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Abstract

Background—Spectral analysis of the radio-frequency (RF) signals that underlie grayscale EUS 

images has been used to provide quantitative, objective information about tissue histology.

Objective—Our purpose was to validate RF spectral analysis as a method to distinguish between 

chronic pancreatitis (CP) and pancreatic cancer (PC).

Design & Setting—A prospective study of eligible patients was conducted to analyze the RF 

data obtained using electronic-array echoendoscopes.

Patients—Pancreatic images were obtained using electronic array echoendoscopes from 41 

patients in a prospective study, including 15 patients with pancreatic cancer, 15 with chronic 

pancreatitis, and 11 with normal pancreas.

Main outcome measurements—Midband fit, slope, intercept, correlation coefficient, and 

root-mean-square (RMS) deviation from a linear regression of the calibrated power spectra were 

determined and compared among the groups.

Results—Statistical analysis showed that significant differences were observable between groups 

for mean midband fit, intercept, and RMS deviation (T-test p < 0.05). Discriminant analysis of 

these parameters was then performed to classify the data. For CP (n = 15) vs. PC (n = 15), the 

same parameters provided 83% accuracy and AUC of 0.83.

Limitations—Moderate sample size and spatial averaging inherent to the technique.
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Conclusions—This study shows that mean spectral parameters of the backscattered signals 

obtained using electronic array echoendoscopes can provide a non-invasive method to 

quantitatively discriminate between chronic pancreatitis and pancreatic cancer.

Introduction

EUS has emerged as one of the most accurate modalities for diagnosing diseases of the 

pancreas, and for loco-regional staging of GI malignancy. It is a sensitive non-operative 

method for diagnosis and staging of pancreatic malignancy.1-7 However, differentiating 

pancreatic cancer (PC) from benign pancreatic diseases such as chronic pancreatitis (CP), 

autoimmune pancreatitis, and recent acute pancreatitis remains challenging.8-11 EUS is 

highly operator-dependent as it relies upon user interpretation of various features of a 

qualitative image such as size, homogeneity, and echogenicity.12,13 Although EUS-guided 

fine needle aspiration (FNA) can obtain diagnostic cytologic material, imaging 

characteristics are still vital to target tissue for FNA. Furthermore, sensitivity of FNA for 

diagnosis of malignancy is influenced by factors such as endoscopist's skill, needle 

characteristics, number of passes, sample preparation, and pathologist's interpretation.14

A great need exists for objective means of differentiating benign from neoplastic tissue to 

increase the diagnostic accuracy of EUS and improve the yield of FNA. Recent studies have 

used elastography, digital image analysis with artificial neural networks and pattern 

recognition technology15-18 in an attempt to introduce objective parameters. Spectrum 

analysis of backscattered radio-frequency (RF) ultrasound signals in US imaging19-23 has 

also been exploited for objective, quantitative tissue characterization. The method has 

proven to be effective for identifying tissue changes due to prostate cancer,24-26 breast 

cancer,27 ocular cancer,28 lymph node metastases from cancers of the breast29 and 

colon,30-33 liver disease,34 intravascular plaque,35 and hyperthermic lesions36-38 and has 

also been implemented to perform real-time tissue-type imaging.39 In brief, the method of 

spectrum analysis extracts parameters from the ultrasound backscattered from local 

inhomogeneities in tissue. The nature of the backscattered signals depends on the effective 

size and acoustic concentration of the scatterers as well as the local variations in acoustic 

impedance (product of density and sound speed). Analysis of the spectral characteristics of 

the backscattered RF signals may allow different tissue types to be distinguished, e.g., a 

malignant tumor scatters ultrasound differently than normal tissue because of its different 

microstructure.40 The assessment by spectral parameters is quantitative and, with proper 

calibration, is independent of the system and user. Our previous studies involving patients 

using radial echoendoscopes with single-element, mechanically-rotating transducers41,42 

showed that mean spectral parameters computed from EUS RF data can discriminate normal 

pancreas from diseased pancreas.

