 In the insu-
lin-deficient form of the disease, this leads to diminished bone den-
sity, with human studies and streptozotocin-induced diabetic
animal models noting a decrease in trabecular bone mass and a
reciprocal increase in the adiposity of the marrow.16-20 Alterna-
tively, analyses of bones of type 2 diabetics have generally observed
unchanged or increased bone mineral density, though clinically,
both diabetic populations have a substantially increased risk of
fractures in comparison to non-diabetics.18,21-24 Additionally,
there is increasing evidence that some diabetic medications may
negatively impact bone density and marrow adiposity.1,25-29 Dia-
betes also induces microvascular remodeling in the bone marrow
manifesting as impaired angiogenic ability, vascular endothelial
cell dysfunction, and a reduction in stem cell number.30,31 These
findings suggest that disruption of the bonemarrowmicroenviron-
ment, enhanced adipogenesis/suppressed osteoblastogenesis, may
be responsible for detrimental effects on stem cell function and dif-
ferentiation. If true, this provides a novel mechanistic link to
impairment of endogenous repair in diabetes (Fig. 2). Indeed,
both type 1 and type 2 diabetes is associated with lower circulating
number of endothelial progenitor cells (cells that play a critical role
in vascular regeneration) when compared with healthy sub-
jects.15,32-34 Furthermore, the number of endothelial progenitor
cells correlates with glycemic control.35 There are a number of

possible mechanisms at play here: (1) diabetes may cause depletion
of resident stem/progenitor cells in the marrow through alteration
of the marrow stem cell environment, (2) diabetes may alter the
mobilization of stem/progenitor cells, and (3) high levels of glucose
in the circulation may reduce the number of cells that have mobi-
lized. In fact, there is experimental evidence for all three possibili-
ties. We and others have recently shown that diabetes leads to
reduced number of stem cells in the bone marrow.31,36 These stem
cells can be distinguished from hematopoietic stem cells by their
ability to differentiate into endothelial and mural lineages and to
regenerate functional vessels.7,36,37 Studies have also shown that
diabetes leads to reduced mobilization of stem cells from the mar-
row.38,39 A number of signaling mechanisms have been identified
underlying this abnormality. And finally, we have shown that high
levels of glucose decrease endothelial and mesenchymal progenitor
cell numbers acutely (within 24 h of culture).37 However, cells
recover from glucose toxicity with sustained exposure. In addition,
the differentiation capacity of blood and bone marrow-derived
stem cells to produce endothelial and mesenchymal progenitor
cells is not altered by the presence of high levels of glucose. Experi-
mental evidence also shows that stem/progenitor cells isolated
from diabetic mice are able to restore vascular homeostasis.28,29

Taken together, these studies suggest that changing the cellular
microenvironment in the marrow directly leads to dysfunction
and reduction of stem cells in diabetes. The aim of this review is to
elucidate the mechanisms underlying the increase in bone marrow
adipogenesis observed in diabetes and examine the bidirectional
relationship between bone adiposity and disease progression.

Mechanisms of Enhanced Marrow Adipogenesis
in Diabetes

There is a wealth of knowledge on the process and factors
involved in adipogenesis. The current understanding of adipo-
genesis has largely emerged from in vitro studies using cell
lines such as the preadipocyte 3T3-L1 and 3T3-F442A
cells.40,41 Although recently, studies conducted in human cells
have also emerged. The process of differentiation in murine cell
lines appears to be similar to the signaling cascade that drives
adipogenesis in human bone marrow cells, with the principle
actors being peroxisome proliferator-activated receptor g
(PPARg) and the CCAAT/enhancer-binding protein (C/EBPa,
-b, and -d) transcription factors.42,43 It should be noted that
there are reports of differences between murine cell lines and
human MSC/MPCs. For example, Yu and colleagues suggested
that human marrow cells primarily express PPARg1 isoform
upon differentiation with PPARg2 increases being noted at
later time point, which is believed to be in contrast to murine
cells.44 PPARg2 isoform does appear to be the minor species,
comprising only 15% of all PPARg expression within adipose
tissue, although it has been shown to be the predominant iso-
form in regulating adipogenesis.45,46 Furthermore, knocking
down the expression of C/EBPa prevents PPARg2 induction
and adipogenesis in human marrow cells.44 The expression pro-
file during terminal adipogenic differentiation in human MSCs

