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Abstract

The purpose of this study was to provide a novel stochastic assessment of inhomogeneous 

distribution of bone mineral density (BMD) from the Dual-energy X-ray Absorptiometry (DXA) 

scans of human lumbar vertebrae and identify the stochastic predictors that were correlated with 

the microarchitecture parameters of trabecular bone.

Eighteen human lumbar vertebrae with intact posterior elements from 5 cadaveric spines were 

scanned in the posterior-anterior projection using a Hologic densitometer. The BMD map of 

human vertebrae was obtained from the raw data of DXA scans by directly operating on the 

transmission measurements of low- and high-energy X-ray beams. Stochastic predictors were 

calculated by fitting theoretical models onto the experimental variogram of the BMD map, rather 

than grayscale images, from DXA scans. In addition, microarchitecture parameters of trabecular 

bone were measured from the 3D images of human vertebrae acquired using a Micro-CT scanner.

Significant correlations were observed between stochastic predictors and microarchitecture 

parameters. The sill variance, representing the standard deviation of the BMD map to some extent, 

had significantly positive correlations with bone volume, trabecular thickness, trabecular number 

and connectivity density. The sill variance was also negatively associated with bone surface to 

volume ratio and trabecular separation.

This study demonstrates that the stochastic assessment of the inhomogeneous distribution of BMD 

from DXA scans of human lumbar vertebrae can reveal microarchitecture information of 
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trabecular bone. However, future studies are needed to examine the potential of stochastic 

predictors from routine clinical DXA scans in providing bone fragility information complementary 

to BMD.
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vertebrae

1. Introduction

Clinical evaluation of areal bone mineral density (BMD) in the central skeleton by Dual-

energy X-ray Absorptiometry (DXA) has proven its efficacy in predicting the risk of 

osteoporotic fractures in the spine (WHO, 2003). However, BMD measurements from DXA 

have limitations (Genant et al., 1996) and cannot account for other factors associated with 

fracture risks (Hui et al., 1988; Marshall et al., 1996). For example, the distribution of BMD 

within the human vertebrae is not homogeneous (Banse et al., 2001; Briggs et al., 2006). 

The standard deviation of regional bone mineral density in human vertebrae has been shown 

to strongly correlate with the fracture load of the vertebral bodies (Cody et al., 1991; Kim et 

al., 2007). In a previous study (Dong et al., 2013), we have used a novel stochastic approach 

to assess the inhomogeneity of 2D projection images generated from 3D Micro-CT scans of 

trabecular bone. Significant relationships were found between the sill variance, one of 

stochastic predictors, and biomechanical properties and microarchitecture parameters of 

trabecular bone (Dong et al., 2013). The objective of this study was to extend the stochastic 

method to assess the inhomogeneity of BMD from DXA scans of human lumbar vertebrae. 

The hypothesis for this study was that the sill variance of bone mineral density from DXA 

scans of human lumbar vertebrae was significantly correlated with the microarchitecture 

parameters of trabecular bone within the vertebral body.

2. Materials and Methods

2.1 Specimen Preparation

Eighteen fresh lumbar vertebrae were obtained from cadaver spines of five tissue donors (4 

males and 1 female; Age: 70±10 years old; range: 57 to 81 years old). Detailed descriptive 

statistics of the tissue donors are available in the Table 1. The cadaver spines were acquired 

from National Disease Research Interchange (Philadelphia, PA) and screened for known 

bone diseases. In order to identify human vertebrae with fractures, Vertebral Fracture 

Assessment (VFA) was performed on the cadaver spines using a Hologic densitometer 

(QDR Discovery W, Bedford, MA). No pre-existing vertebral fractures were observed by a 

radiologist. After the human vertebrae with intact posterior elements were dissected from the 

cadaver spine, the vertebral specimens were wrapped with gauze and stored at −25°C until 

further examination.
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2.2 DXA Scans of Human Vertebrae

Human vertebrae with intact posterior elements were scanned in the posterior-anterior (PA) 

projection (Fig.1a) using the Hologic densitometer. Posterior elements were retained in the 

vertebral specimen to simulate the in vivo situation for clinical DXA scans. Prior to 

scanning, an anthropometric spine phantom supplied by the manufacturer was scanned to 

monitor scanner precision. During the scan, the vertebral specimens were fully submerged 

under water in a plastic container to mimic the soft tissue in the human body (Ebbesen et al., 

1998; Perilli et al., 2012). The human vertebrae were scanned using the Express mode by 

choosing the default settings of “AP Lumbar Spine” scans in the Hologic densitometer. 

Analysis of the scan in the PA projection was performed by following the standard lumbar 

spine protocol described by Hologic (Hologic, 2010). Bone mineral density (BMD, g/cm2), 

bone mineral content (BMC, g), and projected bone area (cm2) were reported by the Hologic 

densitometer for each vertebra.

In addition, the values of T-score for human vertebral specimens were reported from the 

DXA scan of the cadaver spine, rather than the DXA scan of the individual vertebrae. The 

DXA scan of the whole cadaver spine was close to the clinical conditions in which the T-

score was normally used.