Over the past decade, radial and curvilinear electronic-array echoendoscopes have widely 

replaced mechanical echoendoscopes. The mechanical echoendoscopes have a lower image 

frame rate relative to electronic transducers because of the time required to send and receive 

images from the full 360-degree plane with a single physically rotating transducer. The 

images acquired by electronic radial echoendoscopes are believed to be better compared 

with those acquired by mechanical radial echoendoscopes.43,44 The aim of this study was to 
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test the ability of spectral analysis of EUS backscattered signals obtained from radial and 

curvilinear electronic-array echoendoscopes to distinguish between normal pancreas (NP), 

pancreatic cancer (PC), and chronic pancreatitis (CP).

Patients and Methods

Patients and clinical protocol

EUS images of the pancreas were obtained from a total of 41 patients (20 men and 21 

women; mean age 62, range 40–87) at University Hospitals Case Medical Center, 

Cleveland, Ohio, USA, from May 2009 to March 2010. As the data acquisition process does 

not affect the procedure itself, a waiver of patient consent for this study was granted by our 

institutional review board. The indications were abnormal pancreatic imaging [pancreatic 

mass (13), parenchymal abnormalities (2), ductal abnormalities (3)], chronic pancreatitis (6), 

abdominal pain (3), submucosal lesions in the GI tract (6), recurrent or focal acute 

pancreatitis (2), obstructive jaundice (1), family history of pancreatic cancer (1), peri-

pancreatic fluid collection (1), abnormal imaging of bile ducts (2), and known pancreatic 

adenocarcinoma for fiducial placement (1). FNA was performed in a total of 18 patients. A 

total of 15 patients had adenocarcinoma (including one that had known pancreatic 

adenocarcinoma). Eleven patients had sonographically normal pancreas, where FNA was 

not performed. Fifteen patients were noted to have more than or equal to 3 EUS criteria 

suggestive of chronic pancreatitis. Using the Rosemont classification,45 EUS findings were 

consistent with chronic pancreatitis in 10 patients (at least 2 major features or a major 

feature with ≥ 3 minor features), suggestive of chronic pancreatitis in 2 patients (1 major A 

with < 3 minor features or 1 major B and ≥ 3 minor features) and indeterminate (>3, <5 

minor features) in one. Chronic pancreatitis was confirmed after surgical resection in 2 

patients.

Diagnostic criteria

Normal pancreas (NP) cases met all of the following criteria: (1) Referred for EGD/EUS for 

a non-pancreas indication (e.g. evaluation of submucosal nodules). (2) No history of alcohol 

abuse as defined by habitual consumption of > 40 g ethanol weekly. (3) No prior personal 

history of pancreatitis. (4) No family history of pancreatitis. (5) No diagnosis of pancreatitis 

or pancreatic cancer in the year after EUS examination, as determined by follow-up 

telephone questionnaire and/or review of medical records. Chronic pancreatitis (CP) cases 

met all of the following criteria: (1) Referred for EGD/EUS for evaluation of pancreas. (2) 
Greater than or equal to 3 EUS criteria for chronic pancreatitis: (a) hyperechoic foci, (b) 

hyperechoic stranding, (c) lobularity, (d) cyst, (e) calcification, (f) ductal dilation, (g) side 

branch dilation, (h) duct irregularity, (i) hyperechoic duct margins, (j) atrophy, (k) 

inhomogeneous echo pattern. (3) No diagnosis of pancreatic cancer in the year after EUS 

examination, as determined by follow-up telephone questionnaire and/or review of medical 

records. Pancreatic cancer (PC) cases met all of the following criteria: (1) Pancreatic mass 

lesion identified on EUS. (2) FNA cytology positive for adenocarcinoma OR positive ERCP 

brush cytology for adenocarcinoma OR positive mucosal biopsy for adenocarcinoma OR 

surgical pathology positive for adenocarcinoma.
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RF data acquisition and analysis

A commercially available clinical ultrasound system (Exera EU-ME1, Olympus America, 

Center Valley, Pennsylvania, USA) was used with radial (GF-UE160-AL5) and curvilinear 

(GF-UC140P-AL5) electronic-array ultrasonic gastrovideoscopes (Olympus America, 

Center Valley, Pennsylvania, USA). The radial and curvilinear echoendoscopes contain 

arrays of ultrasound transducer elements which are electronically excited in sets to generate 

