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Abstract
Although DNA methylation is now recognized as an important mediator of complex diseases, the extent to which the genetic
basis of such diseases is accounted for byDNAmethylation is unknown. In the setting of large, extended families representing a
minority, high-risk population of the USA, we aimed to characterize the role of epigenome-wide DNA methylation in type 2
diabetes (T2D). Using IlluminaHumanMethylation450 BeadChip arrays, we tested for association of DNAmethylation at 446 356
sites with age, sex and phenotypic traits related to T2D in 850 pedigreed Mexican-American individuals. Robust statistical
analyses showed that (i) 15% of themethylome is significantly heritable, with amedian heritability of 0.14; (ii) DNAmethylation
at 14% of CpG sites is associated with nearby sequence variants; (iii) 22% and 3% of the autosomal CpG sites are associated with
age and sex, respectively; (iv) 53 CpG sites were significantly associated with liability to T2D, fasting blood glucose and insulin
resistance; (v) DNAmethylation levels at five CpG sites, mapping to threewell-characterized genes (TXNIP,ABCG1 and SAMD12)
independently explained 7.8% of the heritability of T2D (vi) methylation at these five sites was unlikely to be influenced by
neighboring DNA sequence variation. Our study has identified novel epigenetic indicators of T2D risk in Mexican Americans
who have increased risk for this disease. These results provide new insights into potential treatment targets of T2D.

Introduction
Complex diseases are the result of intricate interactions between
genetic and epigeneticmechanisms, involving important intern-
al and external environmental triggers (1). Understanding these
etiological processes requires systematic investigations into
their various components, and epigenetic determinants are
being increasingly recognized as central players (2–4). The last
decade has seen pivotal technological advances aimed at charac-
terizing DNAmethylation on a genome-wide scale. Despite these

developments, however, attempts to link alterations in the DNA
‘methylome’ to complex diseases are still in a nascent stage.

Type 2 diabetes (T2D) is a complex disease with global impli-
cations, necessitating the delineation of underlying pathogenic
mechanisms. Although significantly heritable (5,6) with numer-
ous genetic risk variants identified to date (7–9), the genetic
basis of T2D remains largely unaccounted for. Studies in
mice (10) and humans (11–13) have assessed the role of DNA
methylation in T2D risk, providing preliminary insights into the

Received: August 31, 2014. Revised and Accepted: June 16, 2015

© The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Human Molecular Genetics, 2015, Vol. 24, No. 18 5330–5344

doi: 10.1093/hmg/ddv232
Advance Access Publication Date: 22 June 2015
Association Studies Article

5330

http://www.oxfordjournals.org


methylation-T2D nexus. A recent study of twins in the MuTHER
Consortium (14) has shown evidence that DNA methylation
changes influenced by shared environmental effects may be im-
portant in biological functions relevant to T2D. However, large-
scale, fine-resolution DNA methylation surveys have, to our
knowledge, not been conducted in extended families, to examine
the contribution of DNA methylation changes to the heritability
of T2D.

We utilized phenotypic and genotypic data available from the
San Antonio Family Heart Study (15,16), an ongoing project in-
volving large and extended pedigrees of Mexican Americans, to
assess the contribution of DNA methylation to the heritability
of T2D. Here, we report the results of epigenome-wide associa-
tions betweenDNAmethylation andT2D-related traits and docu-
ment the genetic basis of this association by estimating the
heritability of DNA methylation and investigating the role of
local sequence variation.

Results
In this family-based study,we interrogated 485 577 genome-wide
DNAmethylation sites and analyzed a total of 446 356 autosomal
CpG sites to investigate genetic and phenotypic associations.
Selection criteria of these methylation probes are shown in
Supplementary Material, Figure S1 and detailed information on
the 446 356 CpG sites is shown in Supplementary Material,
Table S1. The included sites contained 35 395 probes (7.9%) that
had a known single nucleotide polymorphism (SNP) at the CpG
site and 92 117 (20.64%) probes that contained at least one SNP
that was not located at the site. We examined the association
of these 446 356 siteswith diabetes-related traits in 850 pedigreed
MexicanAmericanswhose clinical characteristics are provided in
Supplementary Material, Table S2. Participants were predomin-
antly female (63%) and at the time of assessment ∼21% of indivi-
duals had T2D and another ∼17% had impaired fasting glucose.
There was also a high prevalence of obesity (56%) and hyperten-
sion (33%). Familial relationships among study participants are
shown in Supplementary Material, Table S3.

Heritability of DNA methylation levels

We first estimated the narrow-sense heritability of each normal-
ized methylation score, identifying 65 876 (14.8%) significantly
heritable CpG sites using a false discovery rate (FDR) of 0.05
(Fig. 1A, Supplementary Material, Table S1). The median herit-
ability of all tested sites was 0.14, and for those that were signifi-
cantly heritable (FDR < 0.05) it was 0.47.

We next examined if the estimated heritability was influ-
enced by genomic features. We found (Fig. 1B) that probes
containing a SNP and probes containing a SNP at the CpG
site had significantly higher heritabilities (P = 1.30 × 10−10 and
P < 1.0 × 10−22, respectively) compared with probes that did not
contain a SNP. The genic location of the probes moderately influ-
enced heritability (Fig. 1C), such that probes within 200 bp of the
transcription start site and those within the first exon were least
heritable while the median heritability was higher at locations
more distal to the transcription start site. Also, probes within
CpG islands were least heritable while those within shores and
shelves were generally more heritable (Fig. 1D). Collectively, we
observed (Fig. 1E) that these three features explained only 2.37%
of the variability in heritability. Of this total explained variation,
45%, 43%and 11%was attributed to island location, genic location
and the presence of probe-SNP, respectively.

Association of methylation levels with local sequence
variants (meQTL mapping)

We examined if methylation levels were influenced by sequence
variants in close proximity to the CpG site (CpG site ±50 kb), using
genotype data from ∼1 million sequence variants. Of the 446 356
CpG sites analyzed, 444 535 (99.6%) had at least one local SNP for
testing. We examined 18 518 148 associations between CpG sites
and SNPs (average 41.67 SNPs per CpG site; detailed in Supple-
mentary Material, Table S4). After correcting for local linkage dis-
equilibrium as well as for the number of CpG sites tested, we
found that DNA methylation levels at 61 799 (14.3%) CpG sites
were significantly associatedwith at least one SNP. All statistical-
ly significantmeQTL associations are provided in Supplementary
Material, Table S5. The 61 799 CpG sites had DNAmethylation le-
vels thatwere significantly associatedwith a total of 633 918 SNPs
(average 10.3 significant associations per CpG site). The number
of significant associations as well as the strength of the meQTL
associations was inversely related to the distance of the SNP
from the CpG site (Fig. 2).

