

# **HHS Public Access**

Author manuscript Mayo Clin Proc. Author manuscript; available in PMC 2016 April 01.

Published in final edited form as:

Mayo Clin Proc. 2015 April; 90(4): 469-480. doi:10.1016/j.mayocp.2014.12.026.

# Digital Health Interventions for the Prevention of Cardiovascular Disease: A Systematic Review and Meta-Analysis

R. Jay Widmer, MD, PhD<sup>1</sup>, Nerissa M. Collins, MD<sup>2</sup>, C. Scott Collins, MD<sup>2</sup>, Colin P. West, MD, PhD<sup>2,3</sup>, Lilach O. Lerman, MD, PhD<sup>4</sup>, and Amir Lerman, MD<sup>1</sup>

<sup>1</sup>Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN

<sup>2</sup>Division of General Internal Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN

<sup>3</sup>Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN

<sup>4</sup>Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN

# Abstract

**Objective**—To assess the potential benefit of digital health interventions (DHI) on cardiovascular disease outcomes (CVD events, all-cause mortality, hospitalizations) and risk factors compared to non-DHI interventions.

**Patients and Methods**—We conducted a systematic search of PubMed, MEDLINE, EMBASE, Web of Science, OVID, CINHAL, ERIC, PsychInfo, Cochrane, and CENTRAL from January 1, 1990 and January 21, 2014. Included studies examined any element of DHI (telemedicine, webbased strategies, email, mobile phones, mobile applications, text messaging, and monitoring sensors) and CVD outcomes or risk factors. Two reviewers independently evaluated study quality utilizing a modified version of the Cochrane Collaboration risk assessment tool. Authors extracted CVD outcomes and risk factors for CVD such as weight, BMI, blood pressure, and lipids from 51 full-text articles that met validity and inclusion criteria.

**Results**—DHI significantly reduced CVD outcomes (RR=0.61, (95% CI, 0.45–0.83), P=.002;  $I^2=22\%$ ). Concomitant reductions in weight (-3.35 lbs, (95% CI, -6.08 lbs, -1.01 lbs); P=.006;  $I^2=96\%$ ) and BMI (-0.59 kg/m<sup>2</sup>, (95% CI, -1.15 kg/m<sup>2</sup>, -0.03 kg/m<sup>2</sup>); P=.04;  $I^2=94\%$ ) but not blood pressure (+4.95 mmHg, (95% CI, -4.5 mmHg, 14.4 mmHg); P=.30;  $I^2=100\%$ ) were found in these DHI trials compared to usual care. Framingham 10 year risk percentages were also significantly improved (-1.24%; 95% CI -1.73%, -0.76%; n=6; P<0.001;  $I^2=94\%$ ). Results were

Correspondence: Amir Lerman, MD, Division of Cardiovascular Diseases, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA, Tel: +1-507-255-4152, Fax: +1-507-255-2550, lerman.amir@mayo.edu.

All authors contributed to the work, and have no conflicts of interest to disclose.

**Publisher's Disclaimer:** This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

limited by heterogeneity not fully explained by study population (primary or secondary prevention) or DHI modality.

**Conclusions**—Overall, these aggregations of data provide evidence that DHI can reduce CVD outcomes and have a positive impact on risk factors for CVD.

#### Keywords

cardiovascular disease; outcomes; digital health; mobile health; prevention; weight loss; MACE

# Introduction

Cardiovascular disease (CVD) is the primary cause for morbidity and mortality, and is associated with markedly rising health care costs in the United States <sup>1</sup>. Approximately one in three deaths can be attributed to CVD <sup>1,2</sup>, and over 90% of CVD morbidity and mortality to preventable risk factors <sup>3</sup>. According to 2012 statistics, poor diet, smoking, and lack of physical activity continue to account for an overwhelming majority of CVD and death <sup>4</sup> with the cost of CVD to the US approaching \$200 billion per year <sup>1</sup>. What is more, the average hospitalization for acute coronary syndrome (ACS) is estimated to cost roughly \$20,000 with repeat events costing up to two and three times the original amount <sup>5</sup>. Clearly, better interventions to improve CVD prevention, both primary and secondary, are needed.

Internet and smart phone use has grown exponentially in the past decade, opening up the possibility that these increasingly prevalent technological tools could improve health. Digital health interventions (DHI), including such modalities as telemedicine, web-based strategies, email, mobile phones, mobile applications, text messaging, and monitoring sensors, are the most recent iteration of an effort to shift health care burden outside of the walls of medical institutions, and improve individualized care through positive behavior change theory <sup>6</sup>. Although prior studies have suggested benefits of DHI in focused areas such as smoking cessation <sup>7</sup>, behavior patterns <sup>8</sup>, physical activity <sup>9</sup>, HbA1c <sup>10</sup>, blood pressure <sup>11</sup>, and weight loss <sup>12</sup>, evidence concerning the benefit of DHI on CVD risk factors, let alone CVD outcomes such as CVD events, hospitalizations, and all-cause mortality, is lacking. With nearly 50,000 healthcare related apps now available for download <sup>13</sup>, and numerous internet-based DHI solutions available, the benefit of DHI on CVD prevention and outcomes, both primary and secondary, merits reexamination.

The purpose of this systematic review and meta-analysis was to inclusively review randomized controlled trials (RCTs) and cohort studies incorporating DHI for the prevention of CVD outcomes (CVD events including myocardial infarction, stroke, revascularization, hospitalizations, and all-cause mortality) and modification of risk factors for CVD such as weight, BMI, blood pressure, cholesterol, glucose, and Framingham Risk Scores (FRS). We aim to establish the potential benefit of DHI on both primary and secondary CVD prevention, and identify future needs in DHI and CVD research.

#### Methods

#### **Data Sources and Searches**

This systematic review was conducted in accordance with PRISMA guidelines <sup>14</sup>. We included all RCTs and observational/cohort studies published between January 1, 1990 and January 21, 2014 that examined any element of DHI (telemedicine, web-based strategies, email, mobile phones, mobile applications, text messaging, and monitoring sensors) and impact on CVD. We intentionally and broadly included any studies of adult patients seeking CVD prevention to present a comprehensive overview of DHI studies analyzing CVD outcomes (CVD events, hospitalizations, or all-cause mortality) and modification of risk factors for CVD such as weight, BMI, blood pressure, cholesterol, glucose, and FRS regardless of type of healthcare provider or healthcare setting. Control interventions included usual care following standard guidelines, and could involve non-DHI intervention (such as paper instructions or telephone calls) or no active intervention beyond usual care. We excluded studies in which the intervention lasted less than a month in order to assess long-term impact and sustainability, studies that did not report any CVD risk factors, redundant studies which were repeated in the literature without new data presented, protocol manuscripts, reviews, studies only including usability or adherence data, pediatric studies, and studies where the intervention involved the healthcare provider, rather than the patient.

Our search strategy was performed with the assistance of a medical librarian, and included the databases PubMed, MEDLINE, EMBASE, Web of Science, OVID, CINAHL, ERIC, PsychInfo, Cochrane, and CENTRAL over the specified dates. We included the search terms mobile health, mobile, mhealth, digital health, eHealth, internet, telemedicine, web, smartphone, cardiovascular, cardiac, prevention, outcomes, mortality, morbidity, event, Framingham, blood pressure, weight, BMI, waist circumference, glucose, lipids, cholesterol, smoking, tobacco, quality of life, emergency department, visits, hospitalizations, rehospitalizations, office visits, phone calls, cost, cost of care, and ROI. This strategy identified 574 relevant abstracts with an additional 14 references identified through bibliography searches and personal contacts (Figure 1). Most articles were in English, and those in Spanish, Polish, and German were translated for review.

#### Study Selection

Two reviewers (RJW and NMC) assessed each of the identified abstracts. Full text versions of potentially eligible studies, categorized for inclusion by either reviewer, were requested (n=73). The two reviewers worked independently to evaluate the full text reports for study inclusion and disagreements were reconciled by consensus. Agreement on study inclusion was high, with kappa = 0.92.

#### **Data Extraction and Quality Assessment**

Extracted data included study participant demographics (age, gender, prior internet use, education level, socioeconomic status, race, comorbidities, and baseline markers of CVD), the DHI they received (frequency, type, and duration), and the control intervention. DHIs were identified as involving telemedicine, web-based strategies, email, mobile phones, mobile applications, SMS text messaging, and monitoring sensors. Control comparisons

were heterogeneous and could include a non-DHI intervention or usual care. CVD outcomes included CVD events including myocardial infarction, stroke, or revascularization, hospitalizations, and all-cause mortality. Risk factors for CVD included weight, BMI, blood pressure, cholesterol, (total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglycerides), glucose, and FRS.

Risk of bias and methodological quality was assessed independently by two authors (RJW and CSC) using a modified version of the Cochrane Collaboration risk assessment tool <sup>15</sup> (Supplementary Figure 1). To evaluate the quality of non-randomized studies, we assessed blinding of the outcome assessors to arm assignment in relation to the outcomes of CVD outcomes and CVD surrogates, comparability of outcome assessment, and completeness of follow-up. The latter criteria followed a revised Newscastle–Ottawa quality assessment tool for observational studies<sup>16</sup> (Supplementary Figure 1) which emphasized proper definition of the CVD pertinent to the study, legitimate DHI intervention, and reasonable follow up. One study (Nolan, 2012) was considered an observational study as the randomization scheme was compromised due to unintentional cross-over of the participants forcing the authors to report the data in separate, non-randomized cohorts. Finally, a study by Wister et al <sup>17</sup> allowed separation of studies for primary and secondary prevention.

#### **Data Synthesis and Analysis**

When possible, we generated meta-analytic estimates of treatment effect using pooled relative risks and random-effects models. Analyses were performed using RevMan v.5.2 (The Cochrane Collaboration; Oxford, UK). We measured heterogeneity for each outcome across studies using the I<sup>2</sup> test <sup>18</sup>. When standard deviations were missing for a study, imputation of the mean standard deviation of the group for that particular variable was utilized in no more than two values per variable. Imputation of more than two standard deviations was not required for any analysis.

To explore causes of inconsistency in study findings and subgroup-treatment interactions, we planned subgroup analyses comparing results by patient population (primary prevention versus secondary prevention) and DHI subtype (telemedicine, web-based, email reminders, SMS texting, mobile application, and data monitoring). Random effects methods utilizing Mantel-Haenszel methods for combining results across studies were undertaken as part of the RevMan 5.2 software package <sup>18</sup>. Sensitivity analyses controlling for workplace versus healthcare delivered DHI were performed as were sensitivity analyses removing the two observational, non-randomized studies.

We contacted all authors with a prepopulated form including data for verification and missing data for their completion. Of the original 49 authors contacted, 28 returned correspondence with either verification of reported data, or the addition of missing or incomplete data. There was no impact of the funding source on the design, execution, or analysis of the study.

# Results

Fifty-one studies met criteria for full-text review and were included in the systematic review with nine studies providing analyzable CVD outcome data. A summary table of studies reporting CVD outcomes is presented in Table 1. Risk of bias among studies reporting CVD outcomes was predominantly low apart from a consistent lack of participant blinding (Table 2) with a funnel plot included (Supplementary Figure 2).

Thirty-nine studies focused on primary CVD prevention (Supplementary Table 1A) and 13 studies primarily involved secondary CVD prevention (Supplementary Table 1B) (one study fit into both categories separately). The total number of patients included was 23,962, with 13,618 assigned to DHI and 10,344 to control groups. Mean age (SD) for all of the participants in the studies was 54.0 (9.4) years with a majority of the participants being Caucasian and 54% male. Five studies evaluated a solely female population, and two focused only on male participants. Socioeconomic status, geographical information, and prior internet usage were not universally reported. Additionally, the timeframe of a majority of studies was between 6 and 12 months, and most studies were published within the past decade. RCTs were blinded with specific mention of study personnel blinded to allocation and grouping during the study and to data analysis, with the exception of three studies <sup>19–21</sup>.

CVD outcomes including myocardial infarction, stroke, revascularization, hospitalizations, and all-cause mortality were abstracted from 9 RCTs (2 primary prevention studies, 2 involving patients with heart failure (HF), and 5 secondary prevention studies). The 1267 participants in the DHI arms had 104 events, and the 996 participants in the usual care arms had 162 combined events. Overall, DHI significantly reduced CVD outcomes (RR=0.61, (95% CI, 0.46–0.80); P<0.001; I<sup>2</sup>=22%; Figure 2). Subgroup analyses showed no interaction between the primary prevention (no prior CVD diagnosis), secondary prevention (known prior CVD diagnosis), and HF groups (P=.11). When the outcome "hospitalizations" was removed from the combined endpoint there remained a 52% reduction in CVD events/deaths that was not statistically significant (RR=0.48, (95% CI, 0.21–1.11); p=0.09). In addition, DHI was associated with a significant reduction in Framingham 10 year risk percentages in the 6 studies reporting FRS data (-1.24%; 95% CI -1.73%, -0.76%; P<0.001; I<sup>2</sup>=94%).

#### The effect of DHI in Primary Prevention Studies

Separate subgroup analyses of primary prevention studies (n=2) were unable to provide statistical evidence of a positive effect on CVD outcomes (RR=1.21, (95% CI, 0.58–2.54); P=.61; I<sup>2</sup>=15%; Figure 2). Eleven primary prevention studies showed a significant reduction in weight (-3.35 lbs (95% CI –5.22 lbs, -1.48 lbs), P<0.001, I<sup>2</sup>=96%; Figure 3a), but not BMI (n=15) (mean difference =  $-0.11 \text{ kg/m}^2$ , (95% CI,  $-0.30 \text{ kg/m}^2$ , 0.08 kg/m<sup>2</sup>); P=.26; I<sup>2</sup>=98%; Figure 3b). When the three workplace intervention studies were removed from the pooled analysis, there was a significant reduction in BMI in primary prevention populations (n=12), (mean difference =  $-0.29 \text{ kg/m}^2$ , (95% CI,  $-0.5 \text{ kg/m}^2$ ,  $-0.09 \text{ kg/m}^2$ ); P=.006; I<sup>2</sup>=98%). We found a significant reduction in systolic blood pressure (SBP) among primary prevention studies (n=23), (mean difference = -2.12 mmHg, (95% CI, -4.15 mmHg, -0.09 mmHg); P=.04; I<sup>2</sup>=100%; Supplementary Figure 3) which failed to maintain a statistically

significant reduction when two observational studies were removed in sensitivity analysis (mean difference = -1.31 mmHg, (95% CI, -3.43 mmHg, 0.80 mmHg); P=.22; I<sup>2</sup>=100%).

There was insufficient evidence to show a positive impact on triglyceride levels (n=7) (mean difference = -9.06 mg/dL, (95% CI, -22.7 mg/dL, 4.6 mg/dL); P=.19; I<sup>2</sup>=99%); however, we found significant reductions in total cholesterol (n=13) (mean difference = -5.39 mg/dL, (95% CI, -9.80 mg/dL, -0.99 mg/dL); P=.02; I<sup>2</sup>=98%; Supplementary Figure 4a), LDL cholesterol (n=8) (mean difference = -4.96 mg/dL, (95% CI, -8.54 mg/dL, -1.38 mg/dL); P=.007; I<sup>2</sup>=95%; Supplementary Figure 4b), and glucose (n=6) (mean difference = -1.38 mg/dL, (95% CI, -2.13 mg/dL, -0.63 mg/dL); P<0.001; I<sup>2</sup>=81%) in primary prevention populations.

#### The effect of DHI in Secondary Prevention Studies

Subgroup analyses of secondary prevention studies showed significant impact of DHI on CVD outcomes (RR=0.60, (95% CI, 0.43–0.83); P=.002; I<sup>2</sup>=0%; Figure 2). Pooled data from four secondary prevention trials demonstrated no improvement in weight (–0.93 lbs (95% CI –7.74 lbs, 5.88 lbs), P=.79, I<sup>2</sup>=97%; Figure 3a), but did show significant reductions in BMI (n=6) (mean difference =  $-0.31 \text{ kg/m}^2$ , (95% CI,  $-0.60 \text{ kg/m}^2$ ,  $-0.03 \text{ kg/m}^2$ ); P=.03; I<sup>2</sup>=67%; Figure 3b). We found no improvement in SBP in secondary prevention DHI trials (mean difference = 1.98 mmHg, (95% CI, -1.05 mmHg, 5.01 mmHg); P=.20; I<sup>2</sup>=94%; Supplementary Figure 3).

Similarly, there was no positive impact on triglyceride levels (n=5) (mean difference = -17.19 mg/dL, (95% CI, -49.45 mg/dL, 15.07 mg/dL); P=.30; I<sup>2</sup>=99%), total cholesterol (n=6) (mean difference = -1.80 mg/dL, (95% CI, -6.23 mg/dL, 2.64 mg/dL); P=.43; I<sup>2</sup>=94%; Supplementary Figure 4a), LDL cholesterol (n=5) (mean difference = -10.43 mg/dL, (95% CI, -21.69 mg/dL, 0.83 mg/dL); P=.07; I<sup>2</sup>=100%; Supplementary Figure 4b), or glucose (n=4) (mean difference = 0.45 mg/dL, (95% CI, -9.68 mg/dL, 10.58 mg/dL); P=. 93; I<sup>2</sup>=100%) in secondary prevention populations.

#### The impact of various DHI modalities on risk factors for CVD

When we evaluated individual DHI modalities and their effects on risk factors for CVD, we found significant reductions in weight in studies which incorporated three modalities including web-based (-3.18 lbs (95%CI -5.61 lbs, -0.75 lbs), P=.01; I<sup>2</sup>=98%; Figure 4A), telemedicine (-2.30 lbs (95%CI -2.47 lbs, -2.14 lbs), P<0.001; I<sup>2</sup>=0%; Figure 4B), and SMS text (-3.85 lbs (95%CI -5.54 lbs, -2.17 lbs), P<0.001; I<sup>2</sup>=83%; Figure 4C) with email interventions showing no significant reduction in weight (0.74 lbs (95%CI -1.19 lbs, 2.68 lbs), P=.45; I<sup>2</sup>=0%; Figure 4D). Web-based modalities also had a beneficial impact on SBP (-2.63 mmHg, 95% CI -5.04 mmHg, -0.23 mmHg; p=0.03 I<sup>2</sup>=100%). Studies that incorporated data monitoring (n=5) reported no weight outcomes, and showed a significant benefit only in reducing diastolic blood pressure (-3.08 mmHg, 95% CI -4.8 mmHg, -1.36 mmHg; P<0.001; I<sup>2</sup>=0%).