Figure 1. Schematic illustrating bone marrow niche components. Bone
marrow contains at least two different stem cell types: hematopoietic
stem cells and mesenchymal stem cells. Self-renewal and differentiation
activity of these stem cells is regulated by the surrounding microenviron-
ment including cell types at various differentiation states. These niche
cells include endothelial cells, osteoblasts, adipocytes and mesenchymal
progenitor cells (cells restricted to the mesenchymal lineage). HSC,
hematopoietic stem cells; MAPC, multipotential adult progenitor cell;
MSC, mesenchymal/multipotential stem cell; SC, stem cell.
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is also similar to that of 3T3-L1 preadipo-
cytes, characterized by early expression of
C/EBPb and -d and followed by C/EBPa
and PPARg expression.42 In addition, we have shown specific
induction of PPARg2 in human marrow MPCs following addi-
tion of adipogenic differentiation media and the levels parallel
C/EBPa.36,37 Therefore, examining the expression of these
transcription factors offer insight into paracrine factors regulat-
ing adipogenesis in diabetes.

A vast number of factors have been shown to modulate adipo-
genesis. Some of these modulating factors that are pertinent to the
diabetic context include insulin,47,48 insulin-like growth factor-1
(IGF-1),49 extracellular proteins including collagen and fibronec-
tin,50,51 and tumor necrosis factor-a (TNF-a).52,53 Shifts in the
expression or function of these and other effectors disrupt the
homeostatic balance between adipogenic and osteogenic differen-
tiation of MPCs.54-59 While the general consensus is that diabetic
hyperglycemia is associated with increased adipogenesis in the
marrow, inhibition of fat cell formation and promotion of osteo-
blastic differentiation following the administration of exogenous
glucose has also been reported.60,61 Shilpa and colleagues found
that culturing 3T3-L1 preadipocytes in extremely high glucose
levels of 105 mM resulted in diminished adipogenesis, with
downregulation of PPARg and C/EBPa relative to cells cultured
in 25 mM glucose concentration.61 The extreme hyperglycemic
conditions emulated by the 105 mM glucose condition was found
to increase cellular stress, leading to the induction of inflammatory
cytokines, such as TNF-a, known to inhibit adipocyte differentia-
tion and potentially induce dedifferentiation.61,62 This glucose
level was considerably greater than the 25 mM concentration used
to mimic hyperglycemia in most other studies, which may account
for contrasting results.36,63

The enhanced adiposity of the bone marrow observed in dia-
betes models and human diabetes appears to be a multifactorial
consequence of augmented insulin signaling, hyperlipidemia, ele-
vated blood glucose levels, and heightened oxidative stress.

Recently however, novel signaling mechanisms have been
highlighted that enhance adipogenic differentiation.

PI3K-PKB pathway
High levels of blood glucose have been demonstrated to

increase adipocyte formation, lipid accumulation, and the expres-
sion of PPARg in MPCs.64 It has been suggested that hyperglyce-
mia mediates its effects through changes in post-receptor insulin
signaling, which may be implicated in the development of insulin
resistance.64 High levels of glucose increases the activity of phos-
phatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and the subse-
quent phosphorylation of protein kinase B (PKB), both of which
are involved in the insulin signaling cascade. PKB-facilitated de-
repression of the pparg gene though forkhead box protein O1
(FoxO1) nuclear export leads to the induction of PPARg and C/
EBPa expression, resulting in increased adiposity of the bone
marrow.64-66 PKB induced by hyperglycemia is also able to acti-
vate mammalian target of rapamycin (mTOR), which leads to
increased expression of C/EBPa, and other adipocyte-specific
factors in pre-adipocytes, as well as muscle satellite cells, leading
to the formation of intramuscular adipose depots.67-69

