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Abstract

Lipid-calcium-phosphate nanoparticle (NP) delivery of Trp2 peptide vaccine is one of the most 

effective vaccine strategies against melanoma. However, due to the immunosuppressive 

microenvironment in the tumor, the achievement of potent immune responses remains a major 

challenge. NP delivery systems provide an opportunity to deliver chemotherapy agent to modulate 

the tumor microenvironment (TME) and improve the vaccine activity. Anti-inflammatory 

triterpenoid methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a broad 

spectrum inhibitor of several signaling pathways that are important in both cancer cells and cells 

in the TME. Intravenous delivery of CDDO-Me using poly-lactic-glycolic-acid NP combination 

with subcutaneous Trp2 vaccine resulted in an increase of antitumor efficacy and apoptotic tumor 

tissue than Trp2 vaccine alone in B16F10 melanoma. There was a significant decrease of both 

Treg cells and MDSCs and a concomitant increase in the cytotoxic T-lymphocyte infiltration in 

TEM of the vaccinated animals. Also, CDDO-Me remodeled the tumor associated fibroblasts, 

collagen and vessel in TME, meanwhile, enhanced the Fas signaling pathway which could 

sensitize the tumor cells for cytotoxic T lymphocyte mediated killing. The combination of 

systemic induction of antigen-specific immune response using Trp2 nanovaccine and targeted 

modification of the TME with the NP delivered CDDO-Me offers a powerful combination therapy 

for melanoma.
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1. Introduction

Cancer immunotherapy has become one of the most promising strategies in cancer therapy. 

A number of antitumor vaccines have been tested for their ability to induce tumor-specific 

immune response and antitumor treatment in vivo [1–3]. Moreover, several clinical trials 

have recently demonstrated promising therapeutic potential for cancer vaccine [4–6]. 

Current cancer immunotherapy includes diverse strategies that such as activating innate and 

adaptive immune system responses by neutralizing the inhibitory and suppressive 

mechanisms in the tumor [7,8]. During tumor growth progression, tumor-induced 

immunosuppression is a major obstacle for immunotherapeutic strategies that avoid immune 

recognition and elimination [9,10]. Therefore, development of an effective treatment to 

break the immunosuppression in the tumor microenvironment (TME) remains a major 

challenge for cancer immunotherapy.

Previous studies in our lab used a potent mannose-modified LCP nanoparticle (NP)-based 

vaccine containing both tumor-specific antigen and adjuvant, to activate the dendritic cells 

(DC). It also generated a strong in vivo cytotoxic T lymphocyte (CTL) response against the 

poorly immunogenic self-antigen tyrosinase-related protein 2 (Trp2) peptide. This ultimately 

resulted in a potent anti-tumor immune response against the Trp2 expressing melanoma 

[11]. Previous studies also indicated that Trp2 LCP vaccination results in potent growth 

inhibition of a B16F10 melanoma model in both early (4 days after tumor inoculation) and 

late (13 days after tumor inoculation) stages [12]. Early vaccination on day 4 exhibited 

significant tumor growth inhibition; whereas late vaccination was much less potent, despite 

of the fact that the systematic CTL response was the same. Most likely, immune suppression 

gained along with tumor progression compromised the efficiency of the immunotherapy.

The antitumor effects of immunotherapy can be enhanced by its combination with 

chemotherapeutic agents that can modulate the immune response [13–16]. Therefore, we 

investigated the potential benefits of combining antigen-specific LCP-based vaccination 

with chemotherapeutic agents targeting the TME with the hopes of improving the anti-tumor 

effect in an advanced B16F10 melanoma model. Anti-inflammatory triterpenoid methyl-2-

cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a synthetic oleanane 

triterpenoid, an effective agent for solid cancer prevention and treatment, with some well-

understood anti-carcinogenic mechanisms [17,18]. CDDO-Me has strong anti-proliferative 

and pro-apoptotic activities in diverse types of tumor cell lines [19–22]. The anticancer 

mechanisms of CDDO-Me include induction of apoptosis and modulation of several signal 

transduction pathways, such as PI3K/Akt/mTOR, MAPK (Erk1/2), NF-κB, TGF-β/Smad 

and Nrf2 signaling pathways [23–25]. Furthermore, CDDO-Me can also block the immune 

suppressive function of myeloid-derived suppressor cells (MDSCs) and improve the 

immune response to cancer [26]. The accumulation of immunosuppressive regulatory T-

cells (Treg) and MDSCs within the TME is a major obstacle to effective antitumor 

immunotherapies. Therefore, we investigated the delivery of CDDO-Me targeting the TME 

for an effective treatment against advanced stage tumors. CDDO-Im, an analog of CDDO-

Me, has been shown to improve the activity of a DNA vaccine and prevent recurrence in 

breast cancer when delivered to the TME [27]. We hypothesize that targeted delivery of 

CDDO-Me to the tumor using poly-lactic-glycolic-acid (PLGA) NP will result in a 
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modulation of the TME and enhance the activity of a peptide vaccine against advanced 

melanoma (scheme 1).

2. Materials and methods

2.1. Materials

1,2-Dioleoyl-3-trimethylammonium-propane chloride salt (DOTAP), 1,2-distearoryl-sn-

glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol-2000)] ammonium salt 

(DSPE-PEG) and dioleoylphosphatydic acid (DOPA) were purchased from Avanti Polar 

Lipids (Alabaster, AL, USA). Cholesterol was purchased from Sigma-Aldrich (St. Louis, 

MO, USA). DSPE-PEG-Mannose was synthesized using DSPE-PEG-NHS (NOF, Shibuya-

ku, Tokyo) and 4-Amino phenyl α-D-mannopyranoside (Sigma-Aldrich, St. Louis, MO) in 

our laboratory as previously reported and the structure was confirmed using 1H NMR [11]. 