# Discussion

This systematic review and meta-analysis demonstrates that digital health has a beneficial effect on CVD risk factors and outcomes. Applying an inclusive definition of DHI broadly applied to studies ranging from two to 36 months, we found a CVD morbidity and all-cause mortality benefit for secondary CVD prevention and heart failure groups, with primary prevention populations showing benefit with regard to weight loss, BMI, SBP, total cholesterol, and LDL cholesterol. However, there was no clear benefit of DHI in primary prevention populations for CVD outcomes, although a reduction in Framingham risk scores was seen in our pooled analyses. In subgroup analysis by DHI subtype, there was particular benefit seen for web-based, telemedicine, and SMS texting DHI approaches, with insufficient data to support a benefit for email DHI.

As noted previously, prior literature on DHI and CVD-related outcomes has been limited. A recent systematic review of PubMed for mobile health and secondary CVD prevention over the prior ten years identified three studies without any quantitative results <sup>22</sup>. Other systematic reviews have shown the efficacy of DHI on certain specific risk factors for CVD. Whittaker et al <sup>7</sup> showed improvements in smoking cessation across a wide variety of studies. Furthermore, additional work has shown DHI to positively affect behavior patterns <sup>8</sup> and physical activity <sup>9</sup>. Liang et al <sup>10</sup> showed reductions of nearly 0.5% in HbA1c in 22 studies evaluating mobile phone program or text messaging tactics on participants with diabetes. Uhlig et al showed a favorable change in blood pressure at six months in 26 separate meta-analysis of 36 weight loss studies found that 71% of the studies reported some form of weight loss, although participant and intervention heterogeneity precluded a summary estimate of weight loss achieved through DHI <sup>12</sup>.

In this systematic review and meta-analysis, we note a nearly 40% relative risk reduction in CVD outcomes with DHI, with particular impact on secondary CVD prevention and in patients with heart failure. This level of risk reduction surpasses other prevalent, guideline-based preventative measures such as statins <sup>23</sup>, aspirin <sup>24</sup>, or blood pressure reduction with beta-blockade <sup>25</sup>. Furthermore, the absolute risk reduction in events was 6.5% in our pooled analysis and 7.5% in secondary prevention populations. This translates into a number needed to treat of 14 and 16 patients, respectively, also surpassing reported absolute benefits of other guideline-based measures. As DHI use does not directly reduce CVD risk, these observed benefits likely reflect increased adherence to evidence-based preventative therapies such as statins, aspirin, or beta-blockers.

We found significant improvements in the risk factors of weight loss, BMI, blood pressure, and LDL-cholesterol in patients seeking primary prevention of CVD. These improvements in risk factors did not translate into an improvement in CVD outcomes in primary prevention studies, at least partly owing to lower risk populations and lack of long-term follow up. Conversely, we found significant reductions in these events in secondary prevention studies despite a lack of consistent reductions in CVD risk factors in secondary prevention studies. This heterogeneity in results is not readily explained by existing studies,

and should prompt future DHI research focusing on furthering our understanding of the variables determining success of specific DHI in specific populations.

#### Limitations

In an attempt to be inclusive in assessing the impact of DHI on CVD, we collected data utilizing multiple DHI modalities applied in multiple populations. Therefore, as noted previously heterogeneity in study results was present secondary to variation in study populations, DHI types, comparator groups, and lengths of follow up. Heterogeneity in these analyses was not explained by DHI modality or study design. Despite this heterogeneity, the data demonstrate an overall benefit of DHI for CVD prevention. However, the observed level of heterogeneity precludes definitive conclusions regarding specific DHIs that should be clinically applied to CVD prevention at the present time.

In addition, this analysis was unable to assess behavior change and motivational techniques, either of which could impact the outcomes of trials or be a contributor to DHI efficacy. Research attempting to better assess these issues will be vital in future work. Despite these limitations, the existing studies confirm that technological advances such as DHI can have a positive impact on preventative cardiovascular medicine.

#### Conclusion

The data synthesized and analyzed in this systematic review show a net benefit of DHI on overall CVD outcomes (CVD events, hospitalizations, and all-cause mortality) compared to usual care. These gains are largely driven by improvements in CVD outcomes among higher risk populations such as patients with HF or those targeting secondary CVD prevention. DHI were also associated with improvement in risk factors for CVD in primary studies, suggesting the potential for positive impact of DHI in a wide variety of participants and settings. Further research is needed to determine the most effective DHI modalities and to better understand the determinants of their success in specific cardiovascular risk populations.

# **Supplementary Material**

Refer to Web version on PubMed Central for supplementary material.

### Acknowledgments

Funding for this project was provided by National Institute of Health (NIH Grants HL-92954 and AG-31750 and the Mayo Foundation

This work was supported by funding from the BIRD foundation as well as the National Institute of Health (NIH Grants HL-92954 and AG-31750) and the Mayo Foundation. There was no direct role of the funding agencies in this study or manuscript.

The authors would like to thank the CTSA program of Mayo Clinic including the faculty and staff of CTSC 5740 (Drs. Murad, and Montori as well as Ms. Welsh) for their guidance. We would also like to show great appreciation toward the 28 authors who returned contact in an effort to improve the validity of our data extraction and assessment.

# Abbreviations

| ACS | Acute Coronary Syndrome     |
|-----|-----------------------------|
| BMI | Body Mass Index             |
| CVD | Cardiovascular Disease      |
| DHI | Digital Health Intervention |
| FRS | Framingham Risk Score       |
| HF  | Heart Failure               |
| RCT | Randomized Controlled Trial |
| ROI | Return on Investment        |
|     |                             |

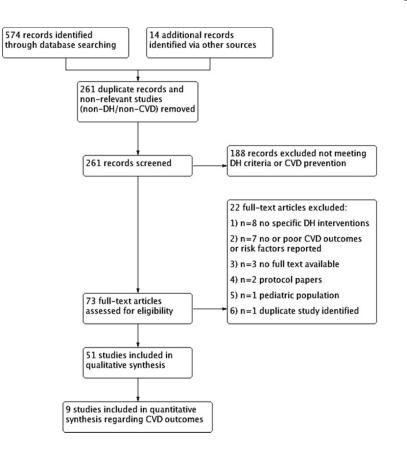
# References

- Roger V, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation. 2012; 125:188– 197. [PubMed: 22215894]
- 2. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O'Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y. American Heart Association Statistics Committee and Stroke Statistics. Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee, Circulation. Circulation. 2008; 117:e25–e146. [PubMed: 18086926]
- Yusef S, Hawkins S, Ounpus S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L. Effects of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case controlled study. Lancet. 2004; 342:937– 952.
- 4. Go A, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013; 127:143–152. [PubMed: 23283859]
- 5. Pfuntner, A.; Wier, LM.; Steiner, C. HCUP Statistical Brief #146. Agency for Healthcare Research and Quality; Rockville, MD: Jan. 2013 Costs for Hospital Stays in the United States, 2010.
- Pagoto, SaBGG. How behavioral science can advance digital health. Transl Behav Med. 2013; 3:271–276. [PubMed: 24073178]
- 7. Whittaker R, McRobbie H, Bullen C, Borland R, Rodgers A, Gu Y. Mobile phone-based interventions for smoking cessation. Cochrane Database Syst Rev. 2012:11.
- Webb T, Joseph J, Yardley L, Michie S. Using the internet to promote health behavior change: a systematic review and meta-analysis of the impact of theoretical basis, use of behavior change techniques, and mode of delivery on efficacy. J Med Internet Res. 2010; 12:e4. [PubMed: 20164043]

- Fanning J, Mullen SP, McAuley E. Increasing physical activity with mobile devices: a metaanalysis. J Med Internet Res. 2012; 14:e161. [PubMed: 23171838]
- Liang X, Wang Q, Yang X, Cao J, Chen J, Mo X, Huang J, Wang L, Gu D. Effect of mobile phone intervention for diabetes on glycaemic control: a meta-analysis. Diabet Med. 2011; 28:455–463. [PubMed: 21392066]
- Uhlig K, Patel K, Ip S, Kitsios GD, Balk EM. Self-Measured Blood Pressure Monitoring in the Management of Hypertension: A Systematic Review and Meta-analysis. Ann Intern Med. 2013; 159:185–194. [PubMed: 23922064]
- 12. Stephens J, Allen J. Mobile phone interventions to increase physical activity and reduce weight: a systematic review. J Cardiovasc Nurs. 2013; 28:320–329. [PubMed: 22635061]
- Gauntlet, C.; Aitken, M. Patient Apps for Improved Healthcare: From Novelty to Mainstream. Parsippany, NJ: The IMS Institute; 2013.
- Moher DLA, Tetzlaff J, Altman DG. The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann Intern Med. 2009:151.
- 15. Higgins, J.; Altman, D. Cochrane Handbook (Version 5) Sections relating to new risk-of-bias tool. 2007. Available from: http://www.cochrane-smg.org/
- Wells, G.; Shea, B.; O'Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in metaanalyses. 2007. Available from:http://www.ohri.ca/programs/clinical\_epidemiology/oxford.htm
- Wister A, Loewen N, Kennedy-Symonds H, McGowan B, McCoy B, Singer J. One-year follow-up of a therapeutic lifestyle intervention targeting cardiovascular disease risk. CMAJ. 2007; 177:859– 865. [PubMed: 17923653]
- Higgins J, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003; 327:557–560. [PubMed: 12958120]
- McManus R, Mant J, Bray EP, Holder R, Jones MI, Greenfield S, Kaambwa B, Banting M, Bryan S, Little P, Williams B, Hobbs FD. Telemonitoring and self-management in the control of hypertension (TASMINH2): a randomised controlled trial. Lancet. 2010; 376:163–172. [PubMed: 20619448]
- 20. Scherr D, Kastner P, Kollmann A, Hallas A, Auer J, Krappinger H, Schuchlenz H, Stark G, Grander W, Jakl G, Schreier G, Fruhwald FM. Mobitel Investigators. Effect of home-based telemonitoring using mobile phone technology on the outcome of heart failure patients after an episode of acute decompensation: randomized controlled trial. Journal of Medical Internet Research. 2009; 11:e34. [PubMed: 19687005]
- 21. Sheridan S, Draeger LB, Pignone MP, Keyserling TC, Simpson RJ, Rimer B, Bangdiwala SI, Cai JW, Gizlice Z. A randomized trial of an intervention to improve use and adherence to effective coronary heart disease prevention strategies. BMC Health Services Research. 2011; 11:331. [PubMed: 22141447]
- Beatty A, Fukuoka Y, Whooley MA. Using mobile technology for cardiac rehabilitation: a review and framework for development and evaluation. J Am Heart Assoc. 2013; 2:e000568. [PubMed: 24185949]
- 23. Taylor, F.; Ward, K.; Moore, HMT.; Burke, M.; Smith, Davey; George, Casas JP.; Ebrahim, S. Statins for the primary prevention of cardiovascular disease. Cochrane Heart Group Cochrane Database of Systematic Reviews; 2011.
- 24. Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, Buring J, Hennekens C, Kearney P, Meade T, Patrono C, Roncaglioni MC, Zanchetti A. Antithrombotic Trialists' (ATT) Collaboration. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009; 373:1849–1860. [PubMed: 19482214]
- Law M, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009; 338:b1665. [PubMed: 19454737]
- 26. Appel L, Clark JM, Yeh HC, Wang NY, Coughlin JW, Daumit G, Miller ER III, Dalcin A, Jerome GJ, Geller S, Noronha G, Pozefsky T, Charleston J, Reynolds JB, Durkin N, Rubin RR, Louis TA,

Brancati FL. Comparative effectiveness of weight-loss interventions in clinical practice. New England Journal of Medicine. 2011; 365:1959–1968. [PubMed: 22085317]

- 27. Blasco A, Carmona M, Fernandez-Lozano I, Salvador CH, Pascual M, Sagredo PG, Somolinos R, Munoz A, Garcia-Lopez F, Escudier JM, Mingo S, Toquero J, Monivas V, Gonzalez MA, Fragua JA, Lopez-Rodriguez F, Monteagudo JL, Alonso-Pulpon L. Evaluation of a telemedicine service for the secondary prevention of coronary artery disease. Journal of Cardiopulmonary Rehabilitation & Prevention. 2012; 32:25–31. [PubMed: 22113368]
- 28. Dendale P, De Keulenaer G, Troisfontaines P, Weytjens C, Mullens W, Elegeert I, Ector B, Houbrechts M, Willekens K, Hansen D. Effect of a telemonitoring-facilitated collaboration between general practitioner and heart failure clinic on mortality and rehospitalization rates in severe heart failure: the TEMA-HF 1 (TElemonitoring in the MAnagement of Heart Failure) study. European Journal of Heart Failure. 2012; 14:333–340. [PubMed: 22045925]
- 29. Frederix I, Driessche NV, Hansen D, Berger J, Bonne K, Alders T, Dendale P. Increasing the medium-term clinical benefits of hospital-based cardiac rehabilitation by physical activity telemonitoring in coronary artery disease patients. Eur J Prev Cardiol. 2013 Epub ahead of print.
- Green BB, Anderson ML, Cook AJ, et al. A trial of web-based dietitian care for hypertension control: Weight loss effects on blood pressure. Journal of Clinical Hypertension. 2012:14. [PubMed: 23282121]
- 31. Reid R, Morrin LI, Beaton LJ, Papadakis S, Kocourek J, McDonnell L, Slovinec D'Angelo ME, Tulloch H, Suskin N, Unsworth K, Blanchard C, Pipe AL. Randomized trial of an internet-based computer-tailored expert system for physical activity in patients with heart disease. European Journal of Preventive Cardiology. 2012; 19:1357–1364. [PubMed: 21903744]
- Southard B, Southard DR, Nuckolls J. Clinical trial of an Internet-based case management system for secondary prevention of heart disease. Journal of Cardiopulmonary Rehabilitation. 2003; 23:341–348. [PubMed: 14512778]
- 33. Vernooij J, Kaasjager HA, van der Graaf Y, Wierdsma J, Grandjean HM, Hovens MM, de Wit GA, Visseren FL. SMARTStudy Group. Internet based vascular risk factor management for patients with clinically manifest vascular disease: randomised controlled trial. BMJ. 2012; 344:e3750. [PubMed: 22692651]
- 34. Andersen L, Sundstrup E, Boysen M, Jakobsen MD, Mortensen OS, Persson R. Cardiovascular Health Effects of Internet-Based Encouragements to Do Daily Workplace Stair-Walks: Randomized Controlled Trial. Journal of Medical Internet Research. 2013; 15:e127. [PubMed: 23793032]
- 35. Bennett G, Herring SJ, Puleo E, Stein EK, Emmons KM, Gillman MW. Web-based weight loss in primary care: a randomized controlled trial. Obesity. 2010; 18:308–313. [PubMed: 19696764]
- 36. Bennett G, Warner ET, Glasgow RE, Askew S, Goldman J, Ritzwoller DP, Emmons KM, Rosner BA, Colditz GA. Be Fit, Be Well Study Investigators. Obesity treatment for socioeconomically disadvantaged patients in primary care practice. Arch Intern Med. 2012; 172:565–574. [PubMed: 22412073]
- 37. Bennett G, Foley P, Levine E, Whiteley J, Askew S, Steinberg DM, Batch B, Greaney ML, Miranda H, Wroth TH, Holder MG, Emmons KM, Puleo E. Behavioral treatment for weight gain prevention among black women in primary care practice: a randomized clinical trial. JAMA Intern Med. 2013; 173:1770–1777. [PubMed: 23979005]
- Bove A, Homko CJ, Santamore WP, Kashem M, Kerper M, Elliott DJ. Managing hypertension in urban underserved subjects using telemedicine--a clinical trial. American Heart Journal. 2013; 165:615–621. [PubMed: 23537980]
- 39. Broekhuizen K, van Poppel MN, Koppes LL, Kindt I, Brug J, van Mechelen W. No significant improvement of cardiovascular disease risk indicators by a lifestyle intervention in people with familial hypercholesterolemia compared to usual care: results of a randomised controlled trial. BMC Research Notes. 2012; 5:181. [PubMed: 22490761]
- 40. Claes N, Jacobs N, Clays E, Schrooten W, De Bourdeaudhuij I. Comparing the effectiveness of two cardiovascular prevention programmes for highly educated professionals in general practice: a randomised clinical trial. BMC Cardiovasc Disord. 2013:13. [PubMed: 23497312]