We also tested the hypothesis that heritability of CpG sites is
determined by the number of significantly associated SNPs.
For each additional significantly associated SNP, the heritability
of a CpG site was improved by 0.64% (95% CI 0.63%–0.66%; P,
inestimably low). The number of significant methylation-SNP
associations explained 12.47% of the variability in heritability.
Together, these results indicate that while the contribution of
surrounding sequence variants to the heritability of CpG sites is
highly statistically significant, most of the variability in heritabil-
ity estimates cannot be explained solely by the sequence vari-
ation assessed in this study.

Association of methylation levels with age and sex

Age and sex are known confounders in many epidemiological
studies of complex diseases and have been shown to influence
DNA methylation levels. We therefore investigated whether
there was any evidence of significant association of age and sex
with methylation levels. At an FDR of 0.05, 99 487 (22.3%) and
12 432 (2.8%) CpG sites were significantly associated with age
and sex, respectively (Table 1, SupplementaryMaterial, Table S6).
Using the BSMAP software (17), we found that none of the auto-
somal sites associated with sex could be mapped to the X
chromosome.

We next investigated the potential contribution of genomic
features to the strength of these associations. CpG sites asso-
ciated with age and sex were highly likely to: demonstrate
no SNP within the probe; lie within the gene body or within
1500 bp of the transcription start site (TSS); and be locatedwithin
CpG Islands (Table 1). To quantify the contribution of genomic
features to the association of DNA methylation with age and
sex we conducted multivariable analysis of variance. The pres-
ence of a SNP within the probe, genic location, CpG island con-
text, and association with local SNPs explained 0.1%, 0.3%,
12.7% and 0.1% of the variability in the association of CpG sites
with age, respectively, and <0.01%, 0.1%, 0.9% and 0.1%, of the
variability in the association of CpG sites with sex, respectively.

To identify common biological pathways that might be
enriched for DNA methylation changes associated with age and
sex, we performed pathway analyses on a reduced subset of
genes whose DNA methylation levels were associated with
each of these. Pathways associated with age (n = 68, Fisher’s
exact P < 0.05; SupplementaryMaterial, Table S7) included several
involved in age-related diseases or processes influenced by aging
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(neurological disorders/neuronal system/neuronal transmis-
sion/long-term potentiation, inhibition/regulation of insulin
secretion, energy metabolism, cell communication and cell
signaling pathways). Those related to sex (n = 17, Fisher’s exact
P < 0.05; Supplementary Material, Table S8) included the nuclear
receptor transcription pathway, and pathways involvingmolecu-
lar hubs that show variation between the sexes (e.g. NOTCH and
IGF1 pathways).

Association of DNA methylation with diabetes-related
traits

We studied the association of DNA methylation with three traits
related to type 2 diabetes—liability to T2D (hereinafter referred to
as T2D), fasting blood glucose (FBG) levels and homeostatic
model of assessment-insulin resistance (HOMA-IR). After adjust-
ing for potential confounders and correcting for multiple tests at

a FDR of 0.05, we observed several significant associations (Fig. 3,
Supplementary Material, Table S9). A total of 51 CpG sites were
significantly associated with T2D, 19 with FBG and 24 with
HOMA-IR. The association patterns for FBG and HOMA-IR were
retained even after adjusting for the use of anti-diabetic medica-
tion (Supplementary Material, Fig. S2).

To identify the most relevant CpG sites associated with all
three T2D-related traits, we generated a composite significance
(CS) score, which combined the log-transformed significance
values for the association of a CpG site with each of the three
T2D-related traits into a single metric. We observed that 277
sites had a CS score exceeding zero and 78 and 53 CpG sites had
a CS score corresponding to a combined P < 0.05 and <0.017 (add-
itional correction for three traits), respectively (Supplementary
Material, Table S10). Of the 277 observed CpG sites with CS
score greater than zero, 46 had probes containing at least one
SNP (49 SNPs total). In a subset of 197 individuals for whom

Figure 1. Heritability of DNA methylation levels in Mexican Americans. (A) Histogram of heritability (h2r) estimates for all CpG sites. Subgroups of CpG sites based on

statistical significance and their corresponding median estimates of heritability are shown. (B) Median heritability based on the presence of DNA sequence variants

within the probes targeting CpG sites. (C) Distribution of heritability of DNA methylation based on the gene context of the CpG site. Box plots show the distribution of

heritability estimates based on gene region. Number above each box shows the median heritability value. UTR, untranslated region; TSS, transcription start site. (D)

Distribution of DNA methylation heritability in the context of CpG islands. The box plots show distribution of heritability of CpG sites within each category of CpG

island location. Number above each box shows the median heritability value. (E) Variability of heritability explained by genomic features. The results were obtained

using multivariable analysis of variance.
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whole-genome sequence data was available, we found: for 26
SNPs (across 25 probes) there was no evidence of genetic vari-
ation in our cohort subset at the SNP; for one SNP therewas an in-
sufficient call rate for analysis; for 17 SNPs (across 16 probes)
there was no significant association between the genetic vari-
ation and DNA methylation levels; and for five probes genetic
variation influenced DNA methylation levels (Bonferroni-
corrected P < 0.05; Supplementary Material, Table S11). Of the
five probes for which there was evidence of genetic variation
influencing DNA methylation levels, all contained a SNP at the
CpG site. Overall, this suggests that sequence variation at the
CpG site may be measured as a change in DNA methylation
levels, but not all genetic variation will influence detection of the
probe, particularly if the variation is more distal to the CpG site.

Details of the five CpG sites that weremost significantly asso-
ciated with T2D-related traits are given in Table 2. Three of these
CpG sites mapped to well-characterized genes: thioredoxin
interacting protein (TXNIP), ATP-binding cassette sub-family G
member 1 (ABCG1) and Sterile Alpha Motif Domain Containing
12 (SAMD12). Of note, seemingly small differences in the median
methylation levels (2–5%) between participants with andwithout
T2D were still associated with statistical significance indicating
that minor variations in the extent of methylation for these five
sites could yield critical information regarding T2D status. To en-
sure that our findings were not unduly influenced by low vari-
ance of methylation, we ran simulations on 1000 randomly
generated phenotypes for the two most significant CpG sites
and found that our associations are unlikely to be artifactual
(Supplementary Material, Fig. S3). Lastly, we observed that with

the exception of the intergenic site cg08309687, the remaining
CpG sites were not associated with nearby SNPs (CpG ± 50 kb),
suggesting that most of the observed associations are unlikely
to be due to known localized sequence variation.