2.3 Extraction of the BMD map from DXA scans

The BMD map of human vertebrae (Fig.1b) in this study was obtained from the raw data 

(i.e., R files in Hologic densitometers) of DXA scans by directly operating on the 

transmission measurements of low-energy and high-energy X-ray beams (Stein, 1989; Blake 

et al., 1992; Blake and Fogelman, 1997; Blake et al., 1999). There were two reasons for 

extracting the BMD map straightly from the raw data, rather than using the DXA image 

(Fig.1a) provided by the densitometer. First, grayscale values in the DXA image were not 

the exact value of bone mineral density of human vertebrae. Second, grayscale values in 

DXA images could be easily affected by varying the brightness and the contrast of these 

DXA images.

Details of obtaining the BMD map from the raw data of DXA scans are available in the 

literature (Stein, 1989; Blake et al., 1992; Blake and Fogelman, 1997; Blake et al., 1999). 

One of major challenges in extracting the BMD map was to understand the use of an internal 

reference system in Hologic densitometers to accommodate the drift in the X-ray tube, the 

effect of beam hardening, and the differences in patient thickness (Stein, 1989). An 

important feature of the internal reference system was its ability to calculate the mass 

attenuation coefficients of soft tissue and bone on every scan line and provide continuous 

calibration of the densitometer (Stein, 1989; Blake and Fogelman, 1997). The current 

method of extracting the BMD map from the raw data of DXA scans was validated in 

another study (Dong et al., 2015). The BMD map was obtained from a software package 

developed by the authors (Dong et al., 2015). The software package is available for research 

use upon request.
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2.4 Stochastic assessment of inhomogeneity in the BMD map

The spatial variation of the BMD map (Fig.1b) from DXA scans of human vertebrae was 

described by an experimental variogram (Fig.1c). The concept of experimental variograms 

was described in the previous studies (Dong et al., 2010; Dong et al., 2013; Dong et al., 

2015) and is also available in the Appendix 1. A hole-effect model (Ma and Jones, 2001; 

Webster and Oliver, 2001) was used to characterize the trend in the experimental variogram 

(Fig.1c) in which the semi-variance decreased from its maximum to a local minimum and 

then increased again. Additionally, an exponential model (Fig.1d) was used to compare with 

the hole-effect model.

The stochastic predictors, correlation length (L), sill variance (c) and nugget variance (c0), 

were obtained from both hole-effect and exponential models. The correlation length was a 

distance parameter defining the spatial extent of the model. The nugget variance was the 

positive intercept on the axis of semi-variance (Fig.1c). The sill variance was a priori 

variance of the random field when the nugget variance was not present. The experimental 

variogram may reach its sill variance asymptotically (Fig.1d). When the nugget variance 

was present, the sill variance became a partial sill (Fig.1c). The sum of sill variance and 

nugget variance was the converging value of variance when the lag distance approached 

infinity (i.e. the global variance in the BMD map), which gave rise to a measure of 

magnitude of spatial variation of BMD map.

2.5 The slope of the experimental variogram of the BMD map

In order to compare with the Trabecular Bone Score (TBS), a parameter determined from 

the grayscale analysis of DXA images (Pothuaud et al., 2008; Pothuaud et al., 2009; Hans et 

al., 2011; Winzenrieth et al., 2013; Silva et al., 2014), the slope at the origin of the log-log 

representation of experimental variograms of the BMD maps was calculated using the linear 

least squares fitting technique (Fig.2). The slope represented the initial trend of the 

experiment variogram. On the other hand, stochastic predictors, correlation length, sill 

variance and nugget variance, were derived from theoretical models of random fields that 

captured the underlying mechanisms of the experimental variogram.

2.6 Microarchitecture parameters from 3D Micro-CT images of trabecular bone

3D images of human vertebrae with intact posterior elements were acquired using a Micro-

CT scanner (GE eXplore Locus, GE Healthcare, London, ON, Canada) with a resolution of 

93μm. Scans were performed with an X-ray tube voltage 80 kVp, current 450μA, number of 

views 200, and exposure time 90 milliseconds. Three consecutive scans were performed to 

cover the whole vertebra with intact posterior elements. A single volume of Micro-CT 

image was then created by stitching three scans together.

A volume of interest (VOI) was chosen to include only trabecular bone within the vertebral 

body. A global thresholding method was used to segment Micro-CT images with the 

threshold value automatically determined inside the volume of interest. Microarchitecture 

parameters of trabecular bone within the vertebral body were obtained through the 

Advanced Bone Analysis tool of the software package from the Micro-CT manufacturer 

(Microview 2.0, GE Healthcare, London, ON, Canada). The following microarchitecture 
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parameters were obtained: bone volume fraction (BV/TV), bone surface to volume ratio 

(BS/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation 

(Tb.Sp) and the connectivity density (Con.Den). The units of these microarchitecture 

parameters followed a report from the ASBMR histomorphometry nomenclature committee 

(Parfitt et al., 1987).