- Colkesen E, Ferket BS, Tijssen JG, Kraaijenhagen RA, van Kalken CK, Peters RJ. Effects on cardiovascular disease risk of a web-based health risk assessment with tailored health advice: a follow-up study. Vascular Health & Risk Management. 2011; 7:67–74. [PubMed: 21415919]
- 42. Dekkers J, van Wier MF, Ariens GA, Hendriksen IJ, Pronk NP, Smid T, van Mechelen W. Comparative effectiveness of lifestyle interventions on cardiovascular risk factors among a Dutch overweight working population: a randomized controlled trial. BMC Public Health. 2011; 11:49. [PubMed: 21261935]
- 43. Frisch S, Zittermann A, Berthold HK, Gotting C, Kuhn J, Kleesiek K, Stehle P, Kortke H. A randomized controlled trial on the efficacy of carbohydrate-reduced or fat-reduced diets in patients attending a telemedically guided weight loss program. Cardiovascular Diabetology. 2009; 8:36. [PubMed: 19615091]
- 44. Goessens BM, Visseren FL, de Nooijer J, et al. A pilot-study to identify the feasibility of an Internet-based coaching programme for changing the vascular risk profile of high-risk patients. Patient Education & Counseling. 2008; 73:67–72. [PubMed: 18639410]
- 45. Hansen A, Gronbaek M, Helge JW, Severin M, Curtis T, Tolstrup JS. Effect of a Web-Based Intervention to Promote Physical Activity and Improve Health Among Physically Inactive Adults: A Population-Based Randomized Controlled Trial. Journal of Medical Internet Research. 2012; 14:e145. [PubMed: 23111127]
- 46. Jacobs N, De Bourdeaudhuij I, Thijs H, Dendale P, Claes N. Effect of a cardiovascular prevention program on health behavior and BMI in highly educated adults: a randomized controlled trial. Patient Education & Counseling. 2011; 85:122–126. [PubMed: 20888728]
- 47. Joo N, Kim BT. Mobile phone short message service messaging for behaviour modification in a community-based weight control programme in Korea. Journal of Telemedicine and Telecare. 2007; 13:416–420. [PubMed: 18078554]
- Kim C, Kang S. Development and a pilot test of an internet-based cardiovascular risk reduction program for Korean male workers with metabolic syndrome. CIN: Computers, Informatics, Nursing. 2013; 31:157–166.
- Kiselev A, Gridnev VI, Shvartz VA, Posnenkova OM, Dovgalevsky PY. Active ambulatory care management supported by short message services and mobile phone technology in patients with arterial hypertension. Journal of the American Society of Hypertension. 2012; 6:346–355. [PubMed: 22995803]
- Kulick D, Langer RD, Ashley JM, Gans KM, Schlauch K, Feller C. Live well: a practical and effective low-intensity dietary counseling intervention for use in primary care patients with dyslipidemia - a randomized controlled pilot trial. BMC Family Practice. 2013; 14:59. [PubMed: 23663789]
- 51. Lieber S, Redberg RF, Blumenthal RS, Gandhi A, Robb KJ, Mora S. A national interactive webbased physical activity intervention in women, evaluation of the american heart association choose to move program 2006–2007. American Journal of Cardiology. 2012; 109:1754–1760. [PubMed: 22494850]
- Logan A, Irvine MJ, McIsaac WJ, Tisler A, Rossos PG, Easty A, Feig DS, Cafazzo JA. Effect of home blood pressure telemonitoring with self-care support on uncontrolled systolic hypertension in diabetics. Hypertension. 2012; 60:51–57. [PubMed: 22615116]
- 53. Lombard C, Deeks A, Jolley D, Ball K, Teede H. A low intensity, community based lifestyle programme to prevent weight gain in women with young children: cluster randomised controlled trial. British Medical Journal. 2010; 341:c3215. [PubMed: 20627974]
- 54. Marquez Contreras E, De La Figuera Von Wichmann M, Gil Guillen V, Ylla-Catala A, Figueras M, Balana M, Naval J. Effectiveness of an intervention to provide information to patients with hypertension as short text messages and reminders sent to their mobile phones (HTA-ALERT). [Spanish] Eficacia de una intervencion informativa a hipertensos mediante mensajes de alerta en el telefono movil (HTA-ALERT). Atencion Primaria. 2004; 34:399–405. [PubMed: 15546536]
- 55. McTigue K, Conroy MB, Hess R, Bryce CL, Fiorillo AB, Fischer GS, Milas NC, Simkin-Silverman LR. Using the internet to translate an evidence-based lifestyle intervention into practice. Telemedicine and e-Health. 2009; 15:851–858. [PubMed: 19919191]
- 56. Nolan R, Upshur RE, Lynn H, Crichton T, Rukholm E, Stewart DE, Alter DA, Chessex C, Harvey PJ, Grace SL, Picard L, Michel I, Angus J, Corace K, Barry-Bianchi SM, Chen MH. Therapeutic

benefit of preventive telehealth counseling in the Community Outreach Heart Health and Risk Reduction Trial. Am J Cardiol. 2011; 107:690–696. [PubMed: 21215382]

- 57. Nolan R, Liu S, Shoemaker JK, Hachinski V, Lynn H, Mikulis DJ, Wennberg RA, Moy Lum-Kwong M, Zbib A. Therapeutic benefit of internet-based lifestyle counselling for hypertension. Canadian Journal of Cardiology. 2012; 28:390–396. [PubMed: 22498181]
- Park M, Kim HS. Evaluation of mobile phone and Internet intervention on waist circumference and blood pressure in post-menopausal women with abdominal obesity. International Journal of Medical Informatics. 2012; 81:388–394. [PubMed: 22265810]
- 59. Rossi M, Nicolucci A, Pellegrini F, Bruttomesso D, Di Bartolo P, Marelli G, Dal Pos M, Galetta M, Horwitz D, Vespasiani G. Interactive Diary for Diabetes: A Useful and Easy-to-Use New Telemedicine System to Support the Decision-Making Process in Type 1 Diabetes. Diabetes Technology & Therapeutics. 2009; 11:19–24. [PubMed: 19132851]
- 60. Rossi M, Perozzi C, Consorti C, Almonti T, Foglini P, Giostra N, Nanni P, Talevi S, Bartolomei D, Vespasiani G. An Interactive Diary for Diet Management (DAI): A New Telemedicine System Able to Promote Body Weight Reduction, Nutritional Education, and Consumption of Fresh Local Produce. Diabetes Technology & Therapeutics. 2010; 12:641–647. [PubMed: 20615106]
- Senesael E, Borgermans L, Van De Vijver E, Devroey D. Effectiveness of a quality improvement intervention targeting cardiovascular risk factors: are patients responsive to information and encouragement by mail or post? Vascular Health & Risk Management. 2013; 9:13–20. [PubMed: 23426275]
- 62. Stuckey M, Russell-Minda E, Read E, Munoz C, Shoemaker K, Kleinstiver P, Petrella R. Diabetes and Technology for Increased Activity (DaTA) study: results of a remote monitoring intervention for prevention of metabolic syndrome. Journal of diabetes science and technology. 2011; 5:928– 935. [PubMed: 21880236]
- 63. Thiboutot J, Sciamanna CN, Falkner B, Kephart DK, Stuckey HL, Adelman AM, Curry WJ, Lehman EB. Effects of a Web-Based Patient Activation Intervention to Overcome Clinical Inertia on Blood Pressure Control: Cluster Randomized Controlled Trial. Journal of Medical Internet Research. 2013; 15:20–39.
- 64. Verheijden M, Bakx JC, Akkermans R, van den Hoogen H, Godwin NM, Rosser W, van Staveren W, van Weel C. Web-based targeted nutrition counselling and social support for patients at increased cardiovascular risk in general practice: randomized controlled trial. J Med Internet Res. 2004; 6:e44. [PubMed: 15631968]
- 65. Wakefield B, Holman JE, Ray A, Scherubel M, Adams MR, Hillis SL, Rosenthal GE. Effectiveness of home telehealth in comorbid diabetes and hypertension: a randomized, controlled trial. Telemed J E Health. 2011; 17:254–261. [PubMed: 21476945]
- 66. Widmer R, Allison TG, Keane B, Dallas A, Lerman LO, Lerman A. Using an online, personalized program reduces cardiovascular risk factor profiles in a motivated, adherent population of participants. Am Heart J. 2014:167.
- Wong C, Fung CSC, Siu SC, Lo YYC, Wong KW, Fong DYT, Lam CLK. A short message service (SMS) intervention to prevent diabetes in Chinese professional drivers with pre-diabetes: A pilot single-blinded randomized controlled trial. Diabetes Research and Clinical Practice. 2013; 102:158–166. [PubMed: 24466598]
- 68. Korzeniowska-Kubacka I, Dobraszkiewicz-Wasilewska B, Bili ska M, Rydzewska E, Piotrowicz. Two models of early cardiac rehabilitation in male patients after myocardial infarction with preserved left ventricular function: comparison of standard out-patient versus hybrid training programmes. Kardiol Pol. 2011; 69:220–226. [PubMed: 21432787]
- 69. Lee Y, Hur SH, Sohn J, Lee HM, Park NH, Cho YK, Park HS, Yoon HJ, Kim H, Nam CW, Kim YN, Kim KB. Impact of home-based exercise training with wireless monitoring on patients with acute coronary syndrome undergoing percutaneous coronary intervention. Journal of Korean Medical Science. 2013; 28:564–568. [PubMed: 23580444]
- Maric B, Kaan A, Araki Y, Ignaszewski A, Lear SA. The use of the Internet to remotely monitor patients with heart failure. Telemedicine Journal & E-Health. 2010; 16:26–33. [PubMed: 20070163]

- Theissing J, Deck R, Raspe H. Liveonline aftercare in patients with abdominal obesity in cardiodiabetological rehabilitation: findings of a randomized controlled study. Rehabilitation. 2013; 52:153–154. [PubMed: 23761202]
- Zutz A, Ignaszewski A, Bates J, Lear SA. Utilization of the internet to deliver cardiac rehabilitation at a distance: a pilot study. Telemedicine Journal & E-Health. 2007; 13:323–330. [PubMed: 17603835]

Author Manuscript



**Figure 1.** PRISMA schematic for study selection.

|                                   | Digital H              |              | Usual     |           |                        | Risk Ratio         | Risk Ratio                                    |
|-----------------------------------|------------------------|--------------|-----------|-----------|------------------------|--------------------|-----------------------------------------------|
| Study or Subgroup                 | Events                 | Total        | Events    | Total     | Weight                 | IV, Random, 95% CI | IV, Random, 95% CI                            |
| 1.1.2 Primary Preven              |                        |              |           |           |                        |                    |                                               |
| Appel 2011                        | 15                     | 139          | 15        | 138       | 12.8%                  | 0.99 [0.51, 1.95]  |                                               |
| Green 2008                        | 10                     | 520          | 2         | 258       | 3.2%                   | 2.48 [0.55, 11.24] |                                               |
| Subtotal (95% CI)                 |                        | 659          |           | 396       | 16.0%                  | 1.21 [0.58, 2.54]  |                                               |
| Total events                      | 25                     |              | 17        |           |                        |                    |                                               |
| Heterogeneity: Tau <sup>2</sup> = |                        |              |           | (P = 0.1) | $(28); I^2 =$          | 15%                |                                               |
| Test for overall effect           | Z = 0.51               | P = 0.6      | 1)        |           |                        |                    |                                               |
| 1.1.3 Secondary Prev              | ention                 |              |           |           |                        |                    |                                               |
| Blasco 2012                       | 3                      | 102          | 8         | 101       | 4.2%                   | 0.37 [0.10, 1.36]  |                                               |
| Frederix 2013                     | 4                      | 40           | 9         | 40        | 5.7%                   | 0.44 [0.15, 1.33]  |                                               |
| Reid 2012                         | 4                      | 115          | 9         | 108       | 5.3%                   | 0.42 [0.13, 1.32]  |                                               |
| Southard 2003                     | 2                      | 53           | 8         | 51        | 3.2%                   | 0.24 [0.05, 1.08]  |                                               |
| Vernooij 2012                     | 32                     | 164          | 45        | 166       | 25.6%                  | 0.72 [0.48, 1.07]  |                                               |
| Subtotal (95% CI)                 |                        | 474          |           | 466       | 44.0%                  | 0.60 [0.43, 0.83]  | ◆                                             |
| Total events                      | 45                     |              | 79        |           |                        |                    |                                               |
| Heterogeneity: Tau <sup>2</sup> = |                        |              |           | (P = 0.4) | 49); $I^2 = 0$         | 0%                 |                                               |
| Test for overall effect           | Z = 3.04               | P = 0.0      | 02)       |           |                        |                    |                                               |
| 1.1.4 Heart Failure               |                        |              |           |           |                        |                    |                                               |
| Dendale 2012                      | 23                     | 80           | 48        | 80        | 26.3%                  | 0.48 [0.32, 0.71]  |                                               |
| Scherr 2009                       | 11                     | 54           | 18        | 54        | 13.7%                  | 0.61 [0.32, 1.17]  |                                               |
| Subtotal (95% CI)                 |                        | 134          |           | 134       | 40.0%                  | 0.51 [0.37, 0.71]  | ◆                                             |
| Total events                      | 34                     |              | 66        |           |                        |                    |                                               |
| Heterogeneity: Tau <sup>2</sup> = |                        |              |           | (P = 0.)  | $(53); I^2 = 0$        | 0%                 |                                               |
| Test for overall effect           | Z = 3.95               | P < 0.0      | 001)      |           |                        |                    |                                               |
| Total (95% CI)                    |                        | 1267         |           | 996       | 100.0%                 | 0.61 [0.46, 0.80]  | •                                             |
| Total events                      | 104                    |              | 162       |           |                        |                    |                                               |
| Heterogeneity: Tau <sup>2</sup> = | 0.04; Chi <sup>2</sup> | = 10.2       | 3, df = 8 | 8 (P = 0) | .25); I <sup>2</sup> = | 22%                | 0.05 0.2 1 5 20                               |
| Test for overall effect           | Z = 3.52               | P = 0.0      | 004)      |           |                        |                    | Favours [Digital Health] Favours [Usual Care] |
| Test for subgroup diff            | ferences: Cl           | $hi^2 = 4.3$ | 35. df =  | 2 (P = 0) | $(0.11),  ^2 =$        | = 54.0%            | ravous (orgital realting ravours (osual care) |