To directly estimate the contribution of the top five CpG sites
to the heritability of T2D, we estimated the shrinkage in the esti-
mated heritability due to inclusion of the five methylation levels
as covariates (in addition to age, age2, sex, age × sex interaction,
age2 × sex interaction and the use of antihypertensive or lipid
lowering drugs) in a polygenic regression model. We found that
the estimated heritability of T2D in the base model was 0.6086
(SE 0.1412), P = 2.0 × 10−7 but this estimate shrunk to 0.5610 (SE
0.1705), P = 1.2 × 10−4 in the alternative model. Thus, the five top
significant CpG sites accounted for 7.8% of the heritability of T2D.

We also tested the null hypothesis that the most significant
CpG site associations with T2D-related traits are confounded by
bodymass index (BMI). For this we further adjusted the polygenic
regressions shown in Table 2 by including BMI as a covariate. The
results of these analyses are shown in Table 3. These results
show that even after accounting for BMI, all significantly asso-
ciated CpG sites retained the strength and significance of the as-
sociations. We therefore rejected the null hypothesis that our
results are confounded by BMI.

We used pyrosequencing to validate our results for the top
two CpG sites (cg19693031 in TXNIP and cg06500161 in ABCG1).
We found (Fig. 4) that the pyrosequencing datawere highly corre-
lated with the microarray data (Fig. 4A) and that even when the
estimates from pyrosequencing were used these sites were sig-
nificantly associated with T2D (P < 1.0 × 10−22 for both sites,

Figure 2. Association of meQTLs with CpG sites. The bar charts show the number of significantly associatedmeQTLs (A) and the average strength of evidence (−log10 P, B)
based on distance between the meQTL and corresponding CpG site.
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Fig. 4B). When the methylation levels measured by pyrosequen-
cing were used as covariates in the polygenic regression models,
we found that the TXNIP and ABCG1 sites were significantly asso-
ciated with T2D (P = 1.2 × 10−7 and 1.1 × 10−5, respectively) even
after adjusting for age, age2, sex, BMI, batch effects, plate effects
andwell effects. The TXNIP sitewas also strongly associatedwith
FBG and HOMA-IR (P = 1.5 × 10−15 and 1.2 × 10−7, respectively),
while the ABCG1 site was associated with HOMA-IR (P = 0.0107).
All the models used the same covariates mentioned above.

Finally, we examined whether genes identified using our as-
sociation studies were enriched within diabetes-related path-
ways. We collated a list of 42 genes to which 53 CpG sites
associated with T2D traits (CS score ≥1.77, combined P < 0.017)
mapped. Even in this small dataset, pathway analysis (Supple-
mentary Material, Table S12) indicated significant enrichment
in 31 pathways (Fisher’s exact P < 0.05), including those related
to circadian clock (P = 0.005), adipocytokine signaling (P = 0.009),
leptin pathway (P = 0.023), HDL-mediated lipid transport (P =
0.031) and insulin signaling (P = 0.033).

Epigenome-wide inflation of significance values

We observed that there is substantial epigenome-wide inflation
in various analyses presented here. Table 4 shows that the epi-
genome-wide inflation factor (λmedian) was very high for all ana-
lyses with the exception of association with T2D and HOMA-IR.
We investigated the inflation using two strategies. First, we ex-
amined if accounting for population admixture reduces the
inflation factors. For this, we used top four principal components
(PCs) derived from SNP-based ancestry markers [procedure
detailed in (18)] as covariates in the polygenic regressionmodels.

Table 4 further shows that accounting for population admixture
somewhat reduced the inflation factors but with the exception of
association with T2D and HOMA-IR the inflation factors contin-
ued to be high.

Second, we conducted rigorous simulation studies. We simu-
lated 10 000 quantitative trait loci using the observed distribution
of T2D-related traits and generated an empirical distribution of
likelihood ratio χ2. These analyses were conducted for the 53 sig-
nificantly associated CpG sites. The results of the simulation
studies are shown in Supplementary Material, Table S13. These
results clearly demonstrated that the inflation observed in our
analyses was not a statistical artefact. For each site, there was
no evidence for a systematic departure from the expected likeli-
hood ratio χ2 values.

Discussion
There are some striking observations from this study. We found
that ∼15% of CpG sites assayed were significantly heritable,
which is less than that recently observed by McRae et al. (19)
(48.5%) in their family-based study. Using peripheral blood
cells, our average heritability estimate of 0.14 was similar to
that observed previously using adipose tissue (h2 = 0.19) (14), to
that using peripheral blood corrected for cellular heterogeneity
(h2 = 0.18) (19) and also to the estimates observed in peripheral
blood by our group and others, using earlier Illumina platforms
(20,21). Typically, mean heritability estimates of DNA methyla-
tion levels in other tissues are lower, and have been estimated
at 0.12, 0.07, 0.05 and 0.03 in human umbilical vein epithelial
cells, cord blood mononuclear cells, placenta and brain, respect-
ively (22–24). In comparing our data to that previously published,

Table 1. Association of DNA methylation with age and sex based on genomic features

Subgroups Association with age Association with sex
Significant sites Hypermethylation

with age
Significant sites Hypermethylation

in females
Significant/analyzed %a N %b Significant/analyzed % N %

All sites 99 487/446 356 22.3 38 221 38.4 12 432/446 356 2.8 10 645 85.6
By SNP position
No SNP in probe 72 448/318 884 22.7 29 412 40.6 9285/318 844 2.9 7971 85.9
SNP in probe 19 237/92 117 20.9 7574 39.4 2489/92 117 2.7 2132 85.7
SNP at CpG site 7802/35 395 22.0 1235 15.8 658/35 395 1.9 542 82.4