2.6 Statistical analyses

Statistical analyses were performed with SPSS (Version 20, IBM, Armonk, NY) with a 

significance level at p<0.05. Pearson correlation analyses were performed to study the 

relationships among DXA measurements of human lumbar vertebrae, stochastic predictors 

from the BMD map and microarchitecture parameters of trabecular bone. Before the Pearson 

correlation analysis, Shapiro-Wilk tests were used to examine the normality of these 

parameters. Additionally, paired Student’s t-tests were conducted to compare the stochastic 

predictors from the hole-effect model with the exponential model. Next, we tested whether 

stochastic predictors were correlated with the microarchitecture parameters of trabecular 

bone after the removal of the effect of BMD using a statistical procedure called a partial 

correlation. Finally, multiple regression analysis was performed with the stochastic predictor 

as the response variable, and the microarchitecture parameters as the exploratory variables.

3. Results

Descriptive data derived from the DXA measurements of human vertebrae, stochastic 

predictors from DXA scans of human vertebrae and microarchitecture parameters of 

trabecular bone within the vertebral body were summarized in Table 2. The normality of 

these variables was evaluated with Shapiro-Wilk tests and all variables had normal 

distribution (Table 2).

3.1 T-score of human vertebrae

Only the T-score values of L1-L4 vertebrae were available in the DXA scan of cadaver 

spines using the Hologic densitometer. Therefore, two L5 vertebrae were excluded from the 

results and only the T-score values of sixteen human vertebrae were reported. Overall, the 

human vertebrae in this study were normal since the average value of T-score was −0.6 

(Table 2). Specifically, there were eleven normal vertebrae (T-score was greater than −1.0); 

there were five vertebrae with osteopenia (T-score was between −2.5 and −1.0). None of 

these human vertebrae were osteoporotic.

3.2 Stochastic predictors from the hole-effect model and the exponential model

Paired Student’s t-tests indicated that significant differences of stochastic predictors were 

observed between the hole-effect model and exponential model (Table 2). The correlation 

length and the nugget variance from the hole-effect model was significantly (p<0.001) 

greater than those from the exponential model (Table 2). The sill variance from the hole-

effect model was significantly (p<0.001) less than that from the exponential model (Table 

2).
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The sill variance from the hole-effect model was strongly (r=0.925, p<0.001) correlated with 

the sill variance from the exponential model. However, neither the correlation length 

(r=0.240, p=0.338) nor the nugget variance (r=−0.057, p=0.822) from the hole-effect model 

had significant relationships with those from the exponential model.

3.3 Stochastic predictors vs. microarchitecture parameters

For the hole-effect model, significant correlations were found between the sill variance and 

the microarchitecture parameters of vertebral trabecular bone (Table 3, Figure 3). The sill 

variance had significantly positive correlations with the bone volume fraction (r=0.621, 

p<0.01), trabecular thickness (r=0.484, p<0.05), trabecular number (r=0.611, p<0.01) and 

connectivity density (r=0.515, p<0.05). The sill variance was also negatively correlated with 

the bone surface to volume ratio (r=−0.473, p<0.05) and trabecular separation (r=−0.614, 

p<0.01). The correlation length and the nugget variance from the BMD map were not 

significantly correlated with microarchitecture parameters of trabecular bone (Table 3).

Similar results were observed for the exponential model (Table 3). Significant correlations 

were observed between the sill variance and bone volume fraction, trabecular number, 

trabecular separation and connectivity density. The correlations between the sill variance 

and bone surface to volume fraction (r=−0.440, p=0.068) and trabecular thickness (r=0.459, 

p=0.055) were marginally significant. The correlation length and nugget variance had no 

significant (p>=0.192) relationships with microarchitecture parameters of trabecular bone.

3.4 Slope of experimental variogram vs. microarchitecture parameters

The slope from the experimental variogram had weak positive Pearson correlation 

coefficients with the trabecular thickness and the trabecular separation, and weak negative 

Pearson correlation coefficients with the bone volume fraction, the bone surface to volume 

ratio, trabecular number and connectivity density (Table 3). However, none of these 

correlations were statistically significant (p>=0.514).

3.5 DXA measurements vs. microarchitecture parameters

BMD and BMC from the PA projection of human vertebrae with intact posterior elements 

had no significant relationships (p>=0.143) with microarchitecture parameters of trabecular 

bone within the vertebral body (Table 3).

However, the area from the PA projection had correlations with bone volume fraction (r=

−0.532, p=0.023), bone surface to volume ratio (r=0.548, p=0.019), trabecular thickness (r=

−0.556, p=0.017), and trabecular separation (r=0.478, p=0.045). The area in the PA 

projection had marginally significant correlation (r=−0.418, p=0.085) with trabecular 

number. The area in the PA projection had no significant correlation (r=−0.280, p=0.260) 

with connectivity density.