360° or 180° B-scan cross-sectional images, respectively, typically consisting of hundreds of 

A-scan lines. Both echoendoscopes can be set to operate in 5, 6, 7.5, and 10 MHz modes, 

but for all cases included in our studies they were only operated in the 6 MHz mode. The 

radial echoendoscope was used with range settings of 6 cm and 9 cm, while the curvilinear 

echoendoscope was used with range settings of 4 cm, 5 cm, 6 cm. For both echoendoscopes, 

the range is defined as the diameter of circular or half-circular cross-section in the field of 

view and chosen by the endoscopist performing the procedure to best visualize the region(s) 

of interest. When data were acquired in RF mode, both echoendoscopes could have one 

focus with adjustable location during transmission, but the location of the focus was not 

varied from the default location for any given range setting. Both echoendoscopes used 

dynamic focusing during reception of the backscattered ultrasound signals. When the 

endoscopist saved the image data, the RF data corresponding to that single captured image 

were digitized by the Exera EU-ME1 system and saved automatically at essentially the same 

time. (The use of this mode was an improvement over previous studies41,42 wherein images 

and corresponding RF data were obtained serially using a digital oscilloscope to acquire the 

RF data.)

The RF data were then imported into our custom-designed, MATLAB-based (MATLAB 

2010b, Mathworks, Natick, Massachusetts, USA) analysis software for off-line image 

reconstruction and data processing. As an initial check, our analysis software first re-created 

images from the acquired RF data (reconstructed image), by applying a high-pass 

Butterworth filter (cut-off at 1 MHz, stop-band suppression > 80 dB, pass-band ripple < 0.01 

dB) to remove low frequency electronic noise, computing the envelope of the RF data from 

absolute value of its Hilbert transform, and then applying logarithmic compression. Figure 1 

shows a comparison of images saved directly by the Exera EU-ME1 system (system image) 

with our reconstructed images for both the radial and curvilinear echoendoscopes. Except 

for minor differences in grayscale range settings, excellent agreement was obtained. The 

gain, contrast, line density, and frame correlation settings, which affect the appearance of the 

system image, did not change the underlying RF data acquired by the system.

Before RF data analysis, regions of interest (ROIs) were identified and manually segmented 

by the endoscopist who performed the examination on the system image according to the 

evaluation criteria described below. The ROIs were then independently translated by a 

single investigator onto the reconstructed image to select corresponding segments of RF data 

to ensure consistency. Each sector-shaped area was sized to be maximum within the 

designated ROIs. Power spectra were calculated by computing the Fast Fourier Transform 

(FFT) for the signals of each A-scan RF data within the ROI after gating by a series of 

sliding Hamming windows46,47 of 0.8 μs (∼0.62 mm), each offset by 0.1 μs (∼0.077 mm).
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Spectrum calibration

To remove the effects associated with the composite transfer function of the electronic 

transmitter/receiver and transducer of the EUS system, calibration is typically performed by 

dividing the power spectrum from the tissue by the spectrum of an ideal reflector. However, 

we did not have control over the electronic gain settings for the RF data acquisition (not the 

image gain setting), and, as such, we could not use a strong ultrasound reflector (e.g., glass) 

without saturating the received signal from an ideal reflector. Based our previous study,42 

calibration was performed using reflections from the flat wall of an acrylic plastic chamber 

filled with a gelatin-based phantom. The phantom was used to attenuate the signal amplitude 

enough to prevent saturation of the signal by the system electronics without affecting the 

spectrum of the signal.