By gene location
5′UTR 8138/38 921 20.9 3844 47.2 899/38 921 2.3 764 85.0
TSS1500 14 107/63 026 22.4 5938 42.1 2231/63 026 3.5 2074 93.0
TSS200 7731/47 168 16.4 5232 67.7 1028/47 168 2.2 927 90.2
First exon 4625/20 734 22.3 3379 73.1 534/20 734 2.6 493 92.3
Gene body 32 170/149 949 21.5 9454 29.4 3419/149 949 2.3 2750 80.4
3′UTR 3327/20 734 22.3 565 17.0 310/20 734 2.6 226 72.9
Intergenic 29 389/110 479 26.6 9809 33.4 4011/110 479 3.6 3411 85.0

By CpG island
North Shelf 5184/22 957 22.6 446 8.6 369/22 957 1.6 302 81.8
North Shore 13 323/57 892 23.0 4960 37.2 2618/57 892 4.5 2301 87.9
Island 27 868/138 217 20.2 25 226 90.5 4055/138 217 2.9 3620 89.3
South Shore 9765/45 238 21.6 3429 35.1 2181/45 238 4.8 1944 89.1
South Shelf 4492/20 509 21.9 359 8.0 361/20 509 1.8 278 77.0
Unspecified 38 855/161 543 24.1 3801 9.8 2848/161 543 1.8 2 200 77.3

By meQTL
No significant meQTL 83 746/384 557 21.8 33 503 40.0 8543/384 557 2.2 7244 84.8
≥1 Significant meQTLs 15 741/61 799 25.5 4718 30.0 3889/61 799 6.3 3401 87.5

aOut of the total significant sites.
bOut of significant sites within the category.
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we found that the Pearson’s correlation coefficient between esti-
mates of heritability reported by us andMcRae et al. (19) was 0.79,
suggesting a reasonably good agreement.

Only 14.3% of CpG sites assessed were associated with com-
mon genetic variants within 50 kb of the site, which was similar
to but slightly higher than previous reports using different Illu-
mina platforms (4%–9%) (20,21,24–26). This variation only
accounted for ∼12.5% of the heritability, which is somewhat
lower than the estimate of 19% given by Grundberg et al. (14). Des-
pite a potential role for the contribution of genetic variation on
DNA methylation levels, our results suggest that the heritability
of DNAmethylation is likely influenced by, as yet, unknown gen-
etic mechanisms, a phenomenon also supported by various
other human and animal studies (27–29). Indeed, there is now
scientific evidence to believe that Darwinian evolution may
have taken place due to epigenetic inheritance independently

of sequence alterations and that this may drive variation within
complex traits (30). Although our data lend further support to the
role of epigenetic inheritance, additional studies are needed to
better understand this.

We observed that 22.4% of the studied CpG sites are signifi-
cantly associated with age, which is higher than that reported
by Hannum et al. (31) who found 15% of sites on the 450k array
were associated with age. Several studies show that DNAmethy-
lation levels are mostly positively correlated with age, which is
particularly evident in CpG islands (32–34), a finding which we
also replicate (Table 1). We found that 38.4% of CpG sites showed
increased methylation with age but this was even more notice-
able (90.5%) in CpG islands. In our study, the relationship be-
tween hypermethylation and age is not as strong as what has
been seen in other studies (32,33), whichmay be due to the detec-
tion of a large number of associations with CpG sites outside of

Figure 3. Association of genome-widemethylation levels with diabetes-related traits. Manhattan plots depicting association of each CpG site studied with liability of T2D

(top panel), FBG (middle panel) and HOMA-IR (bottom panel). Statistically significant associations are those that lie above the red colored line which indicates FDR-

corrected epigenome-wide significance level.

Human Molecular Genetics, 2015, Vol. 24, No. 18 | 5335



CpG islands, whose methylation is generally decreased with age
(32,33).We found that CpG sites outside of CpG islandsweremore
likely to be heritable and it might be that the powerful extended
pedigree-based design of our study has identified additional her-
itable age-related CpG sites, which may not have been identified
by other studies. Several studies (31,32,35) have identified key
genes whose level of methylation strongly associates with age,
and some studies have included development of predictionmod-
els, which show correlations between age and predicted age of up
to 96% (based on 71 CpG sites). Our most significant associations
with age included several CpG sites within the genes FHL2,
ELOVL2 and KLF14, which have previously been implicated in

several other studies (31–33,35), and in general our study con-
firmed associations of age with DNA methylation in previously
reported genes. Also, even using a reduced subset approach,
our pathway analysis identified enrichment of genes involved
in cellular communication, neuronal systems, insulin secretion
and metabolism, disorders and processes that are very relevant
to aging.

We found ∼3% of autosomal CpG sites to be significantly asso-
ciated with sex and of these ∼86% were hypermethylated in
females. Few studies have globally examined the association of
DNA methylation with sex, particularly with respect to auto-
somal methylation levels. Two recent studies utilizing the

Table 2. Top five CpG sites most significantly associated with T2D, FBG or insulin resistance

Characteristic CpG site
cg19693031 cg06500161 cg25217710 cg07960624 cg08309687

Chromosome 1 21 1 8 21
Coordinate 145 441 552 43 656 587 156 609 523 119 208 486 35 320 596
Heritability 0.42 0.47 0.45 0.72 0.46
q_heritability 8.16 × 10−10 9.28 × 10−10 3.83 × 10−6 3.06 × 10−31 3.22 × 10−8

b_age 0.0028 0.0052 −0.0046 −0.0196 0.0028
q_age 1.0000 1.0000 0.5067 1.82 × 10−25 1.0000
b_sex 0.5852 −0.1536 0.0123 −0.2058 0.2688
q_sex 5.06 × 10−15 1.0000 1.0000 1.0000 5.02 × 10−3

b_T2Da −0.5788 0.3875 0.3164 −0.4508 −0.4705
q_T2D 6.83 × 10−14 4.21 × 10−4 1.0000 6.92 × 10−4 1.09 × 10−3

b_FBG −0.2699 0.1969 0.3099 −0.2080 −0.2419
q_FBG 6.89 × 10−10 1.65 × 10−3 3.95 × 10−5 0.1538 6.67 × 10−3

b_HOMA-IR −0.1963 0.2197 0.3310 −0.2684 −0.2285
q_HOMA-IR 0.0194 0.0001 1.69 × 10−5 2.42 × 10−4 2.56 × 10−2

CS score 24.04 10.00 9.17 7.59 6.73
Combined P-value 9.15 × 10−25 9.91 × 10−11 6.66 × 10−10 2.58 × 10−8 1.87 × 10−7

Median methylation score
Participants with T2D 0.67 0.59 0.60 0.44 0.17
Participants without T2D 0.72 0.57 0.60 0.42 0.19

Gene symbol TXNIP ABCG1 – SAMD12 –

Gene context 3′UTR Body Intergenic 3′UTR Intergenic
Significant meQTLs 0 0 0 0 2

b, regression coefficient; q, significance after controlling for FDR of 0.05; CS score, composite significance score; T2D, type 2 diabetes; FBG, fasting blood glucose; HOMA-IR,

homeostatic model of assessment-insulin resistance.
aFor discrete traits, SOLAR returns a negative regression coefficient if a variable is associated with an increased risk. For consistency of presentation and interpretation,

the coefficients have been multiplied by −1 here.