PLGA was purchased from DURECT (Pelham, AL, USA), PLGA-PEG and PLGA-PEG-

MBA were synthesized using PLGA, mPEG3000-NH2·HCl and tBOC-PEG3500-NH2·HCl 

(JenKem Technology, Allen, TX) in our lab as described previously and the structure was 

confirmed using 1H NMR [47]. H-2Kb restricted peptides Trp2 (SVYDFFVWL, MW 1175), 

OVA (SIINFEKL, MW 1773) and modified Trp2 peptide, p-Trp2 (pSpSSSVYDFFVWL, 

MW 1626) were purchased from Peptide 2.0 (Chantilly, VA, USA). CpG ODN 1826 (5′-

TCCATGACGTTCCTGACGTT-3′) was obtained from Sigma-Aldrich (St. Louis, MO, 

USA). CDDO-Me was purchased from Selleckchem (Houston, TX, USA).

2.2. Cell line and mice

Murine melanoma cell line B16F10 was obtained from American Type Culture Collection 

(ATCC) and cultured with DMEM supplemented with 10% fetal bovine serum, 100 U/mL 

penicillin and 100 µg/mL streptomycin (Invitrogen, Carlsbad, CA). Female C57BL/6 mice 

with the age of 6 to 8 weeks were purchased from the National Cancer Institute (Bethesda, 

MD, USA). All animal procedures were carried out under protocols approved by the 

Institutional Animal Care and Use Committees at the University of North Carolina at Chapel 

Hill.

2.3. Preparation of PLGA-based CDDO-Me NP

The solvent displacement method was employed for the formation of CDDO-Me loaded 

PLGA NP (CDDO-Me NP). Briefly, 0.2 mg of CDDO-Me and 4 mg of polymers, including 

PLGA, PLGA-PEG and PLGA-PEG-MBA, were dissolved in 0.4 mL of tetrahydrofuran 

(THF), NP were formed by adding the drug polymer solution dropwise into 4 mL of stirring 

water at room temperature. The suspension was allowed to stir uncovered for 6 h at room 

temperature to evaporate the organic solvent. The CDDO-Me NP was purified by 

ultrafiltration (50,000 NMWL, Millipore, Billerica, MA) at 4000 g for 15 min. The CDDO-

Me NP was then re-suspended, washed with water and collected with 5% glucose. The 

CDDO-Me NP was observed by TEM, particle size distributions and zeta potential were 

determined using a Malvern Zetasizer Nano ZS. Loaded concentrations of CDDO-Me were 

measured using a UV spectrophotometer (Beckman Coulter, Atlanta, GA). EE and DL were 

calculated according to the formulas:
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2.4. In vitro release of CDDO-Me NP

To study the release of CDDO-Me from PLGA NP, dialysis devices were used with 

phosphate buffered saline (PBS) at 37°C with pH 7.4 and 6.8. In order to establish the sink 

condition, 0.25% Tween-80 was added in the PBS. CDDO-Me NP with a final concentration 

of 200 µg/mL was placed into a dialysis tube with a molecular weight cutoff of 3000 Da and 

dialyzed against 14 mL PBS in a thermo-controlled shaker with a stirring speed of 150 rpm. 

Samples of 140 µL were withdrawn at predetermined time intervals and centrifuged at 

15000 g for 15 min. The concentration of CDDO-Me was determined by UV 

spectrophotometer (Beckman Coulter, Atlanta, GA). The samples taken for measurement 

were replaced with fresh media and the cumulative amount of drug released into the media 

at each time point was calculated as the percentage of total drug released to the initial 

amount of the drug. The in vitro releases were performed in triplicate for both pH.

2.5. Preparation of LCP-based p-Trp2 vaccine NP

The LCP-based p-Trp2 vaccine was prepared by water-in-oil micro-emulsion technique as 

previously described [12]. Briefly, 600 µL CaCl2 (2.5 M) containing p-Trp2 peptide and 

CpG ODN was dispersed in 20 mL Cyclohexane/Igepal CO-520 (71:29, v/v) solution to 

form a well-dispersed Ca phase. Meanwhile, 600 µL Na2HPO4 (12.5 mM, pH 9.0) and 200 

µL DOPA (20 mM) were dispersed in another 20 mL oil phase to obtain the phosphate 

phase. After the above micro-emulsion phases were stirred 15 min separately, they were 

mixed and stirred for another 30 min. Subsequently, 40 mL ethanol was added to break the 

micro-emulsion. After that, CaP cores were collected by centrifugation (10,000 g × 20 min) 

and washed with ethanol three times. The pellets were dissolved in chloroform and mixed 

with 100 µL DOTAP (20 mM), 100 µL cholesterol (20 mM), 20 µL DSPE-PEG-2000 (20 

mM) and 20 µL DSPE-PEG-mannose (20 mM). After evaporating the chloroform, LCP 

vaccine particles were dispersed in 100 µL of 5% glucose. The morphologies of p-Trp2 LCP 

NP were observed by transmission electron microscopy (JEOL 100CX II TEM, JEOL, 

Japan). Particle size and zeta potential were measured by a Malvern Zetasizer Nano ZS 

(Malvern, Worcestershire, UK).