3.6 DXA measurements vs. stochastic predictors

BMD from the PA projection of human vertebrae had significantly positive correlation 

(r=0.820, p<0.001) with the sill variance from the hole-effect model (Table 4). No other 
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significant relationships were observed between DXA measurements and stochastic 

predictors (Table 4).

3.7 Partial correlation analysis

The partial correlation analysis indicated that the sill variance remained significantly 

correlated with the bone volume fraction (r=0.655, p=0.004), bone surface to volume ratio 

(r=−0.546, p=0.023), trabecular thickness (r=0.527, p=0.030), trabecular number (r=0.625, 

p=0.007), trabecular separation (r=−0.631, p=0.007), and connectivity density (r=0.531, 

p=0.028) after controlling the association of BMD.

3.8 Multiple regression analysis

The multiple regression analysis provided further information about the relationship 

between the sill variance from DXA scans and the microarchitecture parameters of 

trabecular bone (Table 5).

4. Discussion

Eighteen human vertebrae with intact posterior elements were scanned by the densitometer 

in the posterior-anterior projection and by the Micro-CT scanner. The stochastic predictors 

were calculated using the experimental variogram of the BMD map from the DXA scans of 

human vertebrae. The microarchitecture parameters were obtained from 3D Micro-CT 

images of trabecular bone within the vertebral body. Our results supported the hypothesis 

that the sill variance, one of stochastic predictors from DXA scans, was significantly 

correlated with the microarchitecture parameters of trabecular bone.

The relationships between stochastic predictors and microarchitecture parameters observed 

in this study were independent of theoretical models fitted over the experimental variogram. 

Although the magnitudes of stochastic predictors from the hole-effect and exponential 

models were significantly different (Table 2), the sill variance from the hole-effect model 

was significantly correlated with that from the exponential model. Therefore, it is not 

unexpected that microarchitecture parameters of trabecular bone were significantly 

correlated with the sill variance not only from the hole-effect model, but also from the 

exponential model (Table 3). Nevertheless, the hole-effect model may better represent the 

trend of experimental variograms from DXA scans of human lumbar vertebrae in which the 

semi-variance of the BMD decreased from its maximum to a local minimum and then 

increased again (Fig.1c).

The significant relationships between the sill variance of DXA scans and microarchitecture 

parameters were consistent with our previous study of 2D projection images generated from 

3D Micro-CT images of trabecular bone (Dong et al., 2013). In the previous study of 2D 

projection images generated from 3D Micro-CT images of trabecular bone, we have also 

observed that the sill variance was positively correlated with bone volume fraction, 

trabecular thickness, and trabecular number, and was negatively correlated with bone 

surface to volume ratio and bone separation (Dong et al., 2013). Therefore, we have 

demonstrated that the stochastic assessment of inhomogeneous bone mineral density can be 

extended from 2D projection images to DXA scans.
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We have attempted to compare stochastic assessment of DXA scans of human lumbar 

vertebrae with the Trabecular Bone Score (TBS), a textural index evaluating pixel gray-level 

variations in the lumbar spine DXA image (Silva et al., 2014). In the earliest description of 

TBS (Pothuaud et al., 2008; Pothuaud et al., 2009), TBS was defined as the slope at the 

origin of the log-log representation of the experimental variogram of DXA images. In this 

study, we have calculated the slope of experimental variograms of the BMD map, a 

parameter similar to the earliest description of the TBS. No significant correlations were 

observed between the slope of experimental variograms and microarchitecture parameters 

(Table 3). Nevertheless, the signs of Pearson correlation coefficients in this study were in 

agreement with the study by Pothuaud and colleagues (Pothuaud et al., 2008). Both the slope 

of the experimental variogram in this study and the earliest version of TBS at the lumbar 

spine (Pothuaud et al., 2008) had negative correlation coefficients with the bone volume 

fracture (BV/TV) and trabecular number (Tb.N), and positive correlation coefficients with 

the trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp).

The more recent versions of the TBS are a black box algorithm based on fractional 

Brownian motion (Hans et al., 2011; Winzenrieth et al., 2013). A commercialized software 

package (TBS iNsight Software, Med-Imaps, Pessac, France) can be used to compute the 

more recent versions of the TBS. The TBS was found to have significant relationships with 

microarchitecture parameters of trabecular bone (Hans et al., 2011; Roux et al., 2013; 

Winzenrieth et al., 2013). TBS had significant positive correlations with bone volume 

fraction, trabecular number and connectivity density, and negative correlations with 

trabecular separation and trabecular thickness (Hans et al., 2011; Winzenrieth et al., 2013).