Table 3. Association of the top five CpG sites before and after adjusting for BMI

CpG site Trait
T2Da FBG HOMA-IR
Beforeb b(p) Afterc b(p) Beforeb b(p) Afterc b(p) Beforeb b(p) Afterc b(p)

cg19693031 −0.58 (1.53 × 10−19) −0.91 (1.9 × 10−14) −0.27 (1.55 × 10−15) −0.26 (1.52 × 10−15) −0.20 (4.39 × 10−8) −0.18 (1.09 × 10−8)
cg06500161 0.39 (9.43 × 10−10) 0.32 (0.0006) 0.20 (3.70 × 10−9) 0.16 (2.86 × 10−6) 0.22 (3.23 × 10−10) 0.13 (4.25 × 10−5)
cg25217710 0.32 (0.0018) 0.42 (0.0006) 0.31 (8.88 × 10−11) 0.28 (2.72 × 10−9) 0.33 (3.81 × 10−11) 0.24 (4.46 × 10−8)
cg07960624 −0.45 (1.55 × 10−9) −0.33 (0.0068) −0.21 (3.46 × 10−7) −0.16 (6.88 × 10−5) −0.27 (5.47 × 10−10) −0.16 (5.82 × 10−5)
cg08309687 −0.47 (2.45 × 10−9) −037 (0.0007) −0.24 (1.50 × 10−8) −0.21 (2.31 × 10−7) −0.23 (5.78 × 10−8) −0.18 (7.13 × 10−6)

b, regression coefficient; p, significance after adjusting for BMI; T2D, type 2 diabetes; FBG, fasting blood glucose; HOMA-IR, homeostatic model of assessment- insulin

resistance.
aFor discrete traits, SOLAR returns a negative regression coefficient if a variable is associated with an increased risk. For consistency of presentation and interpretation,

the coefficients have been multiplied by −1 here.
bBased on polygenic regression models adjusting for age, age2, sex, age × sex interaction, age2 × sex interaction, Sentrix id, Sentrix position, the use of antihypertensive

and lipid lowering drugs and cellular heterogeneity.
cBased on polygenic regression models adjusting for age, age2, sex, age × sex interaction, age2 × sex interaction, Sentrix id, Sentrix position, the use of antihypertensive

and lipid lowering drugs, cellular heterogeneity and BMI.
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Illumina 450k DNA methylation platform identified sex biases in
0.15–0.18% of autosomal CpG sites with hypermethylation in fe-
males seen for 55–77% of probes, which is less than what we see,
likely due to the use of small cohorts, pooling methods and dif-
ferential tissue used in these studies (36,37). We found that

many of our most significantly associated CpG sites (e.g. those
in KRT77, RNASEH2C, RFTN1 and ARID1B) had also been identified
in the study byXu et al. (37) (analyzing human prefrontal cortex of
Caucasians), which suggests that CpG sites associated with sex
are not necessarily tissue- or cohort-specific. However, the role
of these CpG sites, or the genes inwhich they reside, in sex biases
is not an obvious one. Our pathway analysis found enrichment of
genes associated with the nuclear receptor transcription
pathway, involving several nuclear receptors associated with
sex development and sex-biased disorders. We also identified
pathways in which the central molecule may be involved in
sex-specific crosstalk [e.g. NOTCH (38)] or may be influenced by
sex steroids (e.g. IGF1 39) and might contribute to sex-biases in
disease (40–42). These observations are important because in
studies attempting to unravel the association between differen-
tial methylation and complex disease, a correction for sex will
be necessary even if only autosomal CpG sites are selected for
analyses.

We observed biologically relevant associations between DNA
methylation levels and diabetes-related traits independently of
BMI. Most genome-wide association studies performed to date
investigating the role of DNA methylation in T2D have focused

Figure 4. Validation of Illumina Human Methylation 450k array results with pyrosequencing for top two sites significantly associated with T2D-related traits. (A)

Correlation plots with regression line fits for the methylation levels of top two CpG sites (with the mapping genes). n, number of samples that passed the quality

check in pyrosequencing; ρ, Spearman’s correlation coefficient; P, statistical significance of ρ; LAG, limits of agreement determined using Bland–Altman’s method;

Nout, number of samples outside LAG. (B) Box plots showing distribution of methylation levels obtained by microarray and pyrosequencing for each site in subjects

with (red) and without (green) T2D. Numbers at the top show significance values obtained by Mann–Whitney U test for the indicated comparisons.

Table 4. Epigenomic inflation factor for significance values

Analysis λmedian

Before correction
With PCs

After correction
With PCs

Heritability 6.74 4.14
Association with
Age 10.24 1.95
Sex 2.03 1.84
T2D 1.01 0.32
FBG 1.95 1.65
HOMA-IR 1.13 0.98

PC, top four principal components reflecting population admixture; T2D, type 2

diabetes; FBG, fasting blood glucose; HOMA-IR, homeostatic model of assessment-

insulin resistance.
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onpooledDNA strategies or analyzed a small numberof samples,
both of which reduce the power of the study andmake it difficult
to identify statistically significant associations. Using a pooled
DNA approach, Toperoff et al. (12) identified significant differ-
ences in DNA methylation levels at CpG sites within SLC30A8,
TCF7L2 and FTO, although DNA methylation at the FTO locus
appears to be driven by sequence variation (43). Hidalgo et al.
(11), identified a genome-wide significant association of a CpG
site within ABCG1 with insulin and HOMA-IR, using the same
microarray platform utilized in this study, a finding which we
also replicate.