2.6. Tumor growth inhibition

To determine the effects of the Vac and CDDO-Me on tumor growth, C57BL/6 mice were 

s.c. inoculated with 2×105 B16F10 cells on their flank on day 0. On days 13, the Vac was 

s.c. injected into the contralateral side of the inoculation site for the vaccine only and 

combination therapy group. Starting on day 13, the mice were treated with i.v. injections of 

CDDO-Me NP or intraperitoneal (i.p.) injections of CDDO-Me free every other day for a 
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total of three injections at a dose of 5 mg/kg. Thereafter, tumor size was measured every day 

using digital calipers (Thermo Fisher Scientific, Pittsburgh, PA) and tumor volume was 

calculated as: Tumor volume (mm3)=0.5×length×width2. Body weight was also monitored. 

After completion of the therapeutic experiment on days 18, mice were humanely sacrificed 

and tumor tissue and major organs were collected for further experiments.

2.7. TUNEL assay

For detection of apoptotic cells in tumor tissues, the TUNEL assay was carried out using a 

DeadEnd Fluorometric TUNEL System (Promega, Madison, WI) according to the 

manufactures instructions. Mice were sacrificed at the designated time points and tumor 

tissue were quickly harvested from the body and immersed in 10% formalin for 48 h. The 

fixed tumor tissues were then paraffin-embedded and 5 µm thick histological sections were 

prepared (obtained from the UNC Histopathology Core Facility). Cell nuclei that were 

fluorescently stained with green were defined as TUNEL-positive nuclei. The sections were 

stained by 4,6-diaminidino-2-phenyl-indole (DAPI) Vectashield (Vector laboratories, 

Burlingame, CA) and covered with a coverslip. TUNEL-positive nuclei were monitored 

using a fluorescence microscope (Nikon, Tokyo, Japan) at 100× magnification. Three 

randomly selected microscopic fields were quantitatively analyzed on Image J software.

2.8. Safety evaluation

Tumor-bearing mice were injected and sacrificed at the designated time points and major 

organs were quickly harvested from the body and immersed in 10% formalin for 48 h. The 

fixed organs were then paraffin-embedded and 5 µm thick histological sections were 

prepared (obtained from the UNC Histopathology Core Facility). The paraffin sections were 

mounted onto slides and stained with hematoxylin and eosin. The morphological features of 

the tissues were observed under a light microscope for analysis of tissue injuries. 

Meanwhile, the blood samples were collected and assessed for hepatic and renal function, 

included aspartate aminotransferase (AST), alanine amino transferase (ALT), blood urea 

nitrogen (BUN), and creatinine by UNC facility.

2.9. PLGA NP biodistribution assay

C57BL/6 mice bearing B16F10 tumors were i.v. administered with a single dose of 1 

µCi 3H-labeled PLGA NP and were sacrificed 24 h post-intravenous administration. Tissue 

samples were first digested by Tissue Solubilizer (Amersham Biosciences Corp. NJ, USA) 

overnight at room temperature and then with 4 mL scintillation cocktail (Thermo Fisher 

Scientific Inc., MA, USA). The samples were then assayed using a liquid scintillation 

counter (Beckman coulter LS6500). The percentage of the injected dose (% ID) in the tissue 

was calculated. All tests were done in triplicate.

2.10.PLGA NP cellular uptake assay

C57BL/6 mice were s.c. inoculated with 2×105 B16F10 cells on their flanks on day 0. On 

days 13, the mice were i.v. injected with a single dose of PLGA NP labeled with a lipophilic 

dye, 1,1′-dioctadecyl-3,3,3′,3′- tetramethylindocarbocyanine perchlorate (DiI), at a dose of 

0.5 mg/kg and were sacrificed 24 h post-intravenous administration. The DiI-loaded PLGA 
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NP was prepared as described for CDDO-Me-loaded PLGA NP in section 2.3. Tumor tissue 

was harvested and digested with collagenase A and hyaluronidase at 37°C for 40 min. After 

lysis of the red blood cells, the dissociated cells were dispersed with 1 mL PBS. The 

immune lymphocytes (5×106 /mL) were stained with fluorescein-conjugated CD11b 

antibody (BD Biosciences, San Jose, CA). Immunocyte uptake of DiI-loaded PLGA NP was 

detected by flow cytometry. All tests were done in triplicate.

2.11. Flow cytometry assay

Tumor-infiltrating and splenocyte immune lymphocytes were analyzed by flow cytometry. 

In brief, tumor and spleen tissues were harvested and digested with collagenase A and 

hyaluronidase at 37°C for 40 min. After lysis of the red blood cells (RBCs), the dissociated 

cells were dispersed with 1 mL of PBS. For intracellular cytokine staining, the cells from the 

tumor and spleen tissue were penetrated with 0.1% triton-100 for 15 min. The immune 

lymphocytes (5×106/mL) were stained with the following fluorescein-conjugated antibodies: 

FITC-conjugated anti-mouse CD8a, FITC-conjugated anti-mouse CD4, PE-conjugated anti-

mouse FOXP3, FITC-conjugated anti-mouse CD11b, and PE-conjugated anti-mouse Gr-1 

(BD, New South Wales, Australia). Flow cytometry was performed in quintuplicate for each 

group. Analysis was performed on a FACSCalibur flow cytometer and analyzed using Cell 

Quest software (BD Biosciences, San Jose, CA).

2.12. Immunofluorescence

Tissue section slides were deparaffinized, antigen retrieved, permeabilized and blocked with 

1% bovine serum albumin (BSA) at room temperature for 1 h. Primary antibodies 

conjugated with fluorophores (BD, Franklin Lakes, NJ) were incubated overnight at 4°C and 

nuclei were counterstained with DAPI (Vector Laboratories Inc, Burlingame, CA). All 

commercial binding reagents were diluted according to the manufacturer’s recommendation. 