The negative relationship between TBS and trabecular thickness is a concern because this 

seems to contradict what we know about trabecular microarchitecture and strength (Bousson 

et al., 2012). One possible explanation is that the relatively low resolution of Micro-CT (93 

μm) images in these studies is insufficient for the evaluation of the microarchitecture of 

trabecular bone (Winzenrieth et al., 2013). In another study, negative Pearson correlation 

coefficient between TBS and trabecular thickness was still observed when Micro-CT images 

of human vertebrae were acquired with a resolution of 35 μm (Roux et al., 2013). This 

implies that resolution of Micro-CT images is not the cause for such negative correlation. It 

is noted that a weak and non-significant correlation (r2=0.032, p=0.345) was observed 

between the bone volume fraction and the trabecular thickness in the aforementioned study 

(Winzenrieth et al., 2013). On the other hand, we have observed a strong and significantly 

positive relationship (r=0.845, p=0.000) between bone volume fraction and trabecular 

thickness in this study. Consequently, the positive correlation between the sill variance and 

trabecular thickness in this study is consistent with the existing understanding that a 

structure with thick trabeculae is stronger than one with thin trabeculae.

It may not be surprising that significant relationships are observed between stochastic 

predictors of DXA scans and microarchitecture parameters of trabecular bone because both 

stochastic assessment and microarchitecture quantification share the same underlying 

principles. Microarchitecture parameters of trabecular bone, such as bone volume fraction, 

bone surface to volume fraction, trabecular thickness, trabecular separation and connectivity 

density, can be evaluated by traditional histomorphometry (Parfitt et al., 1987), which is 
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based on stereological techniques (Odgaard, 2009). The underlying principles of 

stereological techniques come from stochastic geometry (Stoyan et al., 1995; Chiu et al., 

2013). Meanwhile, the random field, a major part of stochastic geometry, is also the 

theoretical basis for the stochastic assessment of the BMD map from DXA scans (Dong et 

al., 2010; Dong et al., 2013). Therefore, it is expected that there are certain connections 

between stochastic assessment and microarchitecture quantification. Nevertheless, such 

connections need to be further explored in the future studies.

The sill variance from DXA scans, to some extent, represents the standard deviation of bone 

mineral density within human vertebrae, and characterizes the inhomogeneous distribution 

of bone mineral density. Such variation of bone mineral density has been found to be a good 

predictor of biomechanical properties of the human vertebral body (Cody et al., 1991). In 

that study, Cody et al. described the surprising result that the standard deviation of vertebral 

regional bone mineral density values provided nearly as good as a predictor of fracture load 

as the densities themselves (Cody et al., 1991). The authors concluded that local remodeling 

effects, causing point-to-point variations of bone mineral density in specific locations, may 

ultimately be helpful in predicting fracture risk in conjunction with local bone density 

analysis (Cody et al., 1991). Therefore, the sill variance observed in this study may reveal 

the point-to-point variations of bone mineral density due to local bone remodeling.

Our results indicate that the inhomogeneity is positively related to microstructure, implying 

that more homogeneous vertebra would be a weaker structure. However, there are 

conflicting results regarding the association between inhomogeneity and strength in bone 

(Yeh and Keaveny, 1999; Burr, 2003; Kim et al., 2007; Busse et al., 2009). For example, 

one computational study found that vertebral strength decreased with increasing coefficient 

of variation (COV) of Micro-CT based gray level density (Kim et al., 2007). Another 

computational study also found that the increase in the coefficient of variation in trabecular 

thickness resulted in a reduction in modulus for trabecular bone (Yeh and Keaveny, 1999). 

On the other hand, there are reports in the literature that a decrease in bone tissue 

inhomogeneity has resulted in a reduction in the toughness of bone (Burr, 2003; Abel and 

Ural, 2015).

It is noted that there are several limitations for this study. First, eighteen human vertebrae 

were obtained from five tissue donors. The number of the subjects is small. The influence of 

small number of tissue donors on the results of this study is available in the Appendix 2. The 

further analyses indicate that more subjects are needed in the future study.

Second, only DXA scans of human vertebrae in the PA projection were examined in this 

study. The rationale is that most of routine clinical scans are performed in the PA projection. 

Nevertheless, DXA scans in the lateral projection have been considered by some researchers 

as having more potential in predicting the biomechanical properties of human vertebrae 

(Ebbesen et al., 1999; Perilli et al., 2012). Therefore, stochastic assessment of 

inhomogeneous distribution of BMD from lateral DXA scans may be investigated in the 

future.
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Third, the effect of the posterior elements on the assessment of inhomogeneity has not been 

investigated in the study. This may be an interesting topic for future research. Stochastic 

predictors can be compared for DXA scans of human vertebrae specimens with intact 

posterior elements and without posterior elements. In addition, the stochastic assessment can 

also applied to 2D projection images generated from 3D Micro-CT images of human 

vertebrae with and without posterior elements.

Additionally, the relationship between stochastic predictors and biomechanical properties of 

human vertebrae has not been examined in this study. Therefore, future studies will 

investigate the relationship between stochastic predictors and biomechanical properties of 

human vertebrae either from mechanical testing (Perilli et al., 2012) and/or large-scale finite 

element analysis of human vertebrae based on Micro-CT images (Kim et al., 2007; 

Nekkanty et al., 2010). We can thus address the question whether a combination of 

stochastic predictors from DXA scans and BMD predicts the strength of human vertebrae 

better than using BMD alone.