Reactive oxygen species
The cellular production of reactive oxygen species (ROS) has

been shown to be elevated in diabetic patients, largely due to
increased glucose levels and metabolism.70-73 The predominant
mechanism underlying the heightened oxidative stress in diabetes
involves dysfunction of the mitochondrial electron transport sys-
tem.74 In hyperglycemic cells, more glucose becomes oxidized
through the tricarboxylic acid (TCA) cycle, which results in an
increased number of electron donors, NADH and FADH2, being
fed into the electron transport chain. This leads to an increase in
the mitochondrial membrane voltage gradient until a specific

Figure 2. Effect of diabetes in target organs sys-
tems. Diabetes leads to structural and func-
tional changes in target organs resulting in loss
of blood vessel integrity and vasoregulation.
Continued damage to blood vessels leads to a
reduction in blood flow to target organs and
loss of vascular cells. Vessel degeneration and
ischemia play critical roles in the development
of secondary complications of diabetes includ-
ing retinopathy, nephropathy, and cardiomyop-
athy. In the bone marrow, diabetes changes the
cellular composition by increasing adipogenesis
and reducing osteoblastogenesis. These are
believed to alter the stem cell niche resulting in
stem cell dysfunction and depletion. The end
result would be impaired repair and regenera-
tion of vasculature in target organs of
secondary complications.
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threshold limit is reached, at which point further electron transfer
inside complex III is halted, causing a backlog of electrons in
coenzyme Q. Coenzyme Q dissipates this excess negative charge
through the donation of single electrons to molecular oxygen,
leading to the formation of superoxide.

Superoxide inhibits the action of glycolytic enzyme glyceral-
dehyde-3 phosphate (GAPDH), which leads to the activation of
the advanced glycation end product (AGE) pathway that has
been shown to be increasingly stimulated in diabetes.74-76 AGEs
are proteins or lipids that become glycosylated following expo-
sure to sugars and accelerate cellular oxidative damage, and have
been implicated in both micro- and macro-vascular diabetic
complications.72,77,78 Binding of AGE and their receptors,
known as RAGE, have been associated with reduced bone for-
mation by osteoblasts and diminished matrix mineralization, in
addition to impaired osteoblastogenesis.79-81 AGE-RAGE inter-
actions have also been identified as promoting the apoptosis of
osteoblasts and MPCs, contributing to the depletion of the
stem cell niche.82,83

Oxidative stress induced by hyperglycemia has also been
found to stimulate the PI3K/PKB pathway, which acts to inhibit
osteoblastic maturation and stimulate adipogenesis.84 Osteoblasts
exposed to ROS resulting from a high glucose environment dem-
onstrate decreased expression of runt-related transcription factor
2 (Runx2) and osteocalcin, with a concomitant increase in the
abundance of the adipogenesis-related factors PPARg, adipsin,
and fatty acid binding protein-4 (FABP4).84 ROS is also able to
prevent the mineralization of osteoblasts and enhance their accu-
mulation of lipid droplets.

Non-canonical Wnt-PKC pathway
Perhaps the best-studied system in adipogenesis is the wing-

less-type MMTV integration site family (Wnt)-mediated signal-
ing pathway.85 In humans, the Wnt family is comprised of 19
secreted glycoproteins that affect the differentiation and develop-
ment of many cell types through autocrine and paracrine pro-
cesses.86,87 It has been well accepted that activation of the Wnt
pathway (b-catenin signaling) constrains progenitor cells to dif-
ferentiate into osteoblast or myoblasts and prevents development
along the adipocytic lineage.85 It is believed that endogenous pro-
duction of Wnt ligands act to curb the terminal differentiation of
preadipocytes and attempt to maintain a stem cell-like pheno-
type. Crosstalk also appears to exist between the canonical Wnt
system and PPARg. When induced, PPARg binds the Lymphoid
enhancer factor/T cell factor (LEF/TCF)-binding domain of
b-catenin and facilitates its phosphorylation by glycogen synthase
kinase 3b (GSK3b), directing the factor to the proteasome for
degradation.88-91 Following the induction of differentiation
within preadipocytes, levels of b-catenin remain elevated, until
the expression of PPARg is heightened, resulting in the post-
transcriptional downregulation of b-catenin and terminal
differentiation.92