Images were taken using fluorescence microscopy (Nikon, Tokyo, Japan). Three randomly 

selected microscopic fields were quantitatively analyzed on Image J software.

2.13. In vivo cytotoxic T lymphocyte (CTL) response

The in vivo CTL assay was performed according to the previous protocol [12]. In brief, 

splenocytes from naïve C57BL/6 mice were collected and loaded with either 10 µM Trp2 or 

Ova peptides in complete media at 37°C for 1 h. Both loaded cell populations were stained 

with 2 µM PKH-26 (Sigma-Aldrich, St. Louis, MO) following the manufacturer's protocol. 

Then, the Trp2 peptide-pulsed and Ova peptide-pulsed cells were labeled with 4 µM and 0.4 

µM CFSE, respectively. Equal amount of CFSEhigh (Trp2 pulsed cells) and CFSElow (Ova 

pulsed cells) were mixed and i.v. injected into the untreated and treated mice. Eighteen hours 

later, splenocytes were collected from these treated mice and subjected to flow cytometry 

analysis. The number of CFSEhigh and CFSElow was calculated and the in vivo Trp2 specific 

lysis percentage was enumerated according to a published equation. The in vivo CTL was 

performed in quintuplicate for each group.
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where  from naive mice

2.14. Quantitative real-time PCR assay

Total RNA was extracted from tissue samples by the RNeasy kit (Qiagen, Valencia, CA) 

and cDNA was reverse-transcribed by SuperScript First-Strand Synthesis System for RT-

PCR (Invitrogen, Grand Island, NY). Amplification was conducted with SsoAdvanced 

Universal Probes Supermix (Bio-rad, Hercules, CA), mouse-specific primers and 100 ng of 

cDNA. All the mouse-specific primers for RT-PCR reactions are listed in Table 1 (Life 

technologies, Grand Island, NY). GAPDH was used as an endogenous control. The RT-PCR 

was performed in quintuplicates for each group. The reactions were conducted using a 7500 

Real-Timer PCR System, and the data were analyzed with the 7500 Software.

2.15. Masson trichrome staining

For detection of collagen in tumor tissues, the Masson Trichrome assay was carried out. 

Paraffin-embedded tumor sections were deparaffinized and rehydrated. The slides were then 

stained using a Masson Trichrome kit (Sigma-Aldrich, St Louis, MO, USA) according to 

manufacture instructions. Images were taken using light microscopy (Nikon, Tokyo, Japan). 

Three randomly selected microscopic fields were quantitatively analyzed on Image J 

software.

2.16. Western blot analysis

Tumor tissues were collected and proteins were extracted in radioimmunoprecipitation assay 

(RIPA) lysis buffer with a cocktail of proteinase inhibitors (Sigma-Aldrich, St. Louis, MO) 

by tissue homogenization and sonication. Total protein concentration was measured using 

the BCA protein assay kit (Thermo, Rockford, IL) following the manufacturer's instruction. 

Protein extracts were diluted in 4× sample buffer with reducing reagent and heated at 95°C 

for 5 min. After separation by NuPAGE 4–12% Bis-Tris protein Gels (Invitrogen, Grand 

Island, NY), proteins were transferred to an Immobilon-P transfer membrane (Millipore, 

Billerica, MA) by electrophoresis. Membranes were blocked with 1% casein blocker (Bio-

Rad, Hercules, CA) for 1 h at room temperature and probed with the indicated primary 

antibodies Fas (Abcam, Cambridge, MA), PARP and GAPDH (Santa Cruz biotechnology, 

Dallas, TX) overnight at 4°C and the horseradish peroxidase- conjugated secondary 

antibody for 1 h at room temperature. Signals were detected using the Pierce ECL Western 

Blotting Substrate (Thermo, Rockford, IL). Western blot was performed in triplicate for 

each group and the optical density of each protein band was analyzed with Image J software.

2.17. Statistical analysis

Data were analyzed statistically using a two-tailed Student's t-test by comparison with the 

control group unless otherwise specified with markings. A p value less than 0.05 was 

considered statistically significant.
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3. Results and discussion

3.1. CDDO-Me is encapsulated into PLGA NP for systemic administration

Nanoparticle based drug delivery systems are powerful approach to targeted deliver water-

insoluble therapeutics to the tumor. Therefore, hydrophobic CDDO-Me was encapsulated 

into PLGA NP so that high bioavailability could be achieved in the tumor after systemic 

administration. To enhance the tumor uptake of NP, p-methoxybenzylamide (MBA) was 

used as a targeting ligand. MBA is an analog of anisamide which binds with the sigma 

receptors over-expressed in many murine and human epithelial tumor cells including 

melanoma. CDDO-Me was formulated in PLGA NP using the well-established solvent 

displacement method. The encapsulation efficiency (EE), drug loading (DL), size and the 

polydispersity index (PDI) of the CDDO-Me NP are shown in Figure S1. In summary, the 

EE and DL increased with the decreasing ratio of PLGA and PLGA-PEG in the polymer 

mix. We chose the ratio of PLGA to PLGA-PEG 2:8 and 4% (drug/excipient ratio) CDDO-

Me feed to prepare the optimized PLGA NP. The EE and DL for this formulation was 61.4 ± 

3.8% and 2.9 ± 0.2%, respectively (Figure S1C). The size for the CDDO-Me NP was varied 

from 60–100 nm determined by TEM (Figure 1A) and 120 nm by dynamic light scattering 

(Figure S1D) with a surface charge of −25 mV. The release of CDDO-Me from the PLGA 

NP exhibited a similar release rate (T1/2 = 36 h and 42 h) in pH 7.4 and 6.8 PBS, 

respectively. No burst drug release was observed (Figure S1E).