In our dataset, we found many statistically significant asso-
ciations between DNA methylation levels and T2D, FBG and
HOMA-IR (51, 19 and 24, respectively). Using a statistical ap-
proach to combine association with three related phenotypes
(generation of a CS score and combined P-value), we identified
five CpG sites that accounted for 7.8% of the heritability of T2D,
three of which localized to candidate geneswhose DNAmethyla-
tion levels may be strongly indicative of T2D pathophysiology:
TXNIP, ABCG1 and SAMD12. Two of these (TXNIP and ABCG1) are
well characterized and stand out as prime candidates for
T2D pathophysiology due to their known biological functions.
Although the ABCG1 probe each contained a known SNP, there
was no evidence to suggest that it significantly influenced DNA
methylation levels in our cohort. Furthermore, pyrosequencing
analysis validated our findings for TXNIP and ABCG1.

For each CpG site nominally associated with T2D liability
(CSS > 0), the affiliated loci did not overlap with any of the 63
autosomal loci that have been detected by previous GWAS, as
described in the most recent meta-analysis (9). This is in con-
trast to a small MeDIP-Seq study (44), which found ∼20% of dif-
ferentially methylated regions overlapped with loci previously
identified by GWAS. A similar finding was observed for obesity
in a small 450k array dataset examining lean versus obese Afri-
can Americans (45). The discrepancy in overlap with GWAS loci
between our study and others is likely due to different detection
methods (for example, Yuan et al. 44 found that only ∼60% of
450k probes were nominally significant with the same direction
of effect as their corresponding loci from MeDIP-Seq experi-
ments), significantly smaller sample sizes (each of the other
two studies examined≤46 cases) or inadequate correction for ex-
perimental biases (Xu et al. 45 did not correct for differences in
probe types, all batch effects or cellular heterogeneity). More re-
cently, the insulin resistance study by Hidalgo et al. (11), which
used a much larger sample size did not identify any CpG loci
that overlappedwith loci fromGWAS studies of insulin resistance.
Overall, our results suggest that independent genetic and epigen-
etic locimay exert influence of T2D liability, although it is possible
that the genes involved in genetic and epigeneticmechanisms are
part of the same or interacting biological pathways.

The TXNIP protein regulates intra- and extra-cellular reduc-
tion–oxidation cycles (46,47) and is an important determinant
of glucose metabolism, glucose tolerance and T2D (48–50).
Although a modest association has previously been shown be-
tween TXNIP variants and diabetes (48), to our knowledge, altered
DNA methylation within this gene has not been shown to con-
tribute to T2D disease risk.ABCG1 plays a role in lipid and glucose
homeostasis (reviewed in 51), and gene and protein expression is
reduced in macrophages of diabetic subjects (52). A recent study
of 40 600 subjects on 14 SNPs within or surrounding ABCG1 failed
to reveal any significant associations with T2D (53). However,
Hidalgo et al. (11) identified associations with methylation levels
in a CpG site within the ABCG1 gene (the same one identified in
this study) and insulin resistance in non-diabetic patients; our

results are concordant with this but also add a new dimension,
extending the association to FBG and T2D. It is important to
note that for each of these genes, our DNA methylation results
were consistent with the direction of effect expected, based on
previously published studies, suggesting that DNA methylation
is a novel mechanism by which these genes may be regulated
to influence T2D pathophysiology.

In addition to these highly promising candidate genes, several
other genes with potential roles related to T2D (including those
with cholesterol, lipid, obesity or adipogenesis-related functions)
also contained CpG sites whose DNAmethylation levels had com-
bined P < 0.05. Of note, SREBF1 controls cholesterol homeostasis
(reviewed by Sato 54) and is required for regulation of carbohydrate
metabolism (55), decreased expression is also seen in adipose
and skeletal muscle tissue of diabetic subjects (56). Several stud-
ies have reported modest associations of genetic variants in and
around the SREBF1 gene with T2D and hyperglycemia (57–61),
however, the role of DNAmethylation in this gene as a determin-
ant of T2D is also novel. Other interesting candidate genes
included LOXL2 (62), CPT1A (63), SOCS3 (64), CALHM1 (65,66),
ICA1 (67), ZBTB7A (68), CUX1 (69), NFE2L3 (70) and LDLRAP1
(71,72). Not surprisingly, using pathways analysis, we detected
gene enrichment in insulin signaling, as well as in pathways re-
lated to lipid transport, which is often dysregulated in individuals
with T2D.

Of the 49 SNP-containing probes that had a CS score > 0, the
SNPs located directly at the CpG site were more likely to signifi-
cantly influence DNA methylation levels and explained a higher
proportion of the variance in methylation levels detected than
SNPs elsewhere within the probe. Importantly, the CpG site
within ABCG1 that was strongly associated with T2D liability
was within a SNP-containing probe (rs9982016) but our analysis
indicated a lack of significant association with methylation levels
(uncorrected P = 0.1895). Also, pyrosequencing validation sug-
gested that this SNP is unlikely to strongly affect DNAmethylation
levels. Our findingswarrant careful consideration in studieswhere
probes are excludedon the basis of SNP presence alone, as import-
ant candidate genes could be excluded from analyses.

A key issue raised by our study is the extent of observed epi-
genome-wide inflation of the significance values in association
studies. Three findings need to be considered. First, our analyses
showed that correction for population admixture using SNP-
based PCs (as suggested by 73) only partly and inadequately ac-
counts for this inflation. Second, inflation has been previously
observed in polygenic regression analyses suited for family
data essentially due to dense relatedness among individuals
(74,75). However, our analytical procedures explicitly accounted
for relatedness among participants. Third, our robust simulation
studies failed to demonstrate the presence of a systematic shift in
significance values for the most significant CpG sites. Together,
these findings strongly support the possibility of likely real asso-
ciations. It is conceivable that given the wave-like changes that
characterize methylation signals (76), many CpG sites, unlike
SNPs, may show a simultaneous and real association with dis-
ease. It is therefore likely that the inflation seen, reflects true vari-
ation of methylation levels and that such variationmay be under
strong genomic control.