Finally, the stochastic predictors from DXA scans may be influenced by scanner resolution, 

scan mode, and noise. Furthermore, structural changes and artifacts (e.g., osteophytes and 

facet sclerosis) may also pose challenges on the calculation of stochastic predictors from 

DXA scans. Therefore, these issues need to be addressed before such technique can be 

applied to the clinical settings and provide useful information for patients.

5. Conclusion

This study demonstrates that the stochastic assessment of the inhomogeneous distribution of 

bone mineral density from DXA scans of human lumbar vertebrae can reveal 

microarchitecture information of trabecular bone. However, future studies are needed to 

examine the potential of stochastic predictors from routine clinical DXA scans in providing 

bone fragility information complementary to BMD.
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Appendix

1. Stochastic assessment of inhomogeneity in the BMD map

The spatial variation of the BMD map from the DXA scans of human vertebrae was 

described by an experimental variogram. The concept of experimental variograms is briefly 

described here. A semi-variance, γ(h), is defined as the half of the expected squared 

differences of bone mineral density between any two data locations with a lag distance of h.

(1)

Dong et al. Page 10

J Biomech. Author manuscript; available in PMC 2016 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Z(x) is a function to describe the random field of bone mineral density; Both x and h 
are vectors; x is the spatial coordinates of the data location. Lag distance, h, represents the 

Euclidean distance and direction between any two data locations.

The experimental variogram is calculated as an average of semi-variance values at different 

locations that have the same value of lag distance (h).

(2)

where m(h) is the number of data pairs for the observations with a lag distance of h.

The stationarity of the BMD map as a random field was established by the wavelet-based 

test of stationarity for locally stationary random fields, which was available in the R 

software package (Eckley et al., 2010; Nunes et al., 2014). A stationary BMD map indicated 

that the constancy of mean, variance, and covariance independent of absolute positions 

(Webster and Oliver, 2001; Chiu et al., 2013). The anisotropy of the BMD map was 

examined by generating the experimental variograms in the directions of 0°, 30°, 60°, 90°, 

120° and 150° and no significant differences were observed for the experimental variograms 

at various directions. Therefore, the isotropic assumption of the BMD map of human 

vertebrae as a random field was established.

The experimental variogram of the BMD map from human vertebrae decreased from its 

maximum to a local minimum and then increased again. A hole-effect model has been used 

to describe such trend in the experimental variogram in geostatistics (Ma and Jones, 2001; 

Webster and Oliver, 2001). Therefore, we used the hole-effect model to fit over the 

experimental variogram to characterize the inhomogeneity of the BMD map. Additionally, 

an exponential model was used in this study to compare with the hole-effect model. The 

exponential model can be used to characterize an experimental variogram with monotonic 

increasing trend and has been used in the previous studies (Dong et al., 2010; Dong et al., 

2013; Dong et al., 2015).

The semi-variance (γ) with a hole-effect model and an exponential model can be represented 

by the following formulas, respectively:

(3)

(4)

where γ(h) is the semi-variance of bone mineral density as a function of lag distance (h). L, 

correlation length, is a distance parameter defining the spatial extent of the model. 

Correlation length is an important parameter to describe the spatial variation of a random 

field. A large correlation length implies a smooth variation whereas a small correlation 

length corresponds to rapid changes in the property over the spatial domain. The c0, nugget 

variance, is the positive intercept on the axis of semi-variance. Any apparent nugget 
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variance usually arises from errors of measurement and spatial variation within the shortest 

sampling interval (Webster and Oliver, 2001). The c, sill variance, is a priori variance of the 

random field when the nugget variance is not present. The experimental variogram may 

reach its sill variance asymptotically. When the nugget variance is present, the sill variance 

becomes a partial sill. The sum of sill variance and nugget variance is the converging value 

of variance when the lag distance approached infinity (i.e. the global variance in the BMD 

map), which gives rise to a measure of magnitude of spatial variation of BMD map.

The stochastic assessment was implemented in a software package written in MATLAB 

(Mathoworks, Natick, MA). The software package is available for research use upon request 

(Dong et al., 2015). A plugin of stochastic predictors for ImageJ, a public domain program, 

is currently under development.

2. Correlation coefficients within subjects and between subjects

We performed additional statistical analyses to examine the impact of small number of 

tissue donors (i.e., subjects) on the results of this study. Specifically, we used the analysis of 

covariance (ANCOVA) and weighted correlation analysis to examine the Pearson 

correlation coefficients within subjects and between subjects (Bland and Altman, 1994; 

Bland and Altman, 1995a; Bland and Altman, 1995b). In the analysis of covariance 

(ANCOVA), the microarchitecture parameter was the dependent variable, the subject was 

the independent category variable, and the sill variance was the covariate. We were able to 

remove the effect between subjects, and only examine the correlation within subjects. We 

answered the question whether there were significant correlations within an individual. Our 

results indicated that weak and non-significant relationships (p>=0.128) between the sill 

variance and microarchitecture parameters were observed within subjects (Table 6).