As was published, LCP NP is lipid-coated, PEG-stabilized calcium phosphate nano-

precipitate fabricated in a reverse microemulsion system. During the formation of 

precipitates, small or macromolecules with phosphate groups such as gemcitabine 

monophosphate, siRNAs and pDNA can be efficiently encapsulated in the NP [28–31]. The 

high PEG density on LCP surface significantly increased the in vivo colloidal stability of the 

NP and thus improved pharmacokinetic and pharmacodynamic profiles of the therapeutics. 

In order to enhance the encapsulation of hydrophobic Trp2 peptide in the LCP NP, two 

phosphorylated serines were added to the N-terminal of the peptide sequence without 

compromising the antigenic activities [11]. Phosphorylated Trp2 were thus loaded into LCP 

NP with CpG oligonucleotide (ODN) as an adjuvant [12]. The LCP NP was surface-

functionalized with mannose to target the mannose receptor which is highly expressed in 

antigen presenting cells such as dendritic cells as well as macrophages [11]. The EE of p-

Trp2 peptide and CpG ODN in the LCP NP was about 50% and 40%, respectively. The final 

LCP NP was about 30 nm in diameter as determined by TEM (Figure 1B), while 

hydrodynamic size of LCP is 50 nm in diameter determined by dynamic light scattering with 

surface charge of 15 mV.

3.2. CDDO-Me delivered by PLGA NP boosted the tumor specific immune response elicited 
by LCP vaccine

The anti-tumor activity of mono- or combo therapy of LCP vaccine (Vac) and CDDO-Me 

were evaluated in the B16F10 melanoma syngeneic animal model. B16F10 bearing 

C57BL/6 mice received subcutaneous (s.c.) Vac at relatively late stage (13 days post tumor 

inoculation) when there was a strong suppressive tumor microenvironment [12]. CDDO-Me 

were simultaneously administered to the animals in an attempt to reverse the local immune 
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suppression and enhanced the vaccine efficacy. Vac alone had elicited only a partial tumor 

growth inhibition. The combination of Vac and CDDO-Me NP (5 mg/kg) achieved a 

temporary tumor growth arrest for the highly aggressive tumor, although CDDO-Me NP 

alone showed minimal, if any, anti-tumor activity (Figure 2A and 2B). To show if nano 

mediated delivery was important, CDDO-Me free was also administered (i.p.) in 

combination with Vac. It was less efficacious than the combination therapy when CDDO-

Me was delivered using PLGA NP (Figure S2).

TUNEL assay on the tumor tissues collected from the endpoint of the studies revealed a high 

percent of apoptotic cells (60%) in the tumor that received the combination therapy (Figure 

2C and 2D). In comparison, Vac or CDDO-Me NP alone only induced 30% or 15% 

apoptotic cell, respectively. In addition, Vac+CDDO-Me free (i.p.) also showed significant 

tumor cell apoptosis, but it was less than Vac+CDDO-Me NP administration (38.1 ± 3.8 %, 

p < 0.01) (Figure S3).

In addition, we further investigated the toxicity of Vac and CDDO-Me. No decrease in body 

weight was observed in any of the groups, indicating that there was no apparent toxicity 

associated with the treatments (Figure S4). The H&E staining results of the toxicological 

assay in the tumor bearing mice showed that major organs including heart, liver, spleen, 

lungs and kidneys did not display any significant changes in morphology for separate or 

combinatory treatment groups (Figure S5). The hepatic and renal function data indicated that 

the liver functional parameters aspartate aminotransferase (AST) level in the mouse was 

over the normal range due to the existence of the tumor (Table S1). Various treatments did 

not reduce or increase the liver toxicity in the mouse model.

3.3. PLGA NP efficiently delivered CDDO-Me to the tumor associated immune cells

As the intention of the study was to deliver CDDO-Me to the tumor as an immune-

modulating agent to remodel the tumor immunity, we proceeded to examine if the drug was 

accessible to the tumor associated immune cells. An explicit profiling of PLGA NP 

distribution was undoubtedly the prerequisite information to address this question.

The tissue biodistribution of PLGA NPs in the tumor-bearing mice was determined 

using 3H-labeled PLGA NP. Trace amount of 3H-labelled cholesteryl hexadecyl ether was 

added to the preparation of PLGA NP. This radioactive lipid serves as a stable marker for 

labeling NPs by hydrophobic interactions [32]. Twenty-four hours post i.v. injection, 3.2 ± 

0.9 % ID/g of the PLGA NP accumulated in the tumor tissue (Figure 3A). This correlates to 

the distribution of drug distribution assuming the drugs are evenly encapsulated in the NPs.

As the tumor growth inhibition study suggested, the anti-tumor effect of combo therapy 

might stem from the functional modulation of tumor infiltrating leukocytes by CDDO-Me 

delivered using PLGA NP. To validate the hypothesis, we explored the microscale 

distribution of PLGA NP in tumor tissue to confirm if the CDDO-Me loaded NP would 

affect that population. PLGA NP was labelled with DiI and single cell suspension from 

tumor was subject to flow cytometry analysis. The data demonstrated that around 60% of the 

cells in the tumor were accessible by PLGA NPs after single injection (Figure 3B). A further 

analysis indicated that around 67% CD11b+ cells took up PLGA NPs (Figure 3B). In mice, 
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the CD11b antigen is expressed on monocyte, macrophage and myeloid-derived suppressor 

cells (MDSCs). Out of these cells, the M2-phenotype macrophages and MDSCs express 

cytokines and molecules that suppress the local immunity and pose barrier to immune 

therapy [33–36]. To our surprise, the choice of PLGA NP as carrier led to efficient delivery 

of immune modulating agents to these critical immune suppressive cells in the tumor.