Of the several non-canonical Wnt signaling cascades, the
Wnt/Ca2C pathway is presumed to be the most relevant in the
regulation of adipogenesis. Interactions between specific mem-
bers of the Wnt and Wnt receptor subtypes result in the

activation of phospholipase C (PLC).87,93 PLC then leads to
the generation of diacylglycerol (DAG) and inositol triphos-
phate (Ins[1,4,5]P3). Release of intracellular calcium activates
protein kinase C (PKC), ultimately leading to phosphorylation
of SETB1 (SET domain bifurcated-1) histone methyltransfer-
ase. This leads to the creation of a co-repressor complex that
inhibits PPARg through H3-K9 histone methylation and
directs the progenitor cell toward osteoblastogenesis through
upregulated expression of Runx2, which is requisite for bone
cell maturation.85,94 Interestingly, depending on the distinct
isoform activated, PKC may have either a positive or negative
influence on adipogenesis. PKC isoforms -a, -d, and -m are
suspected to inhibit maturation.95 The initiation of adipogene-
sis appears to be reliant on PKC-bI and PKC-g is believed to
be necessary for clonal expansion.95,96 PKC-e is presumed to
be critical for pre-adipocyte commitment and the final acquisi-
tion of the adipocytic phenotype, though the mechanisms
leading to the effects of these three positive modulators are
not yet understood.97,98

We have recently shown that non-canonical Wnt11 is induced
by hyperglycemia in MPCs and enhances the adipocytic differen-
tiation.36 While the mechanism remains to be fully elucidated, a
current hypothesis is that, through a non-canonical pathway,
hyperglycemia induces a switch in Wnt11 signaling that differen-
tially activates the various isoforms of PKC, specifically inducing
the phosphorylation and consequent activation of PKC. PKC-e
is translocated from the cytoplasm to the nucleus where it is
expressed in spatiotemporal symmetry with C/EBPb, indicative
of a potential interaction.36,95 Through a currently unknown
process likely involving the phosphorylation and regulation of
key nuclear adipogenic factors, PKC-e activation results in the
acceleration of adipogenic differentiation.

Hyper- and hypo-insulinemia
Insulin is one of the factors commonly used to stimulate adi-

pogenic differentiation in cell culture systems, and in vivo models
of insulin receptor knockout display impaired adipogenic differ-
entiation and lipid storage capacity.99-101 A hyperinsulinemic
state is frequently observed in the development of type 2 diabetes
as pancreatic production of insulin surges in an attempt to coun-
teract the ever-increasing resistance of peripheral tissues.102,103

Hyperinsulinemia may be capable of inducing the adipogenesis
of cells within the marrow stem cell niche through a signaling
cascade involving PKB and mTOR, culminating with activation
of C/EBPa and PPARg.104 Conversely, hypoinsulinemia, a hall-
mark of type 1 diabetes and an eventual occurrence following
b-cell failure in type 2 diabetics, may also indirectly lead to
enhanced adipogenesis. Insulin receptor knockout mice display a
2-fold upregulation of the IGF-1 receptor through a yet
unknown mechanism.101 Both the IGF and insulin signaling sys-
tems converge on a common pathway involving PKB, which
may grant IGF partial control of adipogenic differentiation under
hypoinsulinemic conditions.105 When combined with the
administration of exogenous insulin therapies, the overexpression
of IGF-1 receptor may lead to disproportionate fat cell
development.
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Hyperlipidemia
A large proportion of diabetics are subject to hyperlipidemia,

particularly if their condition is poorly controlled.106,107 A study
of diabetic mice has observed elevations in the relative quantities
of plasma di- and tri-unsaturated fatty acids compared with satu-
rated fats.108 Fatty acids, particularly polyunsaturated fatty acids,
have been identified as agonists for PPARg, and although they
possess a relatively low affinity, the substantial elevation of serum
lipids in diabetes may be sufficient for activation.47,109,110 Dysli-
pidemia may prohibit the efficient maturation of osteoblast-like
cells and is capable of inducing the trans-differentiation of osteo-
blast-like cells into adipocytes, further attenuating the density of
the bone marrow.111

Diabetic Medications

Another potential contributor to the diminished bone integ-
rity seen in diabetes may be the effects of anti-diabetic medica-
tions. While insulin-sensitizing agents are crucial to the
maintenance of normoglycemia and avoidance of life-threatening
complications, they also have a chronic effect on the bone mar-
row. The current therapy in the treatment of type 2 diabetes
involves metformin, which suppresses hepatic gluconeogenesis to
moderate blood glucose levels and increase insulin sensitivity.112

Both in vitro and in vivo, metformin has been found to increase
markers of osteogenic differentiation, as well as function.113 The
developmental shift in the lineage potential of MPCs induced by
this commonly-used drug may account for a portion of the
enhanced bone mineral density that has controversially been
observed in noninsulin-dependent diabetics.