A limitation of this study is that we did not have data on gly-
cated hemoglobin and as such, some undiagnosed cases of dia-
betes may be missed. In the case of such misclassification, it
can be expected that the results would be biased towards the
null. The fact that we were still able to extract biologically coher-
ent associations indicates that our results would have been only
minimally influenced by a possible misclassification bias.
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In summary, our study used a high-resolution genome-wide
methylation survey to identify genes associated with age, sex
and T2D. The methylation profiles of only the top five significant
CpG sites accounted for 7.8% of the heritability of T2D in our co-
hort, and the full contribution of the DNAmethylome to the gen-
etic basis of T2D is likely to be much larger. This appears to be
largely independent of the contribution of sequence variants
[which has previously been estimated to be ∼10% (7)]. Thus, our
results provide an additive and independent explanation to the
genetic basis of T2D. These results are also notable because the
study participants represent a minority population in the USA
that has a high prevalence of T2D. Epigenetic, personalized treat-
ment regimens are already on the clinical horizon for cancers
(77). Our results, combined with those of others, point to similar
treatment options for T2D in the near future.

Materials and Methods
Study participants

Participants in this study were from the San Antonio Family
Heart Study (SAFHS) (15,16), an ongoing, prospective evaluation
of Mexican-American families living in San Antonio. We in-
cluded a total of 859 participants from 39 families, who were
assessed between 2002 and 2006. The methods for recruitment
of participants and their phenotyping and genotyping have
been extensively described elsewhere (16,78). Written consent
was obtained for all individuals in this study. Approval for this
study was received from the Institutional Review Board at The
University of Texas Health Science Center at San Antonio.

Diabetes-related phenotypic traits

We used three phenotypic traits related to T2D: presence of T2D
(defined using the ADA criteria of fasting glucose ≥ 126 mg/dL
(79) or those participants already receiving anti-diabetic medica-
tion), FBG (mg/dl) and HOMA-IR (defined as FBG inmg/dl × fasting
plasma insulin in μU/ml/405) (80).

Profiling of genome-wide DNA methylation

DNA samples (500 ng) underwent bisulfite conversion using the
EZ-96 DNA Methylation™ Kit (Zymo Research, Irvine, CA) and
were subjected to genome-wide DNA methylation profiling
using the Illumina Infinium HumanMethylation450 BeadChip
assay (Illumina, San Diego, CA), as per the manufacturers’ proto-
col. The methylation array targeted 485 577 methylation sites
across the genome and incorporated both Infinium I and Infi-
nium II bead types. BeadChips were scanned with the Illumina
iScan and raw data were imported into GenomeStudio (V2011.1)
to extract image intensities. We rejected nine samples for which
the inbuilt SNP data did not match genome-wide SNP data that
were available for these individuals (described later) leaving a
total of 850 samples for analyses.

Methylation at eachCpG sitewas represented as amethylation
score (β) that ranged from 0 (unmethylated) to 1 (methylated),
which represents a ratio of the quantile-normalized intensity
of methylated to combined (methylated + unmethylated) locus
intensity. Probes that were located on the sex chromosomes
(n = 11 648), that were non-CpG loci (n = 2994) or that analyzed
SNPs (n = 65) were excluded (Supplementary Material, Fig. S1).
Since the distribution of β values is different based on Infinium I
and Infinium II probe designs, we used the BMIQ method imple-
mented in the R-based software, BMIQ (81) to correct for design-
baseddifferences. Finally, to ensure that the β values are amenable

to variance component framework, we inverse normalized them
as described below. We thus included a total of 470 870 probes
for analyses, of which heritability analyses could be successfully
completed for 446 356 sites. This paper is based on these 446 356
sites (detailed in SupplementaryMaterial, Table S1). To determine
if any probes contained a known SNP, we used R packages Illumi-
naHumanMethylation450kprobe (82) (for probe listing) and
SNPlocs.Hsapiens.dbSNP.20120608 (83) (for SNP mapping based
on dbSNP build 137) under the Bioconductor platform.

The exclusion of SNP-containing probes is a common quality
control measure in many studies using DNA methylation arrays,
however this global exclusion does not take into account the like-
lihood of a SNP being present (based onminor allele frequencies,
whichmay be cohort specific), the effect that currently unknown
SNPs may have on DNA methylation levels, or whether the gen-
etic variant elicits an effect onDNAmethylation levels.We there-
fore elected to include all probes, regardless of the presence of a
SNP to ensure the inclusion of all true positive results. However,
to ensure that genetic variation within the probe sequence did
not influence the methylation levels of CpG sites that were asso-
ciated with T2D, we then utilized whole-genome sequence data
that were available for a subset (n = 197) of the population and
tested for association between the known probe SNPs and DNA
methylation levels.

Pyrosequencing

For validation of microarray data, 500 ng of genomic DNA was
bisulfite converted as described earlier. Each bisulfite-treated
sample was PCR-amplified for 40 cycles with primers designed
using Pyromark Assay Design 2.0 software and subjected to
pyrosequencing with the PyroMark96 MD (Qiagen, Valencia,
CA); primer and probe sequences, as well as annealing tempera-
tures areprovided in SupplementaryMaterial, Table S14. Percent-
age DNA methylation was determined at each CpG site using
PyroMark CpG software 1.0.11.14 and group differences analyzed
using the Mann–Whitney U test.

High-density SNP genotyping

Study participants were previously genotyped for ∼1 million SNP
markers using several Illumina genotyping arrays, including
the HumanHap550v3, HumanExon510Sv1, Human1Mv1 and
Human1M-Duov3. The Infinium Whole-Genome Genotyping
Assay was employed according to manufacturers’ instructions.
Details of the data cleaning and imputing steps for this genotypic
data have been described previously (20). A total of 995 320 SNPs
were available for meQTL analysis.

Statistical analysis

Normalization of β-values and phenotypic traits
Since the heritability and association analyses (described later)
were conducted under a variance components framework, it
required that the methylation levels and the phenotypic traits
exhibit a normal distribution. For this, we used an inverse-
normalization process that involved ranking the values, generat-
ing cumulative density functions and determining z-values
based on the cumulative densities.

Heritability analyses
Under the variance components framework, we used the
pair-wise kinship matrix that quantified the extent of genetic
similarity between individuals. To estimate the narrow-sense
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heritability (h2r) of a methylation site, we ran a polygenic model
as follows

iðβÞ ¼ μþ baþ gi þ ei;

where, i(β) is the inverse-normalized methylation score, µ is
the overallmeanmethylation score, b is the regression coefficient
vector corresponding to the covariate matrix a, gi is the polygenic
effect (used to estimate heritabilities) and ei is the measurement
error. In eachmodel, we used age, age2, sex, age × sex interaction,
age2 × sex interaction, Sentrix id, Sentrix position, the use of anti-
hypertensive and lipid lowering drugs and cellular heterogeneity
as covariates. Thesemodels also directly permitted estimation of
the association between inverse-normalized methylation levels
with these covariates. We tested for potential overlap of sex-as-
sociated CpG sites with the sequence of the X chromosome (gen-
ome build Hg19) using in silico bisulfite conversion and mapping
software BSMAP (17). We aligned the probe sequence for CpG
sites significantly associated with sex against four reference gen-
omes: reference, reverse complement, fully methylated and fully
unmethylated.