In the weighted correlation analysis, we averaged the sill variance and the microarchitecture 

parameters for all human vertebrae from the same tissue donor and used the number of 

human vertebrae specimens in each tissue donor as the weight. Strong correlations were 

observed between the sill variance and microarchitecture parameters between subjects 

(Table 6). Significant relationships of the sill variance were observed with the bone volume 

fraction (r=0.912, p=0.031) and bone separation (r=−0.901, p=0.037). Marginally significant 

correlations were observed between the sill variance and bone surface to volume ratio (r=

−0.875, p=0.052), trabecular thickness (r=0.850, p=0.068) and trabecular number (r=0.844, 

p=0.073). The correlation between the sill variance and connectivity density was not 

significant (r=0.740, p=0.153).
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Figure 1. 
Calculation of stochastic predictors from the BMD map of human vertebrae. (a) A DXA 

image of a human vertebra in the PA projection from Hologic densitometers; (b) A typical 

BMD map obtained from the raw data of DXA scans of human vertebrae; (c) A hole-effect 

fitting model of the experimental variogram of the BMD map. The stochastic predictors, 

correlation length (L), sill variance (c) and nugget variance (c0), were extracted from the 

hole-effect model; and (d) An exponential fitting model of the experimental variogram of 

the BMD map.
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Figure 2. 
The slope at the origin of the log-log representation of the experimental variogram was 

calculated using the linear least squares fitting technique. The slope of the experimental 

variogram is a parameter similar to the earliest description of Trabecular Bone Score (TBS) 

(Pothuaud et al., 2008; Pothuaud et al., 2009).
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Figure 3. 
Sill variance of the BMD map from DXA scans of human vertebrae had significant 

relationships with the microarchitecture parameters of trabecular bone within the vertebral 

body. (a) bone volume fraction (BV/TV); (b) bone surface-to-volume ratio (BS/BV); (c) 

trabecular thickness (Tb.Th); (d) trabecular number (Tb.N); (e) trabecular separation 

(Tb.Sp); and (f) connectivity density.
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Table 1

Descriptive statistics of tissue donors.

Subject Age Gender Cause of Death Vertebrae

1 57 M Respiratory Failure L1, L2, L3, L4, L5

2 81 M Alzheimer’s Disease L1, L2, L3, L4, L5

3 79 M Subarachnoid Hemorrhage L4

4 76 F Respiratory arrest L1, L2, L3

5 63 M Melanoma L1, L2, L3, L4
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Table 2

Descriptive statistics of DXA measurements of human vertebrae, stochastic predictors from the BMD map of 

human vertebrae, and microarchitecture parameters of trabecular bone within the vertebral body.

Avg.±S.D. Range p-value

DXA parameters

BMD (g/cm2) 0.941±0.084 0.749~1.089 0.108
(a)

BMC (g) 16.95±2.25 12.540~20.570 0.776
(a)

Area (cm2) 18.06±2.16 14.64~21.33 0.411
(a)

T-score −0.6±0.8 −2.4~0.5 0.435
(a)

Stochastic predictors

Hole-effect model

Correlation length (mm) 27.6±4.9 17.7~35.3 0.469
(a)

Sill variance (g/cm2)2 0.115±0.021 0.075~0.150 0.623
(a)

Nugget variance (g/cm2)2 0.017±0.012 0~0.041 0.293
(a)

Exponential model

Correlation length (mm) 17.3±2.6 13.1~21.2 0.408
(a)

Sill variance (g/cm2)2 0.151±0.032 0.08~0.21 0.797
(a)

Nugget variance (g/cm2)2 0.000±0.00 0.000~0.000 (b)

Paired differences between hole-effect and exponential models

Correlation length (mm) 10.3±5.0 −3.21~15.2 0.000
(c)

Sill variance (g/cm2)2 −0.036±0.015 −0.0673~−0.00699 0.000
(c)

Nugget variance (g/cm2)2 0.017±0.012 0.00568~0.0408 0.000
(c)

Slope of experimental variograms

Slope 1.510±0.038 1.447~1.606 0.469
(a)

Microarchitecture
parameters

BV/TV (%) 21.6±4.5 14.6~28.5 0.198
(a)

BS/BV (mm2/mm3) 8.857±0.809 7.415~10.037 0.517
(a)

Tb.Th (mm) 0.228±0.021 0.199~0.270 0.446
(a)

Tb.N (1/mm) 0.941±0.133 0.733~1.158 0.456
(a)

Tb.Sp (mm) 0.856±0.170 0.622~1.165 0.300
(a)

Con.Den (1/mm3) 0.922±0.232 0.580~1.340 0.393
(a)
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(a)
The significance value of a Shaprio-Wilk test indicates whether the data are normal distribution. A p-value of less than 0.05 means the deviation 

away from the normal distribution.