**Figure 2.** CVD Outcomes and DHI.

| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                             | leb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maan Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Moon Difference                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Digit<br>Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | al Hea<br>SD                                                                                                                                                                                                                                                                                                                                                                | lth<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ual Car<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean Difference<br>IV, Random, 95% CI         |
| 1.6.1 Primary Prevent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                          | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV, Rahuolii, 35% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iv, kandolii, 95% er                          |
| Andersen 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.3                                                                                                                                                                                                                                                                                                                                                                         | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.87 [-1.17, 2.91]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |
| Appel 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4                                                                                                                                                                                                                                                                                                                                                                         | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -8.30 [-9.05, -7.55]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                             |
| Bennett 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1                                                                                                                                                                                                                                                                                                                                                                         | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -5.72 [-7.96, -3.48]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
| Bennett 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                         | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.30 [-2.46, -2.14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
| Bennett 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                             | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -3.30 [-6.28, -0.32]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
| Bove 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                             | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -3.20 [-8.11, 1.71]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |
| Dekkers 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.7                                                                                                                                                                                                                                                                                                                                                                         | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.20 [-3.39, -1.01]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
| Lombard 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6                                                                                                                                                                                                                                                                                                                                                                         | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.20 [-3.82, -0.58]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ <b>—</b>                                    |
| Park 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7                                                                                                                                                                                                                                                                                                                                                                         | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5.90 [-7.19, -4.61]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                             |
| Senesael 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.7                                                                                                                                                                                                                                                                                                                                                                        | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.40 [-6.52, 5.72]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |
| Wong 2013<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.4                                                                                                                                                                                                                                                                                                                                                                         | 54<br>1035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50<br>973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.40 [-4.11, -0.69]<br>-3.35 [-5.22, -1.48]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 (P <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
| 1.6.2 Secondary Prev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
| Blasco 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                           | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -4.60 [-5.71, -3.49]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
| Reid 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.2                                                                                                                                                                                                                                                                                                                                                                         | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.80 [4.23, 7.37]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |
| Southard 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.8                                                                                                                                                                                                                                                                                                                                                                         | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4.90 [-8.08, -1.72]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
| Zutz 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                             | 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.93 [-7.74, 5.88]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Chi^2 =$                                                                                                                                                                                                                                                                                                                                                                   | 116.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0. df =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 (P <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                             | 1313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.77 [-4.49, -1.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
| Heterogeneity: $Tau^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.59.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $hi^2 = 4$                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . df = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 (P <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .), 1 = 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -10 -5 0 5 10                                 |
| Test for subgroup diffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (P = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50), I <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Favours [Digital Health] Favours [Usual Care] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Digital                                                                                                                                                                                                                                                                                                                                                                     | Health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Usual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Difference                               |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                             | Health<br>SD T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | al Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
| Study or Subgroup<br>1.7.1 Primary Preven                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ean                                                                                                                                                                                                                                                                                                                                                                         | SD T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | otal M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5D Tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t IV, Random, 95% C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M<br>ition<br>-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ean                                                                                                                                                                                                                                                                                                                                                                         | <b>SD T</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | otal M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lean .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5D Tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 9.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t IV, Random, 95% C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bennett 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M<br>ition<br>-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ean<br>0.54 0<br>0.3                                                                                                                                                                                                                                                                                                                                                        | SD T<br>0.14<br>6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | otal M<br>180 -0<br>197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lean<br>0.12 0.<br>0.3 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5D Tot<br>13 18<br>.3 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 9.09<br>7 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t IV, Random, 95% C<br>6 -0.42 [-0.45, -0.39<br>6 -0.60 [-2.13, 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bennett 2013<br>Bove 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M<br>ntion<br>-0<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ean<br>0.54 0<br>0.3<br>0.2                                                                                                                                                                                                                                                                                                                                                 | SD T<br>0.14<br>6.3<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | otal M<br>180 -0<br>197<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.12 0.<br>0.3 6<br>0.5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5D Tot<br>13 18<br>.3 9<br>.5 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 9.09<br>7 0.99<br>1 2.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t IV, Random, 95% C<br>-0.42 [-0.45, -0.39<br>-0.60 [-2.13, 0.93<br>-0.70 [-1.59, 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bennett 2013<br>Bove 2013<br>Broekhuizen 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M<br>ntion<br>-0<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ean<br>0.54 0<br>0.3<br>0.2<br>0.1                                                                                                                                                                                                                                                                                                                                          | SD T<br>0.14<br>6.3<br>2.2<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | otal M<br>180 -(<br>197<br>120<br>181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.12 0.<br>0.3 6<br>0.5 4<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>SD Tot</b><br>13 18<br>.3 9<br>.5 12<br>.6 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t IV, Random, 95% C<br>-0.42 [-0.45, -0.39<br>-0.60 [-2.13, 0.93<br>-0.70 [-1.59, 0.19<br>-0.10 [-0.52, 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bennett 2013<br>Bove 2013<br>Broekhuizen 2012<br>Claes 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M<br>-0<br>-0<br>-<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ean<br>0.54 0<br>0.3<br>0.2<br>0.1<br>0.42 0                                                                                                                                                                                                                                                                                                                                | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | otal M<br>180 -(<br>197<br>120<br>181<br>195 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.12 0.<br>0.3 6<br>0.5 4<br>0 (0).32 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5D Tot<br>13 18<br>.3 9<br>.5 12<br>.6 15<br>54 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.49<br>0 8.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t IV, Random, 95% C<br>-0.42 [-0.45, -0.39<br>-0.60 [-2.13, 0.93<br>-0.70 [-1.59, 0.19<br>-0.10 [-0.52, 0.32<br>0.10 [-0.02, 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bennett 2013<br>Broekhuizen 2013<br>Claes 2013<br>Green 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M<br>-0<br>-0<br>-0<br>-0<br><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ean<br>0.54 0<br>0.3<br>0.2<br>0.1<br>0.42 0<br>0.9                                                                                                                                                                                                                                                                                                                         | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otal M<br>180 -(<br>197<br>120<br>181<br>195 (<br>520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.12 0.<br>0.3 6<br>0.5 4<br>0.32 0.<br>0.32 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>SD Tot</b><br>13 18<br>.3 9<br>.5 12<br>.6 15<br>54 10<br>.4 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.49<br>0 8.59<br>8 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t IV, Random, 95% C<br>-0.42 [-0.45, -0.39<br>-0.60 [-2.13, 0.93<br>-0.70 [-1.59, 0.19<br>-0.10 [-0.52, 0.32<br>0.10 [-0.02, 0.22<br>-0.90 [-2.09, 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I IV, Random, 95% Cl                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bennett 2013<br>Bove 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M<br>-0<br>-0<br>-0<br>-0<br><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ean<br>0.54 0<br>0.3<br>0.2<br>0.1<br>0.42 0<br>0.9<br>0.1 0                                                                                                                                                                                                                                                                                                                | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.08<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | otal M<br>180 -(<br>197<br>120<br>181<br>195 (<br>520<br>055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lean 2<br>0.12 0.<br>0.3 6<br>0.5 4<br>0.32 0.<br>0.32 0.<br>0 9<br>0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>SD Tot</b><br>13 18<br>.3 9<br>.5 12<br>.6 15<br>54 10<br>.4 25<br>08 623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.49<br>0 8.59<br>8 1.49<br>2 9.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IV, Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.93           6         -0.70 [-1.59, 0.19           6         -0.10 [-0.52, 0.32           6         -0.10 [-0.02, 0.32           6         -0.20, 0.29           6         -0.01 [-0.10, -0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I IV, Random, 95% Cl                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bennett 2013<br>Broekhuizen 2013<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M<br>-0<br>-0<br>-<br>-<br>0<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ean<br>0.54 0<br>0.3<br>0.2<br>0.1<br>0.42 0<br>0.9<br>0.1 0<br>0.1 0<br>0                                                                                                                                                                                                                                                                                                  | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.08<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | otal M<br>180 -0<br>197<br>120<br>181<br>195 0<br>520<br>055<br>208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lean 2<br>0.12 0.<br>0.3 6<br>0.5 4<br>0.32 0.<br>0 9<br>0 0.<br>-1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>5D Tot</b><br><b>13 18</b><br><b>3 9</b><br><b>5 12</b><br><b>0.6 15</b><br><b>5 4 10</b><br><b>0.4 25</b><br><b>0 8 623</b><br><b>0.6 10</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.49<br>0 8.59<br>8 1.49<br>2 9.09<br>6 8.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t         IV, Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.93           6         -0.70 [-1.59, 0.19           6         -0.70 [-1.59, 0.19           6         -0.10 [-0.52, 0.32           6         -0.10 [-0.20, 0.22           2         -0.90 [-2.09, 0.29           6         -0.10 [-0.10, -0.10           6         1.00 [0.87, 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bennett 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kiselev 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M<br>-0<br>-<br>-<br>0<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ean<br>0.54 0<br>0.3<br>0.2<br>0.1<br>0.42 0<br>0.9<br>0.1 0<br>0.9<br>0.1 0<br>0.3                                                                                                                                                                                                                                                                                         | SD         T           0.14         6.3           2.2         2.8           0.42         3.6           0.08         6           0.4         6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | otal         M           180         -(1)           197         120           181         195           195         (1)           520         5           208         97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lean     1       0.12     0.       0.3     0       0.5     4       0     0       0.32     0.       0     0       -1     0       0.3     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>SD Tot</b><br><b>13</b> 18<br><b>3</b> 9<br><b>5</b> 12<br><b>6</b> 15<br><b>5</b> 4 10<br><b>6</b> 4 25<br><b>5</b> 4 25<br><b>5</b> 8 623<br><b>6</b> 10<br><b>6</b> 10<br><b>6</b> 10<br><b>7</b> | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.49<br>0 8.59<br>8 1.49<br>2 9.09<br>6 8.59<br>2 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV, Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.93           6         -0.70 [-1.59, 0.19           6         -0.70 [-1.59, 0.19           6         -0.10 [-0.52, 0.32           6         -0.10 [-0.22, 0.22           6         -0.00 [-2.09, 0.29           6         -0.010 [-0.10, -0.10           6         1.00 [0.87, 1.13           6         0.00 [-1.46, 1.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bennett 2013<br>Broekhuizen 2013<br>Green 2008<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kiselev 2012<br>Kulick 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M<br>-0<br>-0<br>-0<br>-<br>-<br>0<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ean<br>0.54 0<br>0.3<br>0.2<br>0.1<br>0.42 0<br>0.9<br>0.1 0<br>0.9<br>0.1 0<br>0.3<br>0.5                                                                                                                                                                                                                                                                                  | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.08<br>6.1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | otal         M           180         -(           197         -(           120         -(           181         -(           195         (           520         -(           055         -(           208         -97           32         -(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jean         3           0.12         0.           0.3         6           0.5         4           0         0           0.32         0.           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>5D Tot</b><br><b>13</b> 18<br><b>3</b> 9<br><b>5</b> 12<br><b>6</b> 15<br><b>5</b> 4 10<br><b>6</b> 4 25<br><b>0</b> 8 623<br><b>0</b> 6 10<br><b>1</b> 2 10<br><b>0</b> 8 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.49<br>0 8.59<br>8 1.49<br>2 9.09<br>6 8.59<br>2 1.09<br>9 5.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IV, Random, 95% C           -0.42 [-0.45, -0.39           -0.60 [-2.13, 0.93           -0.70 [-1.59, 0.19           -0.10 [-0.52, 0.32           -0.10 [-0.52, 0.32           -0.10 [-0.02, 0.22           -0.00 [-2.09, 0.29           -0.10 [-0.10, -0.10           -0.10 [-0.00, -0.10           -0.10 [-0.01, -0.10           -0.10 [-0.16, -0.10           -0.10 [-0.16, -0.10           -0.10 [-0.85, 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bennett 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kiselev 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>M</u><br>-0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ean<br>0.54 0<br>0.3<br>0.2<br>0.1<br>0.42 0<br>0.9<br>0.1 0<br>0.9<br>0.1 0<br>0.3<br>0.5<br>1.3                                                                                                                                                                                                                                                                           | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.08<br>6.1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | otal         M           180         -(           197         -(           197         -(           120         -(           181         -(           195         (           520         -(           055         -(           208         -97           32         -(           127         -(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>SD Tot</b><br><b>13</b> 18<br><b>3</b> 9<br><b>5</b> 12<br><b>6</b> 15<br><b>5</b> 4 10<br><b>6</b> 4 25<br><b>5</b> 4 25<br><b>5</b> 8 623<br><b>6</b> 10<br><b>6</b> 10<br><b>6</b> 10<br><b>7</b> | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.49<br>0 8.59<br>8 1.49<br>2 9.09<br>6 8.59<br>6 8.59<br>6 8.59<br>2 1.09<br>9 5.19<br>3 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W, Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.93           6         -0.70 [-1.59, 0.19           6         -0.10 [-0.52, 0.32           6         -0.10 [-0.20, 0.22           6         -0.90 [-2.09, 0.29           6         -0.10 [-0.10, -0.10]           1         0.00 [-1.46, 1.46           6         -0.40 [-0.87, 1.13           6         0.00 [-1.46, 1.46           6         -1.40 [-2.95, 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2013<br>Bowe 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kislekv 2012<br>Kulick 2013<br>Lombard 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>M</u><br>-0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ean<br>0.54 0<br>0.3<br>0.2<br>0.1<br>0.42 0<br>0.9<br>0.1 0<br>0<br>0.3<br>0.5<br>1.3<br>0.3                                                                                                                                                                                                                                                                               | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.42<br>6.1<br>1<br>6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | otal         M           180         -(           197         -(           197         -(           120         -(           181         -(           195         (           520         -(           055         -(           208         -97           32         -(           127         -(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lean           0.12         0.           0.3         6           0.5         4           0         0           0.32         0           0.32         0           0.32         0           0.32         0           0.32         0           0.33         4           0.11         6           0.11         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>5D Tot</b><br><b>13</b> 18<br><b>3</b> 9<br><b>5</b> 12<br><b>6</b> 15<br><b>5</b> 4 10<br><b>6</b> 4 25<br><b>5</b> 8 623<br><b>6</b> 10<br><b>6</b> 2<br><b>10</b><br><b>8</b> 2<br><b>12</b><br><b>13</b> 18<br><b>13</b> 18<br><b>13</b> 18<br><b>13</b> 18<br><b>13</b> 18<br><b>14</b> 25<br><b>14</b> 25<br><b>15</b> 12<br><b>15</b> 12<br><b>16</b> 15<br><b>17</b> 10<br><b>17</b> 10<br><b>18</b> 12<br><b>17</b> 112<br><b>17</b> 12<br><b>17</b>                                                                                                                                                                                      | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.49<br>0 8.59<br>8 1.49<br>2 9.09<br>6 8.59<br>6 8.59<br>2 1.09<br>9 5.19<br>3 0.99<br>6 2.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IV. Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.93           6         -0.70 [-1.59, 0.19           6         -0.70 [-0.52, 0.32           0.10 [-0.02, 0.22         0.10 [-0.02, 0.22           6         -0.90 [-2.09, 0.29           6         -0.10 [-0.10, -0.10           6         -0.00 [-1.46, 1.13           6         -0.00 [-1.46, 1.46           6         -0.40 [-2.95, 0.05           6         -1.40 [-2.95, 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I IV, Random, 95% Cl                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bornett 2013<br>Broekhuizen 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kiselev 2012<br>Kulick 2013<br>Lombard 2010<br>Senesael 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>M</u><br>-0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ean<br>0.54 0<br>0.3<br>0.2<br>0.1<br>0.42 0<br>0.9<br>0.1 0<br>0.3<br>0.5<br>1.3<br>0.3<br>0.2<br>0.3<br>0.5<br>0.3<br>0.2<br>0.1 0<br>0.2<br>0.1 0<br>0.2<br>0.1 0<br>0.2<br>0.1 0<br>0.2<br>0.2<br>0.1 0<br>0.2<br>0.2<br>0.1 0<br>0.2<br>0.2<br>0.1 0<br>0.2<br>0.2<br>0.2<br>0.3<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                               | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.08<br>6.1<br>1<br>6.3<br>1.6<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | otal         M           180         -(           197         -(           197         -(           120         -(           181         -(           195         (           520         -(           055         -(           208         -97           32         -(           127         -(           26         -(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD         Tot           13         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.49<br>0 8.59<br>8 1.49<br>2 9.09<br>6 8.59<br>2 1.09<br>9 5.19<br>3 0.99<br>5 2.89<br>3 2.