Thiazolidinedione derivatives (TZDs), also known as glita-
zones, are a group of medications that act to improve insulin
responsiveness within target tissues, concomitantly augmenting
hyperglycemia and hyperlipidemia.114-116 TZDs have also been
implicated in diabetic bone loss, with a significantly increased
risk of fractures and osteoporosis while on these medications
being well-documented.25,26,28,29,117-120 The primary mecha-
nism of action of TZDs is through the direct induction and acti-
vation of PPARg, leading to improved insulin sensitivity
throughout the body via an unknown mechanism.121,122 The
efficacy of TZDs in rectifying systemic insulin resistance through
a factor found predominantly in adipocytes accentuates the inti-
mate and complex relationship between fat tissue and diabetes.
Through the promotion of PPARg, a common side effect of this
class of drugs is weight gain, with increased adipogenesis leading
to increased fat depots primarily within the subcutaneous site,
along with the bone marrow.123-127

The stimulation of differentiation has been widely associated
with the increased adiposity in bone marrow seen during TZD
treatment, though the reported effects of TZDs on osteoblasts and
osteoclasts have been contradictory. Some reports have shown that
exposure of multipotent cells to TZDs in vitro results in potent
activation of adipogenesis, with no negative effects on osteoblast
development or function, suggesting that the two cell types do not
compete for the same population of precursor cells.128,129 It has

also been proposed that rosiglitazone is able to accelerate both fat
and bone cell maturation through the PPARg2 isoform in adipo-
cytes and PPARg1 in osteoblasts, with a substantial build-up of
ROS.130 Yet, others have reported that induction of adipogenesis
through PPARg stimulation does, in fact, necessarily reduce oste-
oblast differentiation and function, supporting the notion of a
shared pool of progenitor cells.123,131-133

A number of prospective and retrospective observational
investigations have aimed to determine whether TZD use is asso-
ciated with a negative effect on bone density in humans. While
two small studies reported a minor protective effect of troglita-
zone in reducing bone turnover, larger-scale surveys tend to pur-
port a significant decrease in bone mass with TZD
treatment.28,29,134,135 Several randomized controlled trials have
also examined the involvement of TZDs in skeletal qual-
ity.128,136-138 Most of these studies found essentially no changes
in indicators of bone resorption, with a 10–20% decrease in
markers associated with osteoblast function and a reduced quan-
tity of osteoblastic precursors. This translated into a significant
reduction in bone density in the experimental groups adminis-
tered TZDs.137,138

Are Bone Loss and Marrow Adiposity Two Sides
of the Same Coin?

It has long been accepted that a reciprocal relationship exists
between marrow adiposity and bone mineral density, with bone
loss and increased adiposity often coinciding.55,105 As both osteo-
blasts and adipocytes are generated from the same population of
precursors, it would appear that the predominance of one lineage
would occur at the expense of the development of the other cell
type. Several studies have been undertaken investigating whether
the induction of adipogenesis forces the repression of osteoblast
generation and activity. In hetero- and homozygous PPARg
knockout systems, embryonic stem cells spontaneously differenti-
ated into osteoblasts, while adipogenesis was inhibited.139,140 In
vivo, PPARg haploinsufficient mice also display heightened levels
of osteoblastogenesis, leading to increased bone mass.139 Con-
versely, deletion of b-catenin in osterix-expressing cells (early
osteoblast lineage) leads to a striking reduction in bone mass and
an increase in bone marrow adiposity.141 These studies suggest
that one mechanism of diabetic bone phenotype may be deple-
tion of available progenitor cells through commitment to one
lineage. However, treatment of diabetic mice with the PPARg
antagonist bisphenol-A-diglycidyl ether (BADGE) inhibits adi-
pogenesis without suppression of osteoblast markers and conse-
quent bone loss.142 The mechanism of this disconnect is not
fully clear but it may be related to duration of BADGE treat-
ment. In fact, acute exposure of BADGE has been shown to be
ineffective in reducing osteocalcin levels in cultured osteoblasts,
whereas chronic treatment significantly suppresses the levels.142