(b)
The significance value of a Shaprio-Wilk test cannot be computed because at least of one of the variables is constant.

(c)
The significance values from the Student’s t-tests for paired samples.
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Table 3

Correlations of microarchitectural parameters with stochastic predictors and DXA parameters.

BV/TV BS/BV Tb. Th Tb. N Tb. Sp Con.Den

Hole-effect model

  L
r 

(a) .044 .043 −.005 .048 −.067 −0.017

p-value 
(b) .863 .865 .984 .851 .792 0.945

  c
r 

(a) .621** −.473* .484* .611** −.614** 0.515*

p-value 
(b) .006 .048 .042 .007 .007 0.029

  c0

r 
(a) .051 −.063 .116 −.026 −.021 −0.133

p-value 
(b) .840 .804 .646 .919 .934 0.598

Exponential model

  L
r 

(a) .284 −.211 .225 .281 −.322 0.190

p-value 
(b) .254 .401 .370 .259 .192 0.449

  c
r 

(a) .596** −.440 .459 .586** −.600** 0.469*

p-value 
(b) .009 .068 .055 .011 .009 0.049

  c0

r 
(a) (c) (c) (c) (c) (c) (c)

p-value 
(b)

Slope of experimental variograms

  Slope
r 

(a) −.006 −.153 .165 −.111 .064 −.124

p-value 
(b) .982 .544 .514 .661 .802 .624

DXA parameters

  BMD
r 

(a) .325 −.203 .233 .333 −.333 .271

p-value 
(b) .188 .420 .353 .176 .176 .277

  BMC
r 

(a) −.263 .371 −.359 −.147 .203 −.064

p-value 
(b) .291 .129 .143 .562 .419 .801

  Area
r 

(a) −.532* .548* −.556* −.418 .478* −.280

p-value 
(b) .023 .019 .017 .085 .045 .260

(a)
Pearson correlation coefficient

(b)
The significance value (p-value) from the Pearson correlation analysis

(c)
The significance value (p-value) cannot be computed because at least one of the variables is constant
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**
Correlation is significant at the 0.01 level.

*
Correlation is significant at the 0.05 level.
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Table 4

Correlations between DXA measurements and stochastic predictors from DXA scans of human vertebrae 

based on hole-effect model.

L c c0

 BMD
r 

(a) .042 .820** .307

p-value 
(b) .868 .000 .216

 BMC
r 

(a) −.081 .307 −.009

p-value 
(b) .750 .216 .973

  Area
r 

(a) −.118 −.280 −.240

p-value 
(b) .640 .260 .338

(a)
Pearson correlation coefficient

(b)
The significance value (p-value) from the Pearson correlation analysis

**
Correlation is significant at the 0.01 level.
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Table 5

Multiple regression analysis between the sill variance (c) and microarchitecture parameters. The regression 

model was c ~ constant+BV/TV+BS/BV+Tb.N+Tb.Sp+Con.Den. The R-squared value and the adjusted R-

squared value for the regression were 0.687 and 0.517, respectively. The p-value from the F-test in the 

ANOVA table of the regression analysis was 0.022.

Predictors Coef.
(a) Std.

Error
(b) t 

(c) p-

value
(d)

(constant) −5.122 1.979 −2.589 0.025

BV/TV −5.472 2.636 −2.076 0.062

BS/BV 0.158 0.071 2.218 0.049

Tb.Th 11.494 4.752 2.419 0.034

Tb.N 2.247 0.895 2.509 0.029

Tb.Sp 0.514 0.268 0.029 0.082

Con.Den −0.162 0.094 0.113 0.113

(a)
The regression coefficient from the multiple regression model. The coefficient label constant in the table is the intercept of the regression model.

(b)
The standard error of the coefficients

(c)
The test statistic t was equal to the coefficient divided by the standard error.

(d)
The p-value was computed under the t test statistic.
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Table 6

Correlations of the sill variance and microarchitecture parameters within subjects and between subjects using 

analysis of covariance and weighted correlation analysis, respectively.

BV/TV BS/BV Tb. Th Tb. N Tb. Sp Con.Den

Within
subjects

r 
(a) −0.378 0.307 0 −0.320 0.408 −0.362

p-value 
(b) 0.295 0.287 0.369 0.289 0.147 0.128

Between
subjects

r 
(c) 0.912* −0.875 0.850 0.844 −0.901* 0.740

p-value 
(d) 0.031 0.052 0.068 0.073 0.037 0.153

(a)
Pearson correlation coefficients were computed from the analysis of covariance using the formula from the paper in the literature (Bland and 

Altman, 1995). The analysis of covariance was implemented with the General Linear Model in SPSS (Version 20, IBM, Armonk, NY).

(b)
The significance value (p-value) was obtained from the F test in the associated analysis of covariance table (Bland and Altman, 1995).

(c)
Weighted Pearson correlation coefficients were calculated with an open source software package: R.

(d)
The significance value (p-value) from the weighted Pearson correlation analysis.

*
Correlation is significant at the 0.05 level.
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