Association analyses
We conducted three types of association analyses. First, we used
a liability thresholdmodeling approach under a polygenic regres-
sion setting to test the association between discrete traits (T2D
status) andmethylation levels. Second, to test the association be-
tween quantitative traits (FBG, and HOMA-IR) and methylation
levels, we used inverse-normalization followed by polygenic re-
gression as described earlier. Third, we examined the association
betweenmethylation levels and local sequence variation (meQTL
mapping defined as CpG ± 50 kb, based on an optimum window
size identified by Quon et al. 23) using a measured genotype ap-
proach. In all association analyses, the statistical significance
was tested by constraining the relevant regression coefficients
to zero and comparing the log-likelihoods of the constrained
and unconstrained models. For heritability analyses and associ-
ation analyses, we used the SOLAR software package (84).

Correction for cellular heterogeneity
Ourmethylation studies were conducted on blood which contains
amixture of cell types but ismore accessible thanother tissues like
adipocytes or islets. It is however, possible that differentialmethy-
lation patterns may reflect underlying differences in the distribu-
tion of various cell types. Reinius et al. (85) and Houseman et al.
(86) demonstrated the influence of differential cell proportions on
DNAmethylation signatures and Jaffe et al. (87) extended this pro-
cedure to the Illumina Infinium HumanMethylation450 array. We
estimated the proportion of CD4+ T cells, CD8+ T cells, B cells, nat-
ural killer cells and granulocytes in each sample using this proced-
ure (87) and adjusted all the polygenic regressionmodels for these
estimated cell counts as covariates.

Correction for multiple testing
For heritability analyses as well as association analyses, we cor-
rected P-values using Benjamini and Hochberg’s (88) method of
controlling the FDR. For the meQTL association analyses, we
used a two-step procedure to correct for multiple testing. First,
to account for the potential linkage disequilibriumamong closely
spaced SNPs we used the method of Li and Ji (89) to estimate the
effective number of SNPs. Thismethod generates the eigenvalues
of the genotype correlation matrix and then uses a Sidak type
correction based on the sum of informative eigenvalues. Second,

we used a Bonferroni correction for the number of CpG sites
included in the analyses and multiplied the effective local α
by the Bonferroni correction. To quantify the epigenome-wide
inflation, we used the genomic inflation factor (75).

CS score
To quantify the association of each methylation site with all the
T2D-related traits in a single metric, we added the log-trans-
formed, inflation corrected and FDR-corrected significance
values. This method is principally similar to Fisher’s method
(90) of combining P values with the difference that it uses loga-
rithm to the base 10 (consistent with Manhattan plot representa-
tion of significance values).

Other statistical methods
We used Mann–Whitney tests to estimate the significance of
non-normally distributed continuous variables across two
groups and analysis of variance to estimate the significance of
normally distributed variables across three or more groups. To
ensure that low variation in methylation is not fallaciously re-
sponsible for observed associations, we ran the top two highly
significant T2D CpG sites against 1000 simulated phenotypes,
incorporating the same transformations and using the same cov-
ariates as for other polygenic analyses. To quantify the agree-
ment between microarray and pyrosequencing techniques, we
used the Bland–Altman procedure and estimated the regres-
sion-based limits of agreement. These analyses were done
using the Stata 12.0 software package.

Pathway analyses
To test for pathway enrichment among our topmethylation sites
associated with age (reduced set of n = 2767 mapping to 2038 un-
ique genes), sex (reduced set of n = 960 mapping to 772 unique
genes) and diabetes (n = 53mapping to 42 unique genes), Fisher’s
exact tests were performed in the R software package (91) on ob-
served and permuted (1000X) data, with randomized gene lists
drawn from the 20 261 genes covered by our genome-wide
methylation data (20 260 genes were used for T2D analysis).
The pathways tested in these enrichment analyses (n = 1273)
are ones curated by KEGG, Biocarta, Pathway Interaction Data-
base (PID) and Reactome, with the information downloaded
from the Gene Set Enrichment Analysis (GSEA) website (92).

For pathwayanalyses of themethylation sites associatedwith
age and sex, we first reduced the number of informative CpG sites
since the number of significantly associated sites (99 487 for age
and 12 432 for sex) was very high. For this, we used the procedure
of non-negativematrix factorization (NMF) implemented in the R
packageNMF (93). The parameters used for NMFwere in linewith
those used by Gaujoux and Seoighe (93) and are described in Sup-
plementary Material, Table S15. After running the NMF, we used
Kim and Park’s algorithm (94) to extract the most informative
subset of CpG sites.

Simulation studies for epigenome-wide inflation
Computer simulationwas used to examine the distribution of the
likelihood ratio test statistic. For each focal phenotype for which
we obtained putative epigenome-wide significance, we per-
formed 10 000 simulations under the null hypothesis to see
whether the test distribution for the significant observed CpG
sites (n = 53) conformed to that expected asymptotically. Simula-
tions were performed in SOLAR (84) using the fast polygenic
simulation method of Konigsberg and Blangero. (95) Each simu-
lated phenotype was normally distributed (since the original
phenotypes were inverse Gaussian transformed) and was
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simulated using the observed estimated heritability for the rele-
vant observed phenotype (liability of T2D, FBG andHOMA-IR). For
each covariate test, the null test distribution was accumulated
and checked against its asymptotic expectations. We tested the
difference in the distribution of the observed likelihood ratio
statistics from their expected counterparts using three strategies:
(i) inflation factor 1—this was defined as χ2 emp/3.84 where χ2 emp

is the empirically derived χ2 at a P-value of 0.05; (ii) Inflation
factor 2—this was defined as median (χ2 emp)/inverse χ (0.5, 1)
where the denominator returns the expected median χ2 value;
(iii) Proportion of the χ2 values exceeding 3.84. The results of
simulation studies for the top 53 significant studies are shown
in Supplementary Material, Table S13.

Supplementary Material
Supplementary Material is available at HMG online.
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