Osteocalcin has also been observed to decrease in diabetes, with
changes in factors involved in earlier differentiation, such as
Runx2, occasionally being observed.16,17,143,144 The changes to
osteoblastic gene expression are mediated through activation of
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protein kinase A (PKA) and extracellular signal response kinase
(ERK1/2) signaling mechanisms, which attenuate osteoblast
differentiation.145

In diabetes, both acute and chronic hyperglycemia induces
osmotic changes in cells as they adapt to the heightened col-
loid pressure by reducing their volume and augmenting gene
expression.143,146 Acute in vitro exposure of osteoblast precur-
sor cells to high glucose levels and hyperosmolarity resulted in
increased expression of collagen I, along with downregulation
of osteocalcin mRNA.146 With sustained exposure, high levels
of glucose are able to induce the upregulation of alkaline phos-
phatase, along with diminishing production of osteocalcin.
The mRNA levels of PPARg were also found to be increased
nearly 2-fold in pre-osteoblasts challenged with high levels of
glucose.143,145 In vivo studies have shown similar findings in
the bones of diabetic mice, reporting a 40% reduction in
osteocalcin expression, though markers of early osteoblast
development, such as Runx2, remain unchanged.16,17 Adipo-
genic genes PPARg, resistin, and FABP4 were all found to be
significantly upregulated, with a 3-fold increase in the quantity
of marrow adipocytes being observed. This suggests that an
elevated serum glucose level impairs the later stages of oste-
blastogenesis, while promoting the expression of markers of
the adipocytic phenotype.

Upon enhanced adipogenesis, the interaction between adipo-
cytes and osteoblasts takes on another layer of complexity. Adipo-
cytes secrete numerous proteins collectively referred to as
adipokines, which include adiponectin, leptin, resistin, and
tumor necrosis factor-a (TNF-a), among others.147 Paradoxi-
cally, adiponectin which is secreted nearly exclusively by adipo-
cytes has been found to prevent adipogenic differentiation in
bone marrow cultures and increase trabecular bone mass by pro-
moting osteoblastogenesis and repressing osteoclast forma-
tion.148-151 Unlike adiponectin, the expression of leptin increases
concurrently with adiposity and appears to be unaffected by dia-
betes.152-154 Leptin appears to have contradictory effects on
bone, activating the sympathetic nervous system to accelerate
bone loss, as well as stimulating the osteogenic differentiation of
marrow MPCs, with the net outcome dependent on its concen-
tration.155-160 Lastly, TNF-a, has also been identified as having

detrimental effects on the skeleton. A positive correlation has
been found between the expression of TNF-a by adipocytes and
both obesity and insulin resistance.161 Local TNF-a signaling
leads to enhanced differentiation of osteoclast precursors and
increased bone resorption.162,163 We are just starting to under-
stand how these adipokines are altered in diabetes and the subse-
quent effect of this alteration both systemically and in the
marrow. This field of research will bring upon a new era in our
understanding of chronic diabetic complications.

Concluding Remarks

With the incidence of diabetes on a rise, it is imperative that
we understand the mechanisms of secondary diabetic complica-
tions. Sustained hyperglycemia has been demonstrated to lead to
increased adiposity of the bone marrow, with a concomitant esca-
lation in the risk of fractures and may potentially be the cause of
reduced stem cells for endogenous vascular repair. While the
basic process underlying adipogenesis is well-elucidated, the spe-
cific factors promoting and inhibiting the C/EBP-PPAR signal-
ing pathway are numerous and complex, with their potential
roles in preventing diabetes-induced bone marrow adipogenesis
relatively unexplored. The exploitation of marrow adipose biol-
ogy may soon become a central treatment strategy in diabetes,
precluding complications or preventing the disease itself.
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