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W. Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.93           6         -0.70 [-1.59, 0.19           6         -0.70 [-0.52, 0.32           6         -0.70 [-0.52, 0.32           6         -0.70 [-0.52, 0.32           6         -0.70 [-2.09, 0.29           6         -0.10 [-0.70, -0.10           1         1.00 [0.87, 1.13           6         -0.00 [-1.46, 1.46           6         -0.40 [-0.85, 0.05           6         -1.40 [-2.95, 0.15           6         -0.20 [-0.97, 0.57           6         -0.20 [-0.97, 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I IV, Random, 95% Cl                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Boree 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kiselev 2012<br>kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Verheijde 2004<br>Wister (primary) 2007<br>Wong 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M<br>ition<br>0<br><br><br><br><br><br><br><br><br><br><br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ean<br>0.54 0<br>0.3<br>0.2<br>0.1<br>0.42 0<br>0.9<br>0.1 0<br>0.3<br>0.5<br>1.3<br>0.3<br>0.2<br>0.3<br>0.5<br>0.3<br>0.2<br>0.1 0<br>0.2<br>0.1 0<br>0.2<br>0.1 0<br>0.2<br>0.1 0<br>0.2<br>0.2<br>0.1 0<br>0.2<br>0.2<br>0.1 0<br>0.2<br>0.2<br>0.1 0<br>0.2<br>0.2<br>0.2<br>0.3<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                               | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.42<br>3.6<br>0.08<br>6.1<br>1<br>6.3<br>1.6<br>2.8<br>1.9<br>0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | otal         M           180         -(           197         -(           197         -(           120         -(           181         -(           195         (           520         -(           055         -(           208         -97           32         -(           26         -(           73         -(           157         -(           54         (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD         Tot           13         18           1.3         18           1.3         18           1.5         12           1.6         15           5.4         10           1.4         25           0.6         10           1.2         10           1.2         12           1.2         12           1.2         12           1.2         12           1.2         12           1.2         12           1.2         12           1.2         14           1.5         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.44<br>0 8.59<br>8 1.49<br>2 9.09<br>6 8.59<br>2 1.09<br>9 5.11<br>3 0.99<br>6 2.89<br>3 2.99<br>3 5.49<br>0 7.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W. Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.93           7.07 [-1.59, 0.19         -0.70 [-1.59, 0.19           6         -0.70 [-0.52, 0.32           0.10 [-0.52, 0.32         0.10 [-0.52, 0.32           6         -0.00 [-2.09, 0.29           6         -0.10 [-0.52, 0.32           6         -0.00 [-4.61, 1.46           1         1.00 [0.85, 0.05           6         -0.40 [-0.85, 0.05           6         -0.20 [-0.97, 0.57           7         -0.19 [-0.94, 0.56           6         -0.40 [-0.65, 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I IV, Random, 95% Cl                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bowe 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Verheijde 2004<br>Wister (primary) 2007<br>Wong 2013<br>Subtotal (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M<br>-0<br>-0<br>-0<br><br><br><br><br><br><br><br>7 -0<br>-0<br><br>7 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ean<br>0.54 0<br>0.3<br>0.2<br>0.1<br>0.42 0<br>0.9<br>0.1 0<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.                                                                                                                                                                                                                                                         | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.42<br>3.6<br>0.4<br>6.1<br>1<br>6.3<br>1.6<br>2.8<br>1.9<br>0.58<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | otal         M           180         -(           197         -(           120         -(           181         -(           195         -(           055         -(           208         -(           97         -(           73         -(           157         -(           54         (           222         -(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD         Tot           13         18           1.3         18           1.3         18           1.5         12           1.6         15           5.4         10           1.4         25           0.6         10           1.2         10           1.2         12           1.2         12           1.2         12           1.2         12           1.2         14           51         55           780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.49<br>0 8.59<br>8 1.49<br>2 9.09<br>6 8.59<br>2 1.09<br>9 5.11<br>3 0.99<br>6 2.88<br>3 2.99<br>3 5.49<br>0 7.55<br>4 70.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W. Random, 95% C           -0.42 [-0.45, -0.39           -0.60 [-2.13, 0.93           -0.70 [-1.59, 0.19           -0.70 [-1.59, 0.19           -0.70 [-0.20, 0.22           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.98, 0.05           -1.40 [-0.85, 0.05           -0.20 [-0.97, 0.57, 0.13           -0.94, 0.56           -0.14 [-0.56, 0.28           -0.40 [-0.63, -0.17, 0.73, 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I IV, Random, 95% Cl                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Boree 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kiselev 2012<br>kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Verheijde 2004<br>Wister (primary) 2007<br>Wong 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M<br>ition<br>-0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ean<br>0.54 0<br>0.3<br>0.2<br>0.1<br>0.42 0<br>0.9<br>0.1 0<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.                                                                                                                                                                                                                                                         | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.42<br>3.6<br>0.08<br>6.1<br>1<br>6.3<br>1.6<br>2.8<br>1.9<br>0.58<br>8<br>823.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | otal         M           180         -(           197         -(           120         -(           181         -(           195         -(           055         -(           208         -(           97         -(           73         -(           157         -(           54         (           222         -(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD         Tot           13         18           1.3         18           1.3         18           1.5         12           1.6         15           5.4         10           1.4         25           0.6         10           1.2         10           1.2         12           1.2         12           1.2         12           1.2         12           1.2         14           51         55           780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.49<br>0 8.59<br>8 1.49<br>2 9.09<br>6 8.59<br>2 1.09<br>9 5.11<br>3 0.99<br>6 2.88<br>3 2.99<br>3 5.49<br>0 7.55<br>4 70.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W. Random, 95% C           -0.42 [-0.45, -0.39           -0.60 [-2.13, 0.93           -0.70 [-1.59, 0.19           -0.70 [-1.59, 0.19           -0.70 [-0.20, 0.22           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.98, 0.05           -1.40 [-0.85, 0.05           -0.20 [-0.97, 0.57, 0.13           -0.94, 0.56           -0.14 [-0.56, 0.28           -0.40 [-0.63, -0.17, 0.73, 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I IV, Random, 95% Cl                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bennett 2013<br>Broekhuizen 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kiselev 2012<br>Kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Verheijde 2004<br>Wister (primary) 2007<br>Wong 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M<br>ition<br>-0<br>-0<br>-0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ean<br>0.54 0<br>0.3<br>0.2<br>0.1<br>0.42 0<br>0.9<br>0.1 0<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.                                                                                                                                                                                                                                                         | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.42<br>3.6<br>0.08<br>6.1<br>1<br>6.3<br>1.6<br>2.8<br>1.9<br>0.58<br>8<br>823.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | otal         M           180         -(           197         -(           120         -(           181         -(           195         -(           055         -(           208         -(           97         -(           73         -(           157         -(           54         (           222         -(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD         Tot           13         18           1.3         18           1.3         18           1.5         12           1.6         15           5.4         10           1.4         25           0.6         10           1.2         10           1.2         12           1.2         12           1.2         12           1.2         12           1.2         14           51         55           780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 9.09<br>7 0.99<br>1 2.29<br>9 5.49<br>0 8.59<br>8 1.49<br>2 9.09<br>6 8.59<br>2 1.09<br>9 5.11<br>3 0.99<br>6 2.88<br>3 2.99<br>3 5.49<br>0 7.55<br>4 70.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W. Random, 95% C           -0.42 [-0.45, -0.39           -0.60 [-2.13, 0.93           -0.70 [-1.59, 0.19           -0.70 [-1.59, 0.19           -0.70 [-0.20, 0.22           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.87, 0.13           -0.70 [-0.98, 0.05           -1.40 [-0.85, 0.05           -0.20 [-0.97, 0.57, 0.13           -0.94, 0.56           -0.14 [-0.56, 0.28           -0.40 [-0.63, -0.17, 0.73, 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bonett 2013<br>Bove 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Verheijde 2004<br>Wister (primary) 2007<br>Wong 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup><br>Test for overall effect:<br>1.7.2 Secondary Prev<br>Blasco 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M<br>ition<br>-0<br>-0<br>-0<br>-0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ean<br>                                                                                                                                                                                                                                                                                                                                                                     | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.42<br>3.6<br>0.44<br>6.1<br>1<br>6.3<br>1.6<br>2.8<br>1.9<br>0.58<br>8<br>823.79<br>0.26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | otal         M           180         -(           197         1           120         1           181         1           195         (           2055         208           97         32           127         -(           73         -(           157         -(           222         , df = 1           102         (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lean       3         0.12       0.         0.3       6         0.5       4         0       0         0.32       0.         0.32       0.         0.32       0.         0.32       0.         0.33       0.         0.01       0.         0.03       0.         0.03       0.         0.03       0.         0.03       0.         0.03       0.         0.03       0.         0.03       0.         0.03       0.         0.03       0.         0.03       0.         0.33       0.         0.33       0.         0.33       0.         0.38       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD Tot<br>SD Tot<br>13 18<br>.3 9<br>.5 122<br>.6 15<br>54 10<br>.4 25<br>0.6 23<br>.6 10<br>.2 12<br>.2 22<br>.7 7<br>.8 14<br>51 55<br>780<br>0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 9.09<br>7 0.99<br>9 5.49<br>0 8.55<br>8 1.49<br>2 9.09<br>6 8.55<br>2 1.00<br>9 5.19<br>3 0.99<br>3 2.99<br>3 2.99 | V. Random, 95% C<br>6 -0.42 [-0.45, -0.39<br>6 -0.60 [-2.13, 0.33<br>0.707 [-159, 0.19<br>6 -0.10 [-0.52, 0.32<br>0.10 [-0.02, 0.22<br>6 -0.390 [-2.09, 0.29<br>0.10 [-0.10, -0.10<br>6 -0.40 [-0.48, 0.05<br>6 -0.40 [-0.48, 0.05<br>6 -0.40 [-0.48, 0.05<br>6 -0.40 [-0.56, 0.28<br>6 -0.40 [-0.63, -0.17<br>6 -0.19 [-0.94, 0.56<br>0.23<br>6 -0.41 [-0.30, 0.08<br>5<br>6 -0.75 [-1.41, -0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2013<br>Bowe 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup><br>Test for overall effect:<br>1.7.2 Secondary Prev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M<br>ition<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ean<br>                                                                                                                                                                                                                                                                                                                                                                     | SD T<br>0.14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.42<br>3.6<br>0.44<br>6.1<br>1<br>6.3<br>1.6<br>2.8<br>1.9<br>0.58<br>8<br>823.79<br>0.26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | otal         M           180         -0           197         120           181         195           195         0           520         0           97         32           127         26           73         -0           157         -0           54         0           202         21           107         -0           54         0           53         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lean         ::           0.12         0.           0.33         0           0.54         0           0.32         0.           0.32         0.           0.33         0.           0.03         0.           0.03         0.           0.01         0.           0.03         0.           0.03         0.           0.03         0.           0.03         0.           0.03         0.           0.38         2           0.18         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>SD Tot</b><br><b>13</b> 18<br>3.9 9<br>5.5 12<br>5.6 15<br>5.4 10<br>6.4 25<br>0.8 623<br>6.6 10<br>7.2 12<br>7.6<br>7.8<br>0.00001<br>0.00001<br>0.00001<br>0.00001<br>0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5         9.07           7         0.99           1         2.29           9         5.43           0         8.59           8         1.44           2         9.07           6         8.59           2         1.00           9         5.13           3         0.99           6         2.83           3         2.97           3         5.43           0         7.55           4         70.59           ); l <sup>2</sup> =         983           1         3.49           1         5.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W. Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.33           -0.70 [-1.59, 0.19         -0.70 [-1.59, 0.19           6         -0.70 [-0.52, 0.32           0.10 [-0.02, 0.22         0.10 [-0.02, 0.22           6         -0.00 [-1.46, 1.46           1         1.00 [0.487, 1.13           6         -0.00 [-1.46, 1.46           -0.40 [-0.85, 0.05           6         -0.40 [-0.85, 0.05           6         -0.40 [-0.56, 0.28           6         -0.40 [-0.56, 0.28           6         -0.41 [-0.56, 0.28           6         -0.41 [-0.30, 0.08           6         -0.41 [-0.30, 0.08           6         -0.41 [-0.34, 0.46                                                                                                                                                                                                                                                                                                                                                                                                                               | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bonett 2013<br>Bove 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Verheijde 2004<br>Wister (primary) 2007<br>Wong 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup><br>Test for overall effect:<br>1.7.2 Secondary Prev<br>Blasco 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M<br>ition<br>-0<br>-0<br>-0<br>-0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ean<br>.54 0<br>0.2<br>0.1<br>.42 0<br>0.9<br>0.1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                          | SD         Ti           0.14         6.3           2.2         2.8           0.42         3.6           0.08         6.0           1         1           6.3         1.6           1.8         8.8           8.23.79         0.26)           2.2         1.3           1.3         3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | otal         M           180         -(           197         120           181         -(           195         (           055         208           97         32           127         -(           126         -(           157         -(           157         -(           53         53           53         53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lean         ::           0.12         0.           0.3         6           0.5         4           0         0           0.32         0.           0         0           0.32         0.           0         0           0.32         0.           0.32         0.           0.32         0.           0.03         0.           0.01         1           0.03         0.           0.03         0.           0.33         1           0.03         0.           0.33         0.           0.33         0.           0.38         2           0.38         2           0.38         2           0.375         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SD         Tot           13         18           .3         9           .5         12           .6         15           .6         10           .2         10           .2         10           .2         12           .2         12           .2         2           .7         7           .8         14           51         50           .6         10           .2         .2           .7         7           .8         14           51         50           .6         10           .6         10           .2         .2           .7         7           .8         14           51         50           .6         10           .1         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5         9.09           7         0.99           1         2.29           9         5.45           0         8.55           8         1.49           2         9.09           6         8.55           2         1.00           9         5.19           3         0.99           3         2.49           0         7.55           4         70.59           1         3.49           1         5.19           6         5.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W. Random, 95% C           -0.42 [-0.45, -0.39           -0.60 [-2.13, 0.93           -0.70 [-1.59, 0.19           -0.70 [-1.59, 0.19           -0.70 [-0.52, 0.32           -0.70 [-0.70, 0.29           -0.70 [-0.70, 0.29           -0.70 [-0.70, 0.29           -0.70 [-0.70, 0.29           -0.70 [-0.70, 0.29           -0.70 [-0.70, 0.77           -0.70 [-0.94, 0.56           -0.70 [-0.94, 0.56           -0.41 [-0.56, 0.28           -0.41 [-0.30, 0.08           -0.75 [-1.41, -0.09           -0.75 [-1.41, -0.09           -0.75 [-0.56, 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Borektouizen 2013<br>Broekhuizen 2012<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kislelev 2012<br>Kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Verheijde 2004<br>Wister (primary) 2007<br>Wong 2013<br>Subtoal (95% CI)<br>Heterogeneity: Tau <sup>2</sup><br>Test for overall effect<br>1.7.2 Secondary Prev<br>Blasco 2012<br>Southard 2003<br>Theissing 2013<br>Vernooj 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M<br>ition<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ean<br>.54 00<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0                                                                                                                                                                                                                                                                                                         | SD Tr<br>).14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>3.6<br>0.58<br>8<br>8<br>823.79<br>0.26)<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                                                                                                                                                                                                                                                                                                                | otal         M           180         -(           197         120           121         120           122         120           125         208           97         32           73         -(           157         -(           54         0           102         0           53         58           164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lean         ::           0.12         0.         0.           0.32         0.         0.           0.32         0.         0.           0.32         0.         0.           0.32         0.         0.           0.33         0.         0.           0.01         1.         0.           0.03         0.         0.           0.03         0.         0.           0.03         0.         0.           0.03         0.         0.           0.03         0.         0.           0.03         0.         0.           0.03         0.         0.           0.03         0.         0.           0.03         0.         0.           0.03         0.         0.           0.33         0.         0.           0.38         2         0.           0.75         1.         0.           0.5         0.         0.                                                                                                                                                                                                                                                                 | D         Tot           13         18         3         9           .5         12         6         15           .6         15         5         20           .6         16         16         16           .2         12         12         12           .2         12         12         12           .2         2         12         16           .3         9         .7         7           .8         14         15         5           .6         10         1         10           .6         10         1         10         5           .1         10         5         16         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5         9.09           7         0.99           1         2.29           9         5.49           0         8.55           2         9.00           6         8.59           2         9.00           6         2.89           3         0.99           5         1.33           9         5.11           6         7.55           1         3.49           1         3.49           1         3.49           1         3.49           1         5.19           6         5.79           6         8.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W. Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.33           -0.70 [-1.59, 0.19         -0.70 [-1.59, 0.19           6         -0.70 [-1.59, 0.19           6         -0.70 [-1.59, 0.19           6         -0.70 [-0.52, 0.32           0.10 [-0.02, 0.22         -0.10 [-0.52, 0.32           6         -0.10 [-0.52, 0.32           6         -0.00 [-1.46, 1.46           6         -0.00 [-0.85, 0.05           6         -1.40 [-2.95, 0.15           6         -0.20 [-0.97, 0.57           6         -0.19 [-0.94, 0.56           6         -0.41 [-0.56, 0.28           6         -0.11 [-0.30, 0.085           6         -0.75 [-1.41, -0.096           6         -0.75 [-1.41, -0.096           6         -0.75 [-1.41, -0.46           6         -0.17 [-0.56, 0.22                                                                                                                                                                                                                                                                                        | I IV, Random, 95% Cl                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bowe 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Wister (primary) 2007<br>Wong 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>1.7.2 Secondary Prev<br>Blasco 2012<br>Southard 2003<br>Theissing 2013<br>Vernoij 2012<br>Southard 2003<br>Theissing 2013<br>Vernoij 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M<br>ition<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ean<br>                                                                                                                                                                                                                                                                                                                                                                     | SD Tr<br>).14<br>6.3<br>2.2<br>2.8<br>0.42<br>3.6<br>0.08<br>6.1<br>1<br>6.3<br>1.6<br>3.6<br>0.08<br>6.1<br>1<br>2.8<br>1.9<br>0.58<br>8<br>8<br>823.79<br>0.26)<br>2.2<br>1.3<br>1.3<br>0.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | otal         M           180         -(           197         120           121         120           181         195           192         208           208         208           97         32           127         26           73         -(           157         -(           54         (           102         (           53         58           164         153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lean         :::           0.12         0.0         0.0         0           0.32         0.0         0         0         0           0.32         0.0         0         0         0         0           0.32         0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | SD         Tot           13         18           13         18           13         18           13         18           13         18           13         18           13         18           13         18           14         25           14         25           15         16           12         12           12         2           12         2           12         2           15         16           15         16           11         15           11         10           15         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W. Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.33           -0.70 [-1.59, 0.19         -0.70 [-1.59, 0.19           6         -0.70 [-0.52, 0.32           0         0.10 [-0.52, 0.32           0         0.00 [-1.60, 0.29           6         -0.00 [-2.09, 0.29           6         -0.00 [-4.61, 1.46           1         1.00 [0.85, 0.05           6         -0.40 [-0.94, 0.56           6         -0.40 [-0.94, 0.56           6         -0.41 [-0.56, 0.23           6         -0.01 [-0.30, 0.08           5         -0.11 [-0.30, 0.08           6         -0.17 [-0.56, 0.22           6         -0.17 [-0.56, 0.22           6         -0.17 [-0.44, 0.32                                                                                                                                                                                                                                                                                                                                                                                                | I IV, Random, 95% Cl                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bornett 2013<br>Boreekhuizen 2013<br>Broekhuizen 2012<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kiselev 2012<br>Kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Verheijde 2004<br>Wister (primary) 2007<br>Wong 2013<br>Subtoal (95% CI)<br>Heterogeneity: Tau <sup>2</sup><br>Test for overall effect<br>1.7.2 Secondary Prev<br>Blasco 2012<br>Southard 2003<br>Theissing 2013<br>Vernoojl 2012<br>Wister (secondary) 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M<br>ition<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ean<br>                                                                                                                                                                                                                                                                                                                                                                     | SD Th<br>.1.14<br>6.3<br>2.2<br>2.8<br>.42<br>3.6<br>6.1<br>1.6<br>2.8<br>1.6<br>2.8<br>8.8<br>8.23.79<br>0.260<br>2.2<br>1.3<br>1.3<br>0.5<br>1.5<br>1.5<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otal         M           180         -((           197         120           120         120           120         120           055         208           97         32           73         -((           127         -(1           73         -(           222         (           , df = 1         102           102         (           164         -           153         -(           153         -(           8         -                                                                                                                                                                                                                                                                                                                                                                                                                                                | lean         :::           0.12         0.0         0.0         0           0.32         0.0         0         0         0           0.32         0.0         0         0         0         0           0.32         0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | SD         Tot           13         18           13.3         18           13.3         12           15.1         16           15.5         16           16.6         15           17.2         100           18.2         12           12.2         12           12.2         12           12.2         12           12.2         12           12.2         12           12.2         12           12.2         12           12.2         12           12.4         14           13.5         16           14.5         15           15         15           16         10           1.5         16           .8         14           .7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5         9.09           7         0.99           1         2.29           9         5.49           0         8.55           2         9.09           6         8.59           2         9.09           6         2.89           3         2.49           9         5.11           6         2.87           3         2.49           7         7.55           4         70.59           1         3.49           1         3.49           1         5.19           6         5.77           6         5.776           3         5.89           7         0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W. Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.33           -0.70 [-1.59, 0.19         -0.70 [-1.59, 0.19           6         -0.70 [-0.52, 0.32           0.10 [-0.02, 0.22         -0.10 [-0.52, 0.32           0.10 [-0.02, 0.22         -0.30 [-2.09, 0.29           -0.10 [-0.52, 0.32         -0.31           6         -0.00 [-4.6, 1.46           -0.40 [-0.85, 0.05         -0.41 [-0.97, 0.57           -0.19 [-0.94, 0.56         0.23           -0.19 [-0.94, 0.56         0.23           6         -0.40 [-0.63, -0.17           6         -0.41 [-0.30, 0.08           6         -0.75 [-1.41, -0.09           6         -0.75 [-1.41, -0.09           6         -0.71 [-0.56, 0.23           6         -0.71 [-0.30, 0.08           6         -0.71 [-0.51, 0.14           6         -0.17 [-0.54, 0.46           6         -0.17 [-0.54, 0.46           6         -0.17 [-0.54, 0.45           6         -0.17 [-0.54, 0.45           6         -0.17 [-0.54, 0.45           6         -0.14 [-0.21, 0.01           6         -0.05 [-0.44, 0.45, 1.65 | I     IV, Random, 95% Cl                      |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2013<br>Bowe 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Subtotal (95% Cl)<br>Heterogeneiky: Tau <sup>2</sup><br>Test for overall effect<br>1.7.2 Secondary Prev<br>Blasco 2012<br>Southard 2003<br>Theising 2013<br>Vernoid 2013<br>Southard 2003<br>Theising 2013<br>Vernoid 2012<br>Southard 2003<br>Theising 2013<br>Vernoid 2012<br>Vernoid 2012<br>Southard 2003<br>Theising 2013<br>Vernoid 2012<br>Versoid 2022<br>Subtotal (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M           -0           -           -           0           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           - | ean<br>.5.4 0<br>.0.3<br>0.2<br>0.1<br>.42 0<br>0.9<br>0.9<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3                                                                                                                                                                                                                                                          | SD Th<br>.1.4<br>6.3<br>2.2<br>2.8<br>.42<br>3.6<br>6.3<br>1.6<br>6.3<br>1.6<br>6.3<br>1.6<br>2.8<br>8.8<br>8.823.79<br>0.260<br>2.2<br>1.3<br>0.5<br>1.3<br>1.5<br>1.5<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | otal         M           180         -((           197         -(           197         -(           181         -(           182         -(           183         -(           181         -(           181         -(           181         -(           181         -(           181         -(           181         -(           181         -(           181         -(           182         -(           183         -(           1102         (           1102         (           1102         (           1102         (           1102         (           1102         (           1102         (           1102         (           1103         -(           1104         -(           1105         -(           1104         -(           1105         -(           1104         -(           1105         -(           1104         -(           1105         -( | lean         :::           0.12         0.0         0           0.3         (         0           0.5         4         0           0.32         0         0         0           0.32         0         0         -1           0.32         0         0         -1         0           0.33         0         0         -1         0           0.01         0         -1         0         0         0           0.03         0         0         -1         0         0         0           0.01         0         -1         1         0         0         0         0           0.03         0         -1         1         0         0         0         0           0.38         2         0         0         -1         1         0         0         0           0.38         2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                    | SD         Tot           13         18           13         18           13         18           13         18           13         18           13         18           13         18           14         25           16         15           16         16           1.2         12           2.2         12           2.2         12           2.2         12           2.2         12           2.2         12           2.2         12           2.2         12           2.2         12           2.3         14           1.5         16           1.6         10           1.5         16           .8         14           .7         57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5         9.09           7         0.99           1         2.23           9         5.44           2         9.00           8.558         1.49           0         8.558           2         9.00           6         8.55           2         1.00           9         5.13           3         2.99           3         5.44           70.59         5.12           1         3.49           1         3.49           1         3.49           1         5.11           6         8.65           3         5.44           70.59         5.77           6         8.66           3         5.88           7         0.99           4         29.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W. Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.33           -0.70 [-1.59, 0.19         -0.70 [-1.59, 0.19           6         -0.70 [-0.52, 0.32           0         0.10 [-0.52, 0.32           0         0.00 [-1.60, 0.29           6         -0.00 [-2.09, 0.29           6         -0.00 [-4.61, 1.46           1         1.00 [0.85, 0.05           6         -0.40 [-0.94, 0.56           6         -0.40 [-0.94, 0.56           6         -0.41 [-0.56, 0.23           6         -0.01 [-0.30, 0.08           5         -0.11 [-0.30, 0.08           6         -0.17 [-0.56, 0.22           6         -0.17 [-0.56, 0.22           6         -0.17 [-0.44, 0.32                                                                                                                                                                                                                                                                                                                                                                                                | I     IV, Random, 95% CI                      |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bornett 2013<br>Boreekhuizen 2013<br>Broekhuizen 2012<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kiselev 2012<br>Kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Verheijde 2004<br>Wister (primary) 2007<br>Wong 2013<br>Subtoal (95% CI)<br>Heterogeneity: Tau <sup>2</sup><br>Test for overall effect<br>1.7.2 Secondary Prev<br>Blasco 2012<br>Southard 2003<br>Theissing 2013<br>Vernoojl 2012<br>Wister (secondary) 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M           -0           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           - | ean<br>1.54 00<br>0.3<br>0.2<br>0.1<br>0.42 00<br>0.9<br>0.1 0<br>0<br>0.3<br>0.5<br>1.3<br>0.3<br>0.2<br>0.47<br>0.47<br>0.42<br>0.2<br>0.47<br>0.37<br>0.37<br>0.5<br>8.58<br>0.4<br>0.9<br>0.4<br>0.9<br>0.3<br>0.2<br>0.1<br>0.3<br>0.5<br>1.3<br>0.2<br>0.3<br>0.42<br>0.0<br>0.3<br>0.5<br>1.3<br>0.2<br>0.42<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | SD Th<br>.1.14<br>6.3<br>2.2<br>2.8<br>.42<br>3.6<br>6.1<br>1<br>6.3<br>1.6<br>2.8<br>8.8<br>823.79<br>0.26)<br>2.2<br>1.3<br>1.3<br>0.5<br>1.5<br>1.3<br>15.22,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otal         M           180         -((           197         -(           197         -(           181         -(           182         -(           183         -(           181         -(           181         -(           181         -(           181         -(           181         -(           181         -(           181         -(           181         -(           182         -(           183         -(           1102         (           1102         (           1102         (           1102         (           1102         (           1102         (           1102         (           1102         (           1103         -(           1104         -(           1105         -(           1104         -(           1105         -(           1104         -(           1105         -(           1104         -(           1105         -( | lean         :::           0.12         0.0         0           0.3         (         0           0.5         4         0           0.32         0         0         0           0.32         0         0         -1           0.32         0         0         -1         0           0.33         0         0         -1         0           0.01         0         -1         0         0         0           0.03         0         0         -1         0         0         0           0.01         0         -1         1         0         0         0         0           0.03         0         -1         1         0         0         0         0           0.38         2         0         0         -1         1         0         0         0           0.38         2         0         0         -1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                   | SD         Tot           13         18           13         18           13         18           13         18           13         18           13         18           13         18           14         25           16         15           16         16           1.2         12           2.2         12           2.2         12           2.2         12           2.2         12           2.2         12           2.2         12           2.2         12           2.2         12           2.3         14           1.5         16           1.6         10           1.5         16           .8         14           .7         57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5         9.09           7         0.99           1         2.23           9         5.44           2         9.00           8.558         1.49           0         8.558           2         9.00           6         8.55           2         1.00           9         5.13           3         2.99           3         5.44           70.59         5.12           1         3.49           1         3.49           1         3.49           1         5.11           6         8.65           3         5.44           70.59         5.77           6         8.66           3         5.88           7         0.99           4         29.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W. Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.33           -0.70 [-1.59, 0.19         -0.70 [-1.59, 0.19           6         -0.70 [-0.52, 0.32           0.10 [-0.02, 0.22         -0.30 [-2.09, 0.29           0.10 [-0.63, 0.05         -0.10 [-0.52, 0.32           -0.10 [-0.52, 0.32         -0.30 [-2.09, 0.29           -0.10 [-0.53, 0.05         -0.40 [-0.65, 0.02           -0.10 [-0.79, 0.57         -0.19 [-0.94, 0.56           -0.10 [-0.50, 0.28         -0.40 [-0.66, 0.28           6         -0.40 [-0.63, -0.17           6         -0.41 [-0.30, 0.08           6         -0.75 [-1.41, -0.09           6         -0.75 [-1.41, -0.04           6         -0.71 [-0.56, 0.23           6         -0.71 [-0.51, 0.13           6         -0.71 [-0.51, 0.14           6         -0.17 [-0.51, 0.14           6         -0.17 [-0.51, 0.14           6         -0.17 [-0.51, 0.14           6         -0.17 [-0.51, 0.14           6         -0.17 [-0.52, 0.10]                                                                                 | I     IV, Random, 95% CI                      |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bonett 2013<br>Bove 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kulick 2013<br>Combard 2010<br>Senesael 2013<br>Verheijde 2004<br>Wister (primary) 2007<br>Wong 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Biasco 2012<br>Southard 2003<br>Theissing 2013<br>Vernoij 2012<br>Vernoij 2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M           -0           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           - | ean<br>1.54 00<br>0.3<br>0.2<br>0.1<br>0.42 00<br>0.9<br>0.1 0<br>0<br>0.3<br>0.5<br>1.3<br>0.3<br>0.2<br>0.47<br>0.47<br>0.42<br>0.2<br>0.47<br>0.37<br>0.37<br>0.5<br>8.58<br>0.4<br>0.9<br>0.4<br>0.9<br>0.3<br>0.2<br>0.1<br>0.3<br>0.5<br>1.3<br>0.2<br>0.3<br>0.42<br>0.0<br>0.3<br>0.5<br>1.3<br>0.2<br>0.42<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | SD Th<br>14<br>6.3<br>2.2<br>8.<br>0.42<br>3.6<br>0.42<br>3.6<br>0.42<br>1<br>1<br>6.3<br>1.6<br>1<br>1<br>6.3<br>1.6<br>2.8<br>8.<br>8.<br>8.<br>8.<br>8.<br>8.<br>7.<br>0.26<br>1.<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>6.3<br>1.<br>7.<br>8.<br>8.<br>8.<br>8.<br>7.<br>9.<br>0.26<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.                                                                                                                                                                                                                                                                                                      | otal         M           180         -((           197         -(           197         -(           181         -(           182         -(           183         -(           181         -(           181         -(           181         -(           181         -(           181         -(           181         -(           181         -(           181         -(           182         -(           183         -(           1102         (           1102         (           1102         (           1102         (           1102         (           1102         (           1102         (           1102         (           1103         -(           1104         -(           1105         -(           1104         -(           1105         -(           1104         -(           1105         -(           1104         -(           1105         -( | lean         :::           0.12         0.0         0           0.3         (         0           0.5         4         0           0.32         0         0         0           0.32         0         0         -1           0.32         0         0         -1         0           0.33         0         0         -1         0           0.01         0         -1         0         0         0           0.03         0         0         -1         0         0         0           0.01         0         -1         1         0         0         0         0           0.03         0         -1         1         0         0         0         0           0.38         2         0         0         -1         1         0         0         0           0.38         2         0         0         -1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                   | SD         Tot           13         18         3         9           .5         12         6         15           .5         12         16         15           .6         10         2         10           .8         22         12         2           .2         12         2         2           .8         14         15         5           .6         10         5         16           .000001         .000001         .000001         .000001           .6         10         .5         16           .8         14         .7         .5         16           .8         14         .7         .5         16           .8         14         .7         .5         10           .909); l <sup>2</sup> =         .5         10         .5         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 9.09<br>7 0.99<br>1 2.21<br>9 5.43<br>2 9.09<br>6 8.59<br>2 1.00<br>9 5.11<br>3 0.99<br>3 2.90<br>9 5.12<br>3 0.99<br>3 2.90<br>9 5.12<br>3 0.99<br>3 5.49<br>0 7.55<br>4 70.55<br>1 3.49<br>1 3.49<br>1 3.49<br>1 5.12<br>6 5.77<br>6 8.69<br>3 5.88<br>7 0.99<br>4 29.59<br>67%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W. Random, 95% C           6         -0.42 [-0.45, -0.39           6         -0.60 [-2.13, 0.33           -0.70 [-1.59, 0.19         -0.70 [-1.59, 0.19           6         -0.70 [-0.52, 0.32           0.10 [-0.02, 0.22         -0.30 [-2.09, 0.29           0.10 [-0.63, 0.05         -0.10 [-0.52, 0.32           -0.10 [-0.52, 0.32         -0.30 [-2.09, 0.29           -0.10 [-0.53, 0.05         -0.40 [-0.65, 0.02           -0.10 [-0.79, 0.57         -0.19 [-0.94, 0.56           -0.10 [-0.50, 0.28         -0.40 [-0.66, 0.28           6         -0.40 [-0.63, -0.17           6         -0.41 [-0.30, 0.08           6         -0.75 [-1.41, -0.09           6         -0.75 [-1.41, -0.04           6         -0.71 [-0.56, 0.23           6         -0.71 [-0.51, 0.13           6         -0.71 [-0.51, 0.14           6         -0.17 [-0.51, 0.14           6         -0.17 [-0.51, 0.14           6         -0.17 [-0.51, 0.14           6         -0.17 [-0.51, 0.14           6         -0.17 [-0.52, 0.10]                                                                                 | I IV, Random, 95% Cl                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2012<br>Bonett 2013<br>Bove 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Verheijde 2004<br>Wister (primary) 2007<br>Wong 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Nister (scendary) 202<br>Zutz 2007<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Test for overall effe | M           -0           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           - | ean<br>.54 0<br>.54 0<br>.54 0<br>.54 0<br>.03<br>.642 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                   | SD Th<br>.14<br>6.3<br>2.2<br>8.0<br>.42<br>3.6<br>0.42<br>3.6<br>0.44<br>1<br>6.3<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>8.823.79<br>0.26)<br>2.2<br>1.3<br>1.5<br>1.3<br>1.5<br>1.5<br>1.5<br>8.8<br>8.823.79<br>0.26)<br>2.2<br>8.8<br>8.823.79<br>0.26)<br>2.2<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.9<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.26)<br>2.8<br>8.8<br>8.823.79<br>0.58<br>8.8<br>8.823.79<br>0.58<br>8.8<br>8.823.79<br>0.58<br>8.8<br>8.823.79<br>0.58<br>8.8<br>8.823.79<br>0.58<br>8.8<br>8.823.79<br>0.58<br>8.8<br>8.823.79<br>0.58<br>8.8<br>8.823.79<br>0.58<br>8.8<br>8.823.79<br>0.58<br>8.8<br>8.823.79<br>0.58<br>8.8<br>8.823.79<br>0.58<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8 | otal         M           180         -(           197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ican                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD         Tot           13         18         3         9           .3         9         5         12         6         10           .5         12         10         8         6         10         13         18         8         2         12         12         14         25         14         15         14         14         25         14         15         14         15         14         15         14         15         14         15         14         15         14         15         14         15         14         15         11         10         15         16         16         15         11         10         15         14         17         77         77         78         14         17         10         15         11         10         15         16         14         17         10         15         16         14         17         77         78         14         17         75         79         10         15         16         14         17         16         16         16         16         16         16         16         16         16         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 9.00<br>7 0.99<br>1 2.27<br>9 5.4%<br>2 9.00<br>6 8.55<br>2 1.00<br>9 5.4%<br>2 9.00<br>6 8.55<br>2 1.00<br>9 5.4%<br>3 0.99<br>3 2.9%<br>3 2.9%<br>3 2.8%<br>3 2.9%<br>3 2.8%<br>3 2.9%<br>3 2.8%<br>3 2.9%<br>3 2.8%<br>3 2.9%<br>3 2.8%<br>3 2.9%<br>4 70.55<br>1 3.4%<br>1 3.4 | <ul> <li>W. Random, 95% C</li> <li>O.42 [-0.45, -0.39</li> <li>O.60 [-2.13, 0.33</li> <li>O.70 [-1.59, 0.19</li> <li>O.10 [-0.52, 0.32</li> <li>O.10 [-0.02, 0.22</li> <li>O.10 [-0.02, 0.22</li> <li>O.10 [-0.38, 0.15</li> <li>O.00 [-1.46, 1.46</li> <li>O.00 [-1.46, 1.46</li> <li>O.00 [-1.46, 1.46</li> <li>O.10 [-0.53, 0.12</li> <li>O.10 [-0.71, 0.50, 0.28</li> <li>O.10 [-0.71, 0.50, 0.29</li> <li>O.10 [-0.71, 0.50, 0.28</li> <li>O.10 [-0.71, 0.50, 0.28</li> <li>O.10 [-0.71, 0.50, 0.28</li> <li>O.20 [-0.97, 0.57</li> <li>O.19 [-0.94, 0.56, 0.28</li> <li>O.40 [-0.63, -0.17</li> <li>O.11 [-0.30, 0.08</li> <li>O.09 [-1.34, -0.46</li> <li>O.17 [-0.56, 0.28</li> <li>O.10 [-0.21, 0.01</li> <li>O.06 [-0.44, 0.32</li> <li>O.13 [-0.60, 0.03</li> <li>O.017 [-0.52, -0.01</li> </ul>                                                                                                                                                                                                                                                                                                          | I IV, Random, 95% CI                          |
| Study or Subgroup<br>1.7.1 Primary Preven<br>Bennett 2013<br>Bowe 2013<br>Broekhuizen 2012<br>Claes 2013<br>Green 2008<br>Hansen 2012<br>Jacobs 2011<br>Kulick 2013<br>Lombard 2010<br>Senesael 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup><br>Test for overall effect:<br>1.7.2 Secondary Prev<br>Blasco 2012<br>Southard 2003<br>Theissing 2013<br>Vernouj 2012<br>Wister (secondary) 201       | M           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.           -0.07.           -0.07.           -0.07.           -0.07.           -0.07.           -0.07.                                                                                                                                                                                                                      | ean<br>                                                                                                                                                                                                                                                                                                                                                                     | SD         Th           0.14         6.3           6.3         2.2           3.6         0.08           0.42         3.6           0.42         3.6           0.42         3.6           1.1         6.3           1.6         2.8           8823.79         0.260           2.2         1.3           1.3         0.5           1.3         15.22,           0.030         8           8840.022         1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otal         M           180         -(           197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ican                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD         Tot           13         18         3         9           .3         9         5         12         6         10           .5         12         10         8         6         10         13         18         8         2         12         12         14         25         14         15         14         14         25         14         15         14         15         14         15         14         15         14         15         14         15         14         15         14         15         14         15         11         10         15         16         16         15         11         10         15         14         17         77         77         78         14         17         10         15         11         10         15         16         14         17         10         15         16         14         17         77         78         14         17         75         79         10         15         16         14         17         16         16         16         16         16         16         16         16         16         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 9.00<br>7 0.99<br>1 2.27<br>9 5.4%<br>2 9.00<br>6 8.55<br>2 1.00<br>9 5.4%<br>2 9.00<br>6 8.55<br>2 1.00<br>9 5.4%<br>3 0.99<br>3 2.9%<br>3 2.9%<br>3 2.8%<br>3 2.9%<br>3 2.8%<br>3 2.9%<br>3 2.8%<br>3 2.9%<br>3 2.8%<br>3 2.9%<br>3 2.8%<br>3 2.9%<br>4 70.55<br>1 3.4%<br>1 3.4 | <ul> <li>W. Random, 95% C</li> <li>O.42 [-0.45, -0.39</li> <li>O.60 [-2.13, 0.33</li> <li>O.70 [-1.59, 0.19</li> <li>O.10 [-0.52, 0.32</li> <li>O.10 [-0.02, 0.22</li> <li>O.10 [-0.02, 0.22</li> <li>O.10 [-0.38, 0.15</li> <li>O.00 [-1.46, 1.46</li> <li>O.00 [-1.46, 1.46</li> <li>O.00 [-1.46, 1.46</li> <li>O.10 [-0.53, 0.12</li> <li>O.10 [-0.71, 0.50, 0.28</li> <li>O.10 [-0.71, 0.50, 0.29</li> <li>O.10 [-0.71, 0.50, 0.28</li> <li>O.10 [-0.71, 0.50, 0.28</li> <li>O.10 [-0.71, 0.50, 0.28</li> <li>O.20 [-0.97, 0.57</li> <li>O.19 [-0.94, 0.56, 0.28</li> <li>O.40 [-0.63, -0.17</li> <li>O.11 [-0.30, 0.08</li> <li>O.09 [-1.34, -0.46</li> <li>O.17 [-0.56, 0.28</li> <li>O.10 [-0.21, 0.01</li> <li>O.06 [-0.44, 0.32</li> <li>O.13 [-0.60, 0.03</li> <li>O.017 [-0.52, -0.01</li> </ul>                                                                                                                                                                                                                                                                                                          | I IV, Random, 95% CI                          |