3.4. CDDO-Me delivered by PLGA-NP reduced suppressive immune cell populations, which 
subsequently enhanced tumor specific CTL in the tumor microenvironment

PLGA NP could efficiently deliver CDDO-Me to the immunosuppressive cells in the tumor. 

Therefore, the populations of immune regulatory cells including MDSCs and regulatory T 

(Treg) cells, as well as effector CD8+ cytotoxic T cells were examined after treatment. Treg 

cells are immune regulator which suppresses a broad spectrum of cell types including 

CD4+CD8+ T cells, macrophages, DCs and NK cells via distinct mechanisms [37–39]. 

MDSCs are a heterogeneous population of myeloid derived cells that have features such as 

myeloid origin, immature statues and the capacity to inhibit innate and adaptive immune 

response [40]. Both Treg cells and MDSCs contribute to the T cell exhaustion [41, 42] and 

are associated with poor prognosis in numerous tumor types [43]. Immunofluorescence and 

flow cytometry has been used to quantify the specific cellular population. The results 

(Figure 4) demonstrated an increase percent of MDSCs and Treg cells in the tumor 

microenvironment after vaccination. This correlated with a moderate increase of CTL in the 

tumor (Figure 4C and 4F) and suggested a resistance mechanism that counteracted the CTL 

response elicited by the vaccine. However, CDDO-Me treatment drastically reduced the 

MDSCs and Treg cells counts to the level even lower than the untreated mice. This removal 

of suppressive cells led to the increased CTL infiltration (Figure 4D, 4E and 4F), which 

could account for the remarkable tumor inhibition activity.

An in vivo CTL assay was performed to evaluate the activity of antigen specific CD8+ killer 

T cells in the context of CDDO-Me treatment. As our previous studies indicated, the CTL 

activity elicited by vaccine was independent of mice status [12], but the killer efficiency was 

profoundly affected by the immune microenvironment. Spleen is one of the major lymphoid 

tissues that harbor many MDSCs and Treg cells, therefore CTL killing efficiency could be 

affected by existence of these suppressor cells. Although a large portion of the injected 

PLGA accumulated into the spleen (Figure 3A), there were hardly any changes in the cell 

populations (Figure. S6). The discrepancy of suppressive cell elimination efficiency between 

tumor and spleen suggested that the CDDO-Me did not kill the immune cells in the tumor. 

Instead, it affected the recruitment and infiltration of tumor associated immune cells by 

reshaping the tumor microenvironment. Similar results were reported by Nagaraj et al [26], 

which showed that anti-inflammatory triterpenoid blocks immune suppressive function of 

MDSCs and improves immune response in cancer. The in vivo CTL results demonstrated the 

killing efficiency of antigen specific CD8+ cells was much higher in the presence of CDDO-

Me (Figure 5). Our study has shown the PLGA NP delivered CDDO-Me could reduce 

suppressor cells and enhance CD8+ T cell infiltration in the tumor. The CTL functional 

assay suggested another mechanism for combo therapy that CDDO-Me could indirectly 

boost CD8+ T cell killing efficiency by blocking the suppressor cell activity. After all, the 

augmentation of CTL activity was largely attributed to the high delivery efficiency to the 
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immune cells mediated by PLGA. It was also noteworthy that CDDO-Me treatment did not 

compromise the T cell activity (Figure 5), although it was generally considered an anti-

inflammatory agents.

3.5. CDDO-Me delivered to immune suppressive cells and altered the cytokine expression 
profiles

Tumor associated immune-suppressive cells secret cytokines and chemokines to shape the 

tumor immune microenvironment [44]. Increased CD8+ infiltration and enhanced CTL 

killing efficiency both indirectly reflected the pharmacological activities of CDDO-Me on 

the suppressive cells. Cytokines are the direct messengers that linked the suppressive cells 

and T cells. Therefore, we examined the expression levels of cytokines after treatment using 

RT-PCR analysis. Cytokines are generally divided into two categories based on their 

pathogenic roles in contribution to tumorigenesis. Pro-inflammatory mediators, which are 

usually secreted by classical M1 macrophages that promote Th1 immune responses and 

antagonize the suppressive immune cells, are termed M1 cytokines (IL2, IL12a and IFN-γ). 

In contrast, cytokines associated with suppressive M2 macrophages and MDSCs which 

promote Th2 immune responses and suppress acquired immune response are termed M2 

cytokines (CCL2, IL10, IL6, TNF-α and TGF-β). The results indicated that CDDO-Me 

delivered to macrophages and MDSCs significantly reduced M2 cytokines as well as M1 

cytokines in the tumor (Figure 6). Such immune modulation, although insufficient by itself 

to inhibit tumor growth, greatly facilitated the action of the Vac. Apparently, this was the 

most important mechanism by which CDDO-Me PLGA NP enhanced the Vac effect.

3.6. CDDO-Me remodeled the TME to augment vaccine activity

Secretion of cytokines by cancer cells and stromal cells in the tumor tissue alters the local 

TME to support drug resistance, immunologic escape, tumor recurrence, invasion and 

metastasis [45]. In the TME, tumor associated fibroblasts (TAF) aid the tumor in immune 

modulation by impeding antitumor T cell function. The effect of the Vac and CDDO-Me NP 

on TAF was investigated by staining for α-smooth muscle actin (SMA), a marker for TAF. 