**Figure 3.** Figure 3a: Weight and DHI. Figure 3b: BMI and DHI.

Author Manuscript

Author Manuscript

Author Manuscript

|                                                                                                                                                                                                                                                                                                                                                | Digita                                                                                                                                            | I Heal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Usu                                                                                                                                                       | al Car                                                                                        | e                                                                                                                                              |                                                                                                                                            | Mean Difference                                                                                                                                                                                                                                                                                                           | Mean Difference                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                              | Mean                                                                                                                                              | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean                                                                                                                                                      | SD                                                                                            | Total                                                                                                                                          | Weight                                                                                                                                     | IV, Random, 95% C                                                                                                                                                                                                                                                                                                         | IV, Random, 95% CI                                                                                                                                                                     |
| Appel 2011                                                                                                                                                                                                                                                                                                                                     | -10.1                                                                                                                                             | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.8                                                                                                                                                      | 3.8                                                                                           | 138                                                                                                                                            |                                                                                                                                            | -8.30 [-9.05, -7.55]                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| Bennett 2010                                                                                                                                                                                                                                                                                                                                   | -5.1                                                                                                                                              | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.62                                                                                                                                                      | 4                                                                                             | 50                                                                                                                                             |                                                                                                                                            | -5.72 [-7.96, -3.48]                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| Bennett 2012                                                                                                                                                                                                                                                                                                                                   | -3                                                                                                                                                | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.7                                                                                                                                                      | 0.8                                                                                           | 185                                                                                                                                            | 11.8%                                                                                                                                      | -2.30 [-2.46, -2.14]                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                      |
| Bennett 2013                                                                                                                                                                                                                                                                                                                                   | -2.2                                                                                                                                              | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1                                                                                                                                                       | 10.67                                                                                         | 97                                                                                                                                             | 10.0%                                                                                                                                      | -3.30 [-6.28, -0.32]                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                  |
| Bove 2013                                                                                                                                                                                                                                                                                                                                      | -0.8                                                                                                                                              | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4                                                                                                                                                       | 22.6                                                                                          | 121                                                                                                                                            | 8.0%                                                                                                                                       | -3.20 [-8.11, 1.71]                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                        |
| Dekkers 2011                                                                                                                                                                                                                                                                                                                                   | -7.7                                                                                                                                              | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -5.5                                                                                                                                                      | 3.5                                                                                           | 92                                                                                                                                             | 11.5%                                                                                                                                      | -2.20 [-3.39, -1.01]                                                                                                                                                                                                                                                                                                      | ·                                                                                                                                                                                      |
| Park 2012                                                                                                                                                                                                                                                                                                                                      | -4.4                                                                                                                                              | 3.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5                                                                                                                                                       | 2                                                                                             | 37                                                                                                                                             | 11.4%                                                                                                                                      | -5.90 [-7.20, -4.60]                                                                                                                                                                                                                                                                                                      | ·                                                                                                                                                                                      |
| Reid 2012                                                                                                                                                                                                                                                                                                                                      | 12.6                                                                                                                                              | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.8                                                                                                                                                       | 5.8                                                                                           | 108                                                                                                                                            | 11.2%                                                                                                                                      | 5.80 [4.23, 7.37]                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                        |
| Southard 2003                                                                                                                                                                                                                                                                                                                                  | -4.4                                                                                                                                              | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                       | 6.5                                                                                           | 51                                                                                                                                             | 9.8%                                                                                                                                       | -4.90 [-8.08, -1.72]                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| Zutz 2007                                                                                                                                                                                                                                                                                                                                      | -3.7                                                                                                                                              | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -4                                                                                                                                                        | 9.8                                                                                           | 7                                                                                                                                              | 3.9%                                                                                                                                       | 0.30 [-9.78, 10.38]                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                      |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                           |                                                                                               | 886                                                                                                                                            | 100.0%                                                                                                                                     | -3.18 [-5.61, -0.75]                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                              | 13.03.0                                                                                                                                           | hi <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | df = 9                                                                                                                                                    | 9 (P < 0                                                                                      |                                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                        |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , 01                                                                                                                                                      |                                                                                               |                                                                                                                                                | x/, 1 = 5                                                                                                                                  | 010                                                                                                                                                                                                                                                                                                                       | -10 -5 0 5 1                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   | ų.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                               |                                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                           | Favours (digital health) Favours (usual care)                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                               |                                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                        |
| В                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                               |                                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   | al Hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                           | sual Ca                                                                                       |                                                                                                                                                |                                                                                                                                            | Mean Difference                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                        |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean                                                                                                                                                      |                                                                                               |                                                                                                                                                |                                                                                                                                            | t IV, Random, 95%                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                        |
| Bennett 2012                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                   | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.7                                                                                                                                                      | 0.8                                                                                           | 3 185                                                                                                                                          | 5 99.6                                                                                                                                     | % -2.30 [-2.46, -2.]                                                                                                                                                                                                                                                                                                      | 14]                                                                                                                                                                                    |
| Bennett 2013                                                                                                                                                                                                                                                                                                                                   | 2.2                                                                                                                                               | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1                                                                                                                                                       | 10.67                                                                                         | 7 97                                                                                                                                           | 7 0 3                                                                                                                                      | % -3.30 [-6.28, -0.3                                                                                                                                                                                                                                                                                                      | 32]                                                                                                                                                                                    |
| Dennett LOXD                                                                                                                                                                                                                                                                                                                                   | -2.2                                                                                                                                              | *0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1                                                                                                                                                       |                                                                                               |                                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                        |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                               | -0.8                                                                                                                                              | 15.7<br>Chi <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120<br><b>397</b><br>0.56, c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.4<br>if = 2 (                                                                                                                                           | 22.6                                                                                          | 5 121<br>403                                                                                                                                   | 1 0.1<br>3 100.0                                                                                                                           | <ul> <li>-3.20 [-8.11, 1.3]</li> <li>-2.30 [-2.47, -2.3]</li> </ul>                                                                                                                                                                                                                                                       | 14) +<br>-10 -5 0 5 1                                                                                                                                                                  |
| Bove 2013<br><b>Total (95% CI)</b><br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                        | -0.8                                                                                                                                              | 15.7<br>Chi <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120<br><b>397</b><br>0.56, c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.4<br>if = 2 (                                                                                                                                           | 22.6                                                                                          | 5 121<br>403                                                                                                                                   | 1 0.1<br>3 100.0                                                                                                                           | % -3.20 [-8.11, 1.3                                                                                                                                                                                                                                                                                                       | 14]                                                                                                                                                                                    |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup><br>Test for overall effect                                                                                                                                                                                                                                                      | -0.8<br>= 0.00; 0<br>:: Z = 27                                                                                                                    | 15.7<br>Chi <sup>2</sup> =<br>.57 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>397<br>0.56, c<br>< 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4<br>df = 2 (<br>0001)                                                                                                                                  | 22.6<br>P = 0.7                                                                               | 5 121<br>403<br>76); I <sup>2</sup> =                                                                                                          | 1 0.1<br>3 100.0                                                                                                                           | % -3.20 [-8.11, 1.]<br>% -2.30 [-2.47, -2.]                                                                                                                                                                                                                                                                               | 14] +<br>-10 -5 0 5 1<br>Favours [experimental] Favours [control]                                                                                                                      |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>C                                                                                                                                                                                                                                               | -0.8<br>= 0.00; 0<br>:: Z = 27<br>Digit                                                                                                           | 15.7<br>Chi <sup>2</sup> =<br>.57 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br><b>397</b><br>0.56, c<br>< 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.4<br>df = 2 (<br>0001)<br>Use                                                                                                                           | 22.6<br>P = 0.7                                                                               | 403<br>(6); 1 <sup>2</sup> =                                                                                                                   | 1 0.1<br>3 100.0<br>= 0%                                                                                                                   | <ul> <li>-3.20 [-8.11, 1.]</li> <li>-2.30 [-2.47, -2.]</li> <li>Mean Difference</li> </ul>                                                                                                                                                                                                                                | 14] +<br>-10 -5 0 5 1<br>Favours [experimental] Favours [control]<br>Mean Difference                                                                                                   |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> +<br>Test for overall effect<br>C<br>Study or Subgroup                                                                                                                                                                                                                          | -0.8<br>= 0.00; 0<br>:: Z = 27<br>Digit<br>Mean                                                                                                   | 15.7<br>Chi <sup>2</sup> =<br>.57 (P<br>al Hea<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120<br>397<br>0.56, c<br>< 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4<br>df = 2 (<br>0001)<br>Use<br>Mean                                                                                                                   | 22.6<br>P = 0.7<br>Jal Car<br>SD                                                              | 403<br>76); 1 <sup>2</sup> =<br>e<br>Total                                                                                                     | 1 0.1<br>3 100.0<br>= 0%<br>Weight                                                                                                         | <ul> <li>-3.20 [-8.11, 1.3]</li> <li>-2.30 [-2.47, -2.3]</li> <li>Mean Difference</li> <li>IV, Random, 95% CI</li> </ul>                                                                                                                                                                                                  | 14]<br>-10 -5 0 5 1<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% CI                                                                               |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012                                                                                                                                                                                                           | -0.8<br>= 0.00; (<br>:: Z = 27<br>Digit<br><u>Mean</u><br>-1.6                                                                                    | 15.7<br>Chi <sup>2</sup> =<br>.57 (P<br>al Hea<br><u>SD</u><br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120<br>397<br>0.56, c<br>< 0.00<br>alth<br>Total<br>102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.4<br>df = 2 (<br>0001)<br>Usu<br><u>Mean</u><br>3                                                                                                       | 22.6<br>P = 0.7<br>ual Can<br><u>SD</u>                                                       | 403<br>76); 1 <sup>2</sup> =<br>e<br>Total                                                                                                     | 1 0.1<br>3 100.0<br>= 0%<br><u>Weight</u><br>27.0%                                                                                         | <ul> <li>-3.20 [-8.11, 1.3]</li> <li>-2.30 [-2.47, -2.3]</li> <li>Mean Difference<br/>IV, Random, 95% CI<br/>-4.60 [-5.71, -3.49]</li> </ul>                                                                                                                                                                              | 14]<br>-10 -5 0 5 1<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% Cl                                                                               |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010                                                                                                                                                                                           | -0.8<br>= 0.00; (<br>:: Z = 27<br>Digit<br><u>Mean</u><br>-1.6<br>-0.4                                                                            | $15.7$ $Chi^{2} =$ $57 (P)$ $Chi^{2} =$ $Chi^{2} =$ $S7 =$ $Chi^{2} =$ $S7 =$ $Chi^{2} =$ $S7 =$ $S1 =$ $S2 =$ $S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120<br>397<br>0.56, c<br>< 0.00<br>dith<br>Total<br>102<br>127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4<br>df = 2 (<br>0001)<br>Usu<br><u>Mean</u><br>3<br>1.8                                                                                                | 22.6<br>P = 0.7<br>Jal Car<br>SD<br>4.1<br>8.8                                                | 403<br>76); I <sup>2</sup> =<br>e<br>Total<br>101<br>123                                                                                       | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%                                                                                       | <ul> <li>-3.20 [-8.11, 1.7]</li> <li>-2.30 [-2.47, -2.7]</li> <li>Mean Difference<br/>IV, Random, 95% CI<br/>-4.60 [-5.71, -3.49]</li> <li>-2.20 [-3.82, -0.58]</li> </ul>                                                                                                                                                | 14]<br>-10 -5 0 5 1<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV. Random, 95% Cl                                                                               |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012                                                                                                                                                                              | -0.8<br>= 0.00; (<br>:: Z = 27<br>Digit<br><u>Mean</u><br>-1.6<br>-0.4<br>-4.4                                                                    | 15.7<br>$Chi^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120<br>397<br>0.56, c<br>< 0.00<br>dlth<br>Total<br>102<br>127<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.4<br>df = 2 (<br>0001)<br>Usu<br><u>Mean</u><br>3<br>1.8<br>1.5                                                                                         | 22.6<br>P = 0.7<br>Jal Can<br>SD<br>4.1<br>8.8<br>2                                           | 403<br>76); I <sup>2</sup> =<br>e<br>Total<br>101<br>123<br>37                                                                                 | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%<br>25.9%                                                                              | <ul> <li>-3.20 [-8.11, 1.3]</li> <li>-2.30 [-2.47, -2.3]</li> <li>Mean Difference<br/>IV, Random, 95% CI<br/>-4.60 [-5.71, -3.49]</li> <li>-2.20 [-3.82, -0.58]</li> <li>-5.90 [-7.20, -4.60]</li> </ul>                                                                                                                  | 14]<br>-10 -5 0 5 1<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% Cl                                                                               |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012                                                                                                                                                                              | -0.8<br>= 0.00; (<br>:: Z = 27<br>Digit<br><u>Mean</u><br>-1.6<br>-0.4<br>-4.4                                                                    | $15.7$ $Chi^{2} =$ $57 (P)$ $Chi^{2} =$ $Chi^{2} =$ $S7 =$ $Chi^{2} =$ $S7 =$ $Chi^{2} =$ $S7 =$ $S1 =$ $S2 =$ $S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120<br>397<br>0.56, c<br>< 0.00<br>dith<br>Total<br>102<br>127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4<br>df = 2 (<br>0001)<br>Usu<br><u>Mean</u><br>3<br>1.8<br>1.5                                                                                         | 22.6<br>P = 0.7<br>Jal Car<br>SD<br>4.1<br>8.8                                                | 403<br>76); I <sup>2</sup> =<br>e<br>Total<br>101<br>123                                                                                       | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%<br>25.9%                                                                              | <ul> <li>-3.20 [-8.11, 1.7]</li> <li>-2.30 [-2.47, -2.7]</li> <li>Mean Difference<br/>IV, Random, 95% CI<br/>-4.60 [-5.71, -3.49]</li> <li>-2.20 [-3.82, -0.58]</li> </ul>                                                                                                                                                | 14]<br>-10 -5 0 5 1<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% Cl                                                                               |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012<br>Wong 2013                                                                                                                                                                 | -0.8<br>= 0.00; (<br>:: Z = 27<br>Digit<br><u>Mean</u><br>-1.6<br>-0.4<br>-4.4                                                                    | 15.7<br>$Chi^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120<br>397<br>0.56, c<br>< 0.00<br>(th<br>Total<br>102<br>127<br>42<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.4<br>df = 2 (<br>0001)<br>Usu<br><u>Mean</u><br>3<br>1.8<br>1.5<br>0                                                                                    | 22.6<br>P = 0.7<br>Jal Can<br>SD<br>4.1<br>8.8<br>2                                           | <ul> <li>403</li> <li>403</li> <li>76); l<sup>2</sup> =</li> <li>e</li> <li>Total</li> <li>101</li> <li>123</li> <li>37</li> <li>50</li> </ul> | 1 0.1<br>3 100.0<br>= 0%<br><u>Weight</u><br>27.0%<br>23.9%<br>25.9%<br>23.3%                                                              | <ul> <li>Mean Difference</li> <li>IV, Random, 95% CI</li> <li>4.60 [-5.71, -3.49]</li> <li>5.90 [-7.20, -4.60]</li> <li>2.40 [-4.11, -0.69]</li> </ul>                                                                                                                                                                    | 14]<br>-10 -5 0 5 1<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% Cl                                                                               |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012<br>Wong 2013<br>Total (95% CI)                                                                                                                                               | -0.8<br>= 0.00; 0<br>:: Z = 27.<br>Digit<br><u>Mean</u><br>-1.6<br>-0.4<br>-4.4<br>-2.4                                                           | 15.7<br>$Chi^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120<br>397<br>0.56, c<br>< 0.00<br>(Ith<br>Total<br>102<br>127<br>42<br>54<br>325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4<br>df = 2 (<br>0001)<br>Usu<br><u>Mean</u><br>3<br>1.8<br>1.5<br>0                                                                                    | 22.6<br>P = 0.7<br>aal Can<br><u>SD</u><br>4.1<br>8.8<br>2<br>4.5                             | 403<br>76); I <sup>2</sup> =<br>e<br>Total<br>101<br>123<br>37<br>50<br>311                                                                    | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%<br>23.9%<br>23.3%<br>100.0%                                                           | <ul> <li>Mean Difference</li> <li>IV, Random, 95% CI</li> <li>4.60 [-5.71, -3.49]</li> <li>2.20 [-3.82, -0.58]</li> <li>5.90 [-7.20, -4.60]</li> <li>2.40 [-4.11, -0.69]</li> <li>-3.85 [-5.54, -2.17]</li> </ul>                                                                                                         | 14]<br>-10 -5 0 5 1<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% Cl                                                                               |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012<br>Wong 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a                                                                                                          | -0.8<br>= 0.00; C<br>:: Z = 27<br>Digit<br>Mean<br>-1.6<br>-0.4<br>-2.4<br>= 2.42; C                                                              | 15.7<br>$Chi^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120<br><b>397</b><br>0.56, c<br>< 0.00<br>(th<br>Total<br>102<br>127<br>42<br>54<br><b>325</b><br>17.14,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4<br>df = 2 (<br>0001)<br>Usu<br><u>Mean</u><br>3<br>1.8<br>1.5<br>0<br>df = 3                                                                          | 22.6<br>P = 0.7<br>aal Can<br><u>SD</u><br>4.1<br>8.8<br>2<br>4.5                             | 403<br>76); I <sup>2</sup> =<br>e<br>Total<br>101<br>123<br>37<br>50<br>311                                                                    | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%<br>23.9%<br>23.3%<br>100.0%                                                           | <ul> <li>Mean Difference</li> <li>IV, Random, 95% CI</li> <li>4.60 [-5.71, -3.49]</li> <li>2.20 [-3.82, -0.58]</li> <li>5.90 [-7.20, -4.60]</li> <li>2.40 [-4.11, -0.69]</li> <li>-3.85 [-5.54, -2.17]</li> </ul>                                                                                                         | 14]<br>-10 -5 0 5 1<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% CI                                                                               |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012<br>Wong 2013<br>Total (95% CI)                                                                                                                                               | -0.8<br>= 0.00; C<br>:: Z = 27<br>Digit<br>Mean<br>-1.6<br>-0.4<br>-2.4<br>= 2.42; C                                                              | 15.7<br>$Chi^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120<br><b>397</b><br>0.56, c<br>< 0.00<br>(th<br>Total<br>102<br>127<br>42<br>54<br><b>325</b><br>17.14,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4<br>df = 2 (<br>0001)<br>Usu<br><u>Mean</u><br>3<br>1.8<br>1.5<br>0<br>df = 3                                                                          | 22.6<br>P = 0.7<br>aal Can<br><u>SD</u><br>4.1<br>8.8<br>2<br>4.5                             | 403<br>76); I <sup>2</sup> =<br>e<br>Total<br>101<br>123<br>37<br>50<br>311                                                                    | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%<br>23.9%<br>23.3%<br>100.0%                                                           | <ul> <li>Mean Difference</li> <li>IV, Random, 95% CI</li> <li>4.60 [-5.71, -3.49]</li> <li>2.20 [-3.82, -0.58]</li> <li>5.90 [-7.20, -4.60]</li> <li>2.40 [-4.11, -0.69]</li> <li>-3.85 [-5.54, -2.17]</li> </ul>                                                                                                         | 14]<br>-10 -5 0 5 1<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% Cl                                                                               |
| Rove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012<br>Wong 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> -                                                                                                          | -0.8<br>= 0.00; C<br>:: Z = 27<br>Digit<br>Mean<br>-1.6<br>-0.4<br>-2.4<br>= 2.42; C                                                              | 15.7<br>$Chi^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120<br><b>397</b><br>0.56, c<br>< 0.00<br>(th<br>Total<br>102<br>127<br>42<br>54<br><b>325</b><br>17.14,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4<br>df = 2 (<br>0001)<br>Usu<br><u>Mean</u><br>3<br>1.8<br>1.5<br>0<br>df = 3                                                                          | 22.6<br>P = 0.7<br>aal Can<br><u>SD</u><br>4.1<br>8.8<br>2<br>4.5                             | 403<br>76); I <sup>2</sup> =<br>e<br>Total<br>101<br>123<br>37<br>50<br>311                                                                    | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%<br>23.9%<br>23.3%<br>100.0%                                                           | <ul> <li>Mean Difference</li> <li>IV, Random, 95% CI</li> <li>4.60 [-5.71, -3.49]</li> <li>2.20 [-3.82, -0.58]</li> <li>5.90 [-7.20, -4.60]</li> <li>2.40 [-4.11, -0.69]</li> <li>-3.85 [-5.54, -2.17]</li> </ul>                                                                                                         | 14]<br>-10 -5 0 5 1<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% CI                                                                               |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012<br>Wong 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect                                                                               | -0.8<br>= 0.00; C<br>:: Z = 27<br>Digit<br>Mean<br>-1.6<br>-0.4<br>-2.4<br>= 2.42; C<br>:: Z = 4.4<br>Digit                                       | 15.7<br>$hi^2 = 57 (P)$<br>al Hea<br>$\frac{50}{4}$<br>4.6<br>2.6<br>3.74<br>4.4<br>$hi^2 = 8 (P < 1)$<br>$hi^2 = 8 (P < 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br><b>397</b><br>0.56, c<br>< 0.00<br><b>lth</b><br><b>Total</b><br>102<br>127<br>42<br>54<br><b>325</b><br>17.14,<br>0.000<br><b>lth</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4<br>df = 2 (<br>0001)<br>Usi<br><u>Mean</u><br>3<br>3<br>8<br>1.5<br>0<br>0<br>0<br>1)<br>df = 3<br>001)<br>Usi                                        | 22.0<br>P = 0.7<br>P = 0.7<br>4.1<br>8.8<br>2<br>4.5<br>(P = 0.                               | e<br>Total<br>101<br>123<br>37<br>50<br>311<br>00077);<br>e                                                                                    | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%<br>23.9%<br>23.3%<br>100.0%<br>1 <sup>2</sup> = 832                                   | Mean Difference<br>IV. Random, 95% CI<br>-4.60 [-5.71, -3.49]<br>-2.20 [-3.82, -0.58]<br>-5.90 [-7.20, -4.60]<br>-2.40 [-4.11, -0.69]<br>-3.85 [-5.54, -2.17]<br>Mean Difference                                                                                                                                          | 14]<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% CI<br>-10 -5 0 5 1<br>Favours [control]<br>Mean Difference<br>Mean Difference<br>Mean Difference |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012<br>Wong 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect                                                                               | -0.8<br>= 0.00; C<br>:: Z = 27<br>Digit<br>Mean<br>-1.6<br>-0.4<br>-2.4<br>= 2.42; C<br>:: Z = 4.4<br>Digit                                       | 15.7<br>$hi^2 = 57 (P)$<br>al Hea<br>$\frac{50}{4}$<br>4.6<br>2.6<br>3.74<br>4.4<br>$hi^2 = 8 (P < 1)$<br>$hi^2 = 8 (P < 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120<br><b>397</b><br>0.56, c<br>< 0.00<br><b>lth</b><br><b>Total</b><br>102<br>127<br>42<br>54<br><b>325</b><br>17.14,<br>0.000<br><b>lth</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4<br>df = 2 (<br>0001)<br>Usi<br><u>Mean</u><br>3<br>3<br>8<br>1.5<br>0<br>0<br>0<br>1)<br>df = 3<br>001)<br>Usi                                        | 22.0<br>P = 0.7<br>P = 0.7<br>4.1<br>8.8<br>2<br>4.5<br>(P = 0.                               | e<br>Total<br>101<br>123<br>37<br>50<br>311<br>00077);<br>e                                                                                    | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%<br>23.9%<br>23.3%<br>100.0%<br>1 <sup>2</sup> = 832                                   | Mean Difference<br>IV, Random, 95% CI<br>-2.30 [-2.47, -2.:<br>Mean Difference<br>IV, Random, 95% CI<br>-4.60 [-5.71, -3.49]<br>-2.20 [-3.82, -0.58]<br>-5.90 [-7.20, -4.60]<br>-2.40 [-4.11, -0.69]<br>-3.85 [-5.54, -2.17]                                                                                              | 14]<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% CI<br>-10 -5 0 5 1<br>Favours [control]<br>Mean Difference<br>Mean Difference<br>Mean Difference |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> -<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012<br>Wong 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect                                                                               | -0.8<br>= 0.00; C<br>:: Z = 27<br>Digit<br>Mean<br>-1.6<br>-0.4<br>-2.4<br>= 2.42; C<br>:: Z = 4.4<br>Digit                                       | 15.7<br>Thi <sup>2</sup> = 57 (P<br>al Hea<br>SD<br>4<br>2.6<br>3.74<br>4.4<br>Chi <sup>2</sup> = 8 (P <<br>al Hea<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120<br><b>397</b><br>0.56, c<br>< 0.00<br><b>ith</b><br><b>Total</b><br>102<br>127<br>42<br>54<br><b>325</b><br>17.14,<br>0.000<br><b>ith</b><br><b>Total</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4<br>df = 2 (<br>0001)<br>Usi<br><u>Mean</u><br>3<br>3<br>8<br>1.5<br>0<br>0<br>0<br>1)<br>df = 3<br>001)<br>Usi                                        | 22.0<br>P = 0.7<br>SD<br>4.1<br>8.8<br>2<br>4.5<br>(P = 0,<br>(P = 0,<br>sD<br>SD             | e<br>Total<br>101<br>123<br>37<br>50<br>311<br>00077);<br>e                                                                                    | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%<br>23.9%<br>23.3%<br>100.0%<br>  <sup>2</sup> = 83%<br>Weight                         | <ul> <li>-3.20 [-8.11, 1.7]</li> <li>-2.30 [-2.47, -2.7]</li> <li>Mean Difference<br/>IV, Random, 95% CI</li> <li>-4.60 [-5.71, -3.49]</li> <li>-2.20 [-3.82, -0.58]</li> <li>-5.90 [-7.20, -4.60]</li> <li>-2.40 [-4.11, -0.69]</li> <li>-3.85 [-5.54, -2.17]</li> <li>Mean Difference<br/>IV, Random, 95% CI</li> </ul> | 14]<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% CI<br>-10 -5 0 5 1<br>Favours [control]<br>Mean Difference<br>Mean Difference<br>Mean Difference |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012<br>Wong 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>D<br>Study or Subgroup                                                     | -0.8<br>= 0.00; c<br>:: Z = 27<br>Digit<br><u>Mean</u><br>-1.6<br>-0.4<br>-4.4<br>-2.4<br>= 2.42; C<br>: Z = 4.4<br>Digit<br><u>Mean</u><br>-0.53 | 15.7<br>Thi <sup>2</sup> = 57 (P<br>al Hea<br>SD<br>4<br>2.6<br>3.74<br>4.4<br>Chi <sup>2</sup> = 8 (P <<br>al Hea<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120<br><b>397</b><br>0.56, c<br>< 0.00<br>(< 0.00<br>102<br>127<br>42<br>54<br><b>325</b><br>17.14,<br>0.000<br>Ith<br><b>Total</b><br>102<br>127<br>42<br>54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.54<br>12.5 | 2.4<br>df = 2 (<br>0001)<br>Usi<br>Mean<br>3<br>1.8<br>1.5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 22.0<br>P = 0.7<br>SD<br>4.1<br>8.8<br>2<br>4.5<br>(P = 0,<br>(P = 0,<br>SD<br>7              | e<br>e<br>Total<br>101<br>123<br>37<br>50<br>311<br>0007);<br>e<br>e<br>Total<br>54                                                            | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%<br>25.9%<br>23.3%<br>100.0%<br>  <sup>2</sup> = 83%<br>Weight<br>90.0%                | <ul> <li>-3.20 [-8.11, 1.7]</li> <li>-2.30 [-2.47, -2.7]</li> <li>Mean Difference<br/>IV, Random, 95% CI<br/>-4.60 [-5.7], -3.49]</li> <li>-2.20 [-3.82, -0.58]</li> <li>-5.90 [-7.20, -4.60]</li> <li>-2.40 [-4.11, -0.69]</li> <li>-3.85 [-5.54, -2.17]</li> <li>Mean Difference<br/>IV, Random, 95% CI</li> </ul>      | 14]<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% CI<br>-10 -5 0 5 1<br>Favours [control]<br>Mean Difference<br>Mean Difference<br>Mean Difference |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012<br>Wong 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>D<br>Study or Subgroup<br>Andersen 2013<br>Senesael 2013                   | -0.8<br>= 0.00; c<br>:: Z = 27<br>Digit<br><u>Mean</u><br>-1.6<br>-0.4<br>-4.4<br>-2.4<br>= 2.42; C<br>: Z = 4.4<br>Digit<br><u>Mean</u><br>-0.53 | 15.7<br>chi <sup>2</sup> = 5.57 (P<br>al Heas<br><u>SD</u><br>4<br>2.66<br>3.74<br>4.4<br>(P <<br>bi <sup>2</sup> = 8 (P <<br>bi <sup>2</sup> = 8 (P <<br>bi <sup>2</sup> = 4.3<br>bi <sup>3</sup> = 4.3 | 120<br>397<br>0.56, c<br>< 0.00<br>102<br>127<br>42<br>54<br>325<br>17.14,<br>0.000<br>1th<br>Total<br>106<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4<br>df = 2 (<br>0001)<br>Uss<br>Mean<br>-1.4<br>-1.1                                                                                                   | 22.0<br>P = 0.7<br>SD<br>4.1<br>8.8<br>2<br>4.5<br>(P = 0,<br>(P = 0,<br>SD<br>7              | e<br>Total<br>101<br>123<br>37<br>50<br>311<br>00007);<br>e<br>Total<br>54<br>26                                                               | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%<br>25.9%<br>23.3%<br>100.0%<br>1 <sup>2</sup> = 83%<br>Weight<br>90.0%<br>10.0%       | Mean Difference<br>IV, Random, 95% CI<br>-2.30 [-2.47, -2.:<br>Mean Difference<br>IV, Random, 95% CI<br>-2.40 [-4.11, -0.69]<br>-3.85 [-5.54, -2.17]<br>Mean Difference<br>IV, Random, 95% CI<br>0.87 [-1.17, 2.91]<br>-0.40 [-6.52, 5.72]                                                                                | 14]<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% CI<br>-10 -5 0 5 1<br>Favours [control]<br>Mean Difference<br>Mean Difference<br>Mean Difference |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012<br>Wong 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>D<br>Study or Subgroup<br>Andersen 2013<br>Senesael 2013<br>Total (95% CI) | -0.8<br>= 0.00; t: Z = 27<br>Digit<br>Mean<br>-1.6<br>-0.4<br>-0.4<br>-0.4<br>-2.4<br>= 2.42; t Z = 4.4<br>Digit<br>Mean<br>-0.53<br>-1.5         | 15.7<br>Chi <sup>2</sup> = 5.57 (P<br>al Hea<br><u>5D</u><br>4<br>2.6<br>3.74<br>4.4<br>Chi <sup>2</sup> = 88 (P <<br>8 (P <<br>4.3<br>12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120<br>397<br>397<br>30.56, c<br>< 0.00<br>102<br>127<br>42<br>54<br>325<br>17.14,<br>0.000<br>1th<br>Total<br>102<br>127<br>42<br>54<br>325<br>17.14,<br>0.000<br>117<br>127<br>42<br>54<br>127<br>42<br>54<br>127<br>127<br>42<br>54<br>127<br>127<br>127<br>127<br>127<br>127<br>127<br>127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4<br>df = 2 (<br>0001)<br>Usit<br>Mean<br>df = 3<br>001)<br>Usit<br>Mean<br>-1.4<br>-1.1                                                                | 22.0<br>P = 0.7<br>4.1<br>8.8<br>4.5<br>(P = 0.<br>(P = 0.<br>3<br>4.5<br>(P = 0.<br>7<br>9.6 | e<br>Total<br>00007);<br>e<br>Total<br>00007);<br>e<br>80                                                                                      | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%<br>23.9%<br>23.9%<br>23.9%<br>23.3%<br>100.0%<br>1° = 83%<br>Weight<br>90.0%<br>10.0% | Mean Difference<br>IV, Random, 95% CI<br>-2.20 [-2.47, -2.:<br>Mean Difference<br>IV, Random, 95% CI<br>0.87 [-1.17, 2.9]                                                                                                                                                                                                 | 14]<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% CI<br>-10 -5 0 5 1<br>Favours [control]<br>Mean Difference<br>Mean Difference<br>Mean Difference |
| Bove 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>C<br>Study or Subgroup<br>Blasco 2012<br>Lombard 2010<br>Park 2012<br>Wong 2013<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> a<br>Test for overall effect<br>D<br>Study or Subgroup<br>Andersen 2013                                    | -0.8<br>= 0.00; : Z = 27<br>Digit<br>Mean<br>-1.6<br>-0.4<br>-2.4<br>= 2.42; C = 4.4<br>Digit<br>Mean<br>-0.53<br>-1.5<br>0.00; C                 | 15.7<br>$chi^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120<br>397<br>0.56, c<br>< 0.00<br>102<br>127<br>42<br>54<br>325<br>17.14,<br>0.000<br>106<br>106<br>26<br>132<br>0.5, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4<br>ff = 2 (<br>Mean<br>3<br>1.8<br>1.5<br>0<br>Usi<br>Mean<br>-1.4<br>-1.1<br>f = 1 (f                                                                | 22.0<br>P = 0.7<br>4.1<br>8.8<br>4.5<br>(P = 0.<br>(P = 0.<br>3<br>4.5<br>(P = 0.<br>7<br>9.6 | e<br>Total<br>00007);<br>e<br>Total<br>00007);<br>e<br>80                                                                                      | 1 0.1<br>3 100.0<br>= 0%<br>Weight<br>27.0%<br>23.9%<br>23.9%<br>23.9%<br>23.9%<br>23.3%<br>100.0%<br>1° = 83%<br>Weight<br>90.0%<br>10.0% | Mean Difference<br>IV, Random, 95% CI<br>-2.30 [-2.47, -2.:<br>Mean Difference<br>IV, Random, 95% CI<br>-2.40 [-4.11, -0.69]<br>-3.85 [-5.54, -2.17]<br>Mean Difference<br>IV, Random, 95% CI<br>0.87 [-1.17, 2.91]<br>-0.40 [-6.52, 5.72]                                                                                | 14]<br>Favours [experimental] Favours [control]<br>Mean Difference<br>IV, Random, 95% CI<br>-10 -5 0 5 1<br>Favours [control]<br>Mean Difference<br>Mean Difference<br>Mean Difference |

# Figure 4.

Figure 4a: Web-based DHI and weight loss: Figure 4b: Telehealth-based DHI and weight loss: Figure 4c: SMS Text-based DHI and weight loss: Figure 4d: Email-based DHI and weight loss:

Author Manuscript

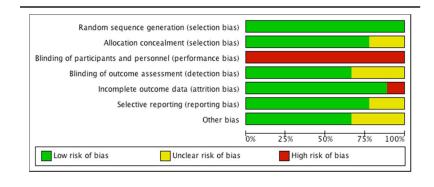
Author Manuscript

Author Manuscript

.

Table 1

RCTs reporting CVD outcomes with DHI (n=9)


Bla Free Sou

| )                            |               | ĺ       | ,     |                                     |                                         |                                                                                                                                                                                                                                                                                                      |
|------------------------------|---------------|---------|-------|-------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study ID                     | Duration (mo) | Total N | DHI N | Study Population                    | DHI                                     | Findings                                                                                                                                                                                                                                                                                             |
| Appel, 2011 <sup>26</sup>    | 24            | 415     | 139   | Primary Prevention, Hypertension    | Web-based                               | Larger, healthcare site obesity intervention delivered remotely<br>or in person significantly reduced weight (-4.6 kg and -5.1 kg,<br>respectively) vs. controls. No impact on CVD events,<br>rehospitalizations, or all-cause mortality.                                                            |
| Blasco 2012 <sup>27</sup>    | 12            | 203     | 102   | Secondary Prevention                | SMS text, Smart Phone                   | Healthcare secondary prevention trial showing improved secondary prevention outcomes (repeat CVD events, rehospitalizations, or all-cause mortality; $RR = 1.4$ ; 95% CI = $1.1-1.7$ ) with telemonitoring and SMS text.                                                                             |
| Dendale, 2012 <sup>28</sup>  | 6             | 160     | 80    | Secondary Prevention, Heart Failure | Telephone, Data Monitoring              | Healthcare-delivered telemonitoring service in HF patients<br>showed significantly reduced all-cause mortality (P=.01) but<br>did not reduce hospitalizations per patient (0.24 vs. 0.42, P=.<br>06).                                                                                                |
| Frederix, 2013 <sup>29</sup> | 4.5           | 80      | 40    | Secondary Prevention                | Email, SMS text, Data<br>Monitoring     | Body sensor data-monitoring in CR patients improved exercise capacity (26.88+220.33 ml/min vs. 285.89+385.44 ml/min, P=. 014) and improvements in rehospitalizations.                                                                                                                                |
| Green, 2009 <sup>30</sup>    | 12            | 778     | 520   | Primary Prevention                  | Telephone, Web-based                    | Hypertensive patients assigned to usual care vs. a web-based or telephone-based intervention showed those using the web-based platform had a greater percentage of achieving target BP ( $55\%$ vs. $39\%$ ; $95\%$ CI, $49\%$ – $62\%$ ; P < .001). Increased adverse events in intervention group. |
| Reid, 2012 <sup>31</sup>     | 12            | 223     | 115   | Secondary Prevention                | Web-based                               | Internet-based data monitoring for physical activity in post-MI patients showed significant improvements in physical activity and QOL compared to usual care. The intervention had a small, non-significant effect on hard CVD outcomes.                                                             |
| Scherr, 2009 <sup>20</sup>   | 6             | 120     | 54    | Secondary Prevention, Heart Failure | Telephone, SMS text, Data<br>Monitoring | Data monitoring in patients with recent decompensated HF<br>showed a high attrition rate; yet a 50% reduction in CVD<br>endpoints and hospitalizations with a mean improvement in<br>NYHA class by one category in the treatment group.                                                              |
| Southard, 2003 <sup>32</sup> | 6             | 104     | 53    | Secondary Prevention                | Web-based                               | Internet-based secondary prevention tool reduced CVD endpoints (15.7% vs. 4.6%) and provided a significant cost savings. The intervention group had a more robust weight loss $(-3.68$ lbs. vs. 0.47 pounds, $P = 003$ ), with no other surrogate markers of CVD achieving statistical significance. |
| Vernooij, 2012 <sup>33</sup> | 12            | 330     | 164   | Secondary Prevention                | Web-based                               | Clinic-based online risk factor improvement tool showed a significant reduction in Framingham scores (–14%; –25% to – 2%) after 12 months in patients randomized to the intervention. No significant reduction in CVD events, death, and hospitalizations in DHI group.                              |
|                              |               |         |       |                                     |                                         |                                                                                                                                                                                                                                                                                                      |

#### Table 2

Risk of bias for outcomes studies:

Assessment of risk of bias based validity assessment tool used by authors (Supplementary Figure 1) for the nine studies with CVD outcomes analyzed. The x-axis represents the percentage of studies which were found to be of low (green), unclear (yellow), or high (red) risk of bias.



Author Manuscript