The result showed that Vac or CDDO-Me NP could significantly reduce the amount of TAF 

(Figure 7), which is in consistent with the report that CDDO-Me can inhibit TGF-β induced 

myofibroblast differentiation in vitro [46]. While CDDO-Me NP and Vac alone groups 

partially attenuated the amount of α-SMA-positive cells, the combinatory treatment of Vac

+CDDO-Me NP further reduced the fibroblast population in the tumor tissue to 20.0 ± 7.0 % 

(p < 0.01) (Figure 7). Thus, the combinatory treatment of Vac+CDDO-Me NP not only 

affected tumor cells but also depleted TAF. Similarly, the combined treatment also brought 

about a significant decrease in the stroma content of the tumor tissue. We used Masson 

Trichrome assay to study the collagen content and the morphology in the treated tumors 

(Figure 8). B16F10 melanoma does not develop extensive stroma structure compared to 

other solid tumors [47, 48]. Stroma revealed by the collagen staining showed thin and 

elongated fibrous structures in the untreated tumor (blue staining indicated by arrows in 

Figure 8). CDDO-Me NP treatment diminished the stroma to only about 19.2±6.2% of the 

untreated control (p < 0.01), demonstrating a major effect of the drug on the TME. The 

collagen content further decreased to only about 4.5±1.1% (p < 0.01) when combined with 

Vac. The hypoxic tumor environment results in an abnormal blood vessel network, which 
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allows metastatic tumor cells to escape and strongly prevents infiltration of anti-cancer 

immunity and drug penetration to the tumor mass [49]. Regulation of the abnormal tumor 

vessel phenotype leading to normalized vasculature can restore a proper immune response in 

the TME [50]. Thus, we also examined the vessel content and distribution in the tumor by 

immunofluorescence for CD31, a vessel marker (Figure 9). Unlike the stroma, vessels were 

abundant and randomly distributed in the untreated tumor. Either Vac or CDDO-Me NP 

alone significantly reduced the vessel content to 33.3 ± 7.7 % and 30.5 ± 7.1 % of the 

untreated control, respectively (p < 0.01). The combination treatment further decreased the 

vessel content to 14.7 ± 3.8 % of the control. Thus, we conclude that CDDO-Me NP had a 

strong down-regulation effect on the TME which is likely to significantly modulate the 

immunosuppression in the tumor.

3.7. Augmentation of the therapeutic efficacy of the Vac and CDDO-Me NP through the Fas 
signaling pathway

So far, we have investigated the pharmacological effects of CDDO-Me NP delivered to the 

immune suppressive cells, a minor but critical population in the tumor. We would also like 

to study the CDDO-Me NP effects on tumor cell populations, as the majority of the cells 

were cancer cells according to the flow cytometry data (Figure 3B). In addition to the 

classical perforin/granzyme pathway for CTL activity, Fas mediated lytic pathway also 

contributes to the killing of the target cells [51]. Fas is a membrane receptor which 

transduces signal that leads to cell apoptosis. It was reported that low dose cytotoxic drugs 

increased Fas expression on tumor cells, thereby sensitizing the cancer cell to CTL activity 

[52]. Similar phenomenon was confirmed in CDDO-Me treated B16F10 cells in vitro (data 

not shown). The western blot analysis of the tumor lysate demonstrated that CDDO-Me NP 

treatment slightly upregulated Fas expression, which led to downstream cleavage of poly 

ADP ribose polymerase (PARP), an apoptotic marker (Figure 10). On the other hand, Fas 

expression was also elevated in Vac-treated mice which was probably induced by IFN-γ and 

TNF-α (Figure 6) that were associated with acquired CTL response [53]. Although both 

single treatments slightly sensitized the cells to CTL activity by the expression levels of Fas, 

the combination treatment surprisingly showed a synergistic effect. The cause of this 

synergism, however, requires further investigation. In the combination treatment, CDDO-

Me NP showed a general anti-inflammatory effect, reducing the levels of both M1 and M2 

macrophage-related cytokines including IFN-γ and TNF-α (Figure 6). Considering the fact 

that CDDO-Me NP only slightly increased the Fas expression and the fact that suppressed 

IFN-γ and TNF-α expression could not induced Fas (Figure 6), other mechanisms might be 

also involved in the chemoimmunotherapy which boosted the efficacy of each other. After 

all, the combo therapy engineered the tumor immunity, enhanced the acquired CTL response 

and sensitized the tumor cells to CTL-mediated lysis.

4. Conclusion

We have demonstrated that an immune-modulating agent CDDO-Me can be efficiently 

delivered to the tumor-associated suppressive immune cells in advanced melanoma using 

PLGA NP. Approximately 67% of CD11b+ cells, mostly macrophages and MDSCs, were 

accessible by PLGA NP after single injection. The delivery of CDDO-Me NP to those 
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suppressive cells efficiently altered the cytokine expression profiles. This could 

subsequently reduce the recruitment of immunosuppressive cells, changed the stromal 

structure and created a favorable environment for CTL immuno-response. Overall, this study 

revealed a remarkable feature of PLGA NP as delivery platform for immune cells in the 

tumor microenvironment, which rendered it a powerful tool for re-engineering tumor 

immune microenvironment for boosting immune therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Physicochemical characterization of CDDO-Me NP and p-Trp2 LCP NP. TEM images of 

CDDO-Me NP (A) after negative staining and p-Trp2 LCP NP (C). DLS size distribution of 

CDDO-Me NP (B) and p-Trp2 LCP NP (D).
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Figure 2. 
Antitumor activity and apoptosis assay of Vac, CDDO-Me NP and Vac+CDDO-Me NP on 

B16F10 tumor bearing mice. C57BL/6 mice were inoculated with 2×105 B16F10 cells on 

day 0. Vac was injected on day 13 at a dose of 0.3 mg/kg; CDDO-Me NP was administered 

on days 13, 15 and 17 at a dose of 5 mg/kg. Tumor growth was measured every day for 18 

days. Mice were sacrificed on day 18 and tumors were harvested. Tumor growth (A) and 

tumor burden (B) were measured. Clusters of TUNEL-positive nuclei (green fluorescence) 

were observed in the tumor treated with Vac. Dispersed TUNEL-positive nuclei were 
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observed in CDDO-Me NP. Extensive TUNEL-positive nuclei were observed in the Vac

+CDDO-Me NP group (C). Three randomly selected microscopic fields were quantitatively 

analyzed using Image J. The results are displayed as mean ± SEM (error bars) (D). 

Statistical analyses were done by comparing with the untreated unless specified with 

markings.*p < 0.05, **p < 0.01, ***p < 0.001, n = 5.
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Figure 3. 
3H-labeled PLGA NP biodistribution showed a high accumulation in B16F10 tumor tissue 

in tumor bearing mice in 24 h (A). Subcellular uptake of DiI-labeled PLGA NP in tumor 

cells including the CD11b+ immunocyte at 24 h post injection (B).
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Figure 4. 
Tumor infiltrates immune cells after treatment. C57BL/6 mice were inoculated with 2×105 

B16F10 cells on day 0. Vac was injected on day 13 at a dose of 0.3 mg/kg; CDDO-Me NP 

was administered on days 13, 15 and 17 at a dose of 5 mg/kg. Mice were sacrificed on day 

18 and tumors were harvested. Tumor tissues were assayed for CD8+ T cells, Treg cells and 

MDSC cells with immunofluorescence staining (A, B, C) or flow cytometry (D, E, F) 

analysis. The results are displayed as mean ± SEM (error bars). Statistical analyses were 

done by comparing to the untreated unless otherwise specified with markings.*p < 0.05, **p 

< 0.01, ***p < 0.001, n = 5.
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Figure 5. 
In vivo CTL response after vaccination under various conditions. C57BL/6 mice were 

subcutaneously injected with Vac on day 1, and injected with CDDO-Me NP on days 1, 3 

and 5. Splenocytes from naïve mice were pulsed with Ova or Trp2 peptide and stained with 

low (Ova) or high (Trp2) concentrations of CFSE, respectively. The cells were then mixed 

and injected into the vaccinated mice. After 18 h, splenocytes from the vaccinated mice 

were analyzed by flow cytometry and enumerated according to a published equation. 

Representative graph from each group is shown. *p < 0.05, **p < 0.01, ***p < 0.001, n = 5.
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Figure 6. 
Tumor local cytokine levels after vaccination. C57BL/6 mice were inoculated with 2×105 

B16F10 cells on day 0. The Vac was given on day 13 and CDDO-Me NP were given on 

days 13, 15 and 17. Mice were sacrificed on day 18, and tumors were collected for cytokine 

detection using RT-PCR. The results are displayed as mean ± SEM (error bars). Statistical 

analyses were done by comparison with the untreated. *p < 0.05, **p < 0.01, *** p < 0.001, 

n = 5.
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Figure 7. 
TAF in B16F10 tumors were stained with α-SMA antibody (red), the percentage denotes the 

average percentage of α-SMA+ fibroblasts (red). Three randomly selected microscopic 

fields were quantitatively analyzed using Image J. The results are displayed as mean ± SEM 

(error bars). Statistical analyses were done by comparing to the untreated unless specified 

with markings.*p < 0.05, **p < 0.01, n = 3.
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Figure 8. 
Tumor sections were stained with Masson Trichrome. The blue color represents collagen 

fibers (red arrows). Three randomly selected microscopic fields were quantitatively analyzed 

using Image J. The results are displayed as mean ± SEM (error bars). Statistical analyses 

were done by comparing to the untreated unless specified with markings. **p < 0.01, ***p < 

0.001, n = 3.
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Figure 9. 
Vessels in B16F10 tumor were stained with CD31 antibody (red), the percentage denotes the 

average percentage of CD31+ vessels. Three randomly selected microscopic fields were 

quantitatively analyzed using Image J. The results are displayed as mean ± SEM (error 

bars). Statistical analyses were done by comparing to the untreated unless specified with 

markings.*p < 0.05, **p < 0.01, ***p < 0.001, n = 3.
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Figure 10. 
Expression levels of Fas and PARP in tumor samples after treatments. C57BL/6 mice were 

inoculated with 2×105 B16F10 cells on day 0. Vac was injected on day 13 at a dose of 0.3 

mg/kg; CDDO-Me NP was administered on days 13, 15 and 17 at a dose of 5 mg/kg. Mice 

were sacrificed on day 18 and tumors were collected for western blot analysis. The results 

are displayed as mean ± SEM (error bars). Statistical analyses were done by comparing with 

the untreated unless specified with markings.*p < 0.05, **p < 0.01, n = 3.
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Scheme 1. 
Schematic illustration of PLGA-based CDDO-Me NP and LCP-based p-Trp2 vaccine NP 

inject to the mouse.
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TABLE 1

Primer Applied Biosystems/ref

Mouse TGF-β1 Mm01178820_m1

Mouse IL6 Mm00446190_m1

Mouse TNF-α Mm00443260_g1

Mouse CCL2 Mm00441242_m1

Mouse IFN-γ Mm01 168134_m1

Mouse IL10 Mm00439614_m1

Mouse IL12a Mm00434165_m1

Mouse IL2 Mm00434256_m1

Mouse GAPDH Mm99999915_g1
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