The calibration chambers were created using the following method. The phantom was 

synthesized by first making a gelatin solution of bovine gelatin (80 g, 200 bloom, 

BH-200-040-F-G, Gelatin Innovations, Chicago, Illinois, USA), 1-propanol (27 mL, 

402893, Sigma-Aldrich, St. Louis, Missouri, USA), p-toluic acid (1 g, T36803, Sigma-

Aldrich), and distilled water (150 mL). This mixture was heated and mixed to dissolve the 

gelatin. Next, graphite (57.8 g in 150 mL distilled water, MZ-25, American Grease Stick 

Co., Muskegon, Michigan, USA) and Amberlite (6 g in 75 mL distilled water, 10–20 μm 

diameter particles, I-6641, Lot 85H02042, Sigma-Aldrich) were added to the gelatin 

solution to increase attenuation and scattering. After the resulting solution was well-mixed, 

the heating was turned off, and a small amount of formaldehyde (5 mL, 252549, Sigma-

Aldrich) was added as a preservative. To create the test chamber for a specific endoscope 

and range setting, a plastic cylinder (18 mm diameter) was placed into the chamber at the 

known focal distance for that range setting, and the liquid phantom material was poured into 

the chamber around the cylinder. The entire chamber was then placed in a refrigerator. After 

the phantom solidified, the cylinder was removed, thereby leaving a hole to accommodate 

the endoscope and provide a reflecting surface at the proper distance. This procedure was 

repeated for each range setting of both endoscopes.

To obtain the RF calibration data, the hole in the gelatin phantom was filled with water 

before the insertion of the endoscope transducer, and the endoscope's balloon was inflated 

with water until the balloon was in full contact with the phantom. The orientation of the 

endoscope tip was then manually adjusted to ensure that the central axis of the endoscope 

was parallel to the wall. RF data was then acquired, and the spectrum was computed by FFT. 

The phantom material was independently measured using the substitution method48 to have 

an attenuation of 1.5 dB/MHz/cm. The calibration spectrum was then compensated for 

round-trip attenuation. Figure 2A and 2B show some examples images of the calibration 

measurements for the radial and curvilinear echoendoscopes, respectively.

To perform the calibration, the tissue spectrum is divided by the calibration spectrum. 

Because the calibrated spectra are typically quasi-linear over the ultrasound frequency band 

used,41 they can be effectively characterized by linear regression using their slope, intercept, 

and their midband fit, which is the value of the linear function evaluated at the midpoint of 

the −15dB frequency bandwidth. Both the midband fit and slope values were corrected for 

the attenuation of the intervening tissue between the transducer and the ROI using an 
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assumed attenuation of 0.5 dB/MHz/cm; the intercept is not affected by this attenuation 

correction.23 The square of the correlation coefficient R2 and root-mean-square (RMS) 

deviation of the regression line from the data were also recorded as normalized and 

unnormalized measures of the deviation of the calibrated spectrum from linearity.

Statistical analysis

The spectral parameters generated from each window were averaged over each ROI. The 

resulting values were then analyzed using Student's T-test for independent samples (PC vs 

CP). T-tests assumed equal variance, and all parameters satisfied the Shapiro–Wilk 

normality test, unless otherwise noted.

Once parameters were identified that provided statistically significant differences between 

group means, linear discriminant analysis (LDA) was performed to classify the data using 

equal prior probabilities for each group and the within-groups covariance matrix. For LDA 

where the same data was used for training and testing, the leave-one-out approach was used 

for cross-validation. All statistical calculations were performed using SPSS (Version 16, 

SPSS, Chicago, Illinois, USA). A binormal receiver operating characteristic (ROC) curve 

was then fit to the resulting discriminant scores by using the maximum likelihood estimation 

routine of ROCKIT (Version 1.1B2, University of Chicago, Chicago, Ill).49 Classification 

performance was assessed by computing the area under the curve (AUC) from ROCKIT.

Sample size calculations

For the validation study, sample size calculations were performed a priori using G*Power50 

(Version 3, Heinrich-Heine-University, Dusseldorf, Germany) based on the results of our 

previous studies,42 assuming a significance level of 0.05, power of 0.80, and equal group 

sizes. These calculations estimated that a total of 9–27 pancreas cases were needed 

depending on the choice of parameter. Post hoc power calculations using the same software 

indicated that the actual power achieved was greater than 0.82 for all spectral parameters 

with significant differences between groups.

Results

Table 1 provide a summary of the mean values over each ROI for each spectral parameter, 

comparing NP with the diseased pancreas (DP = CP and PC) cases. T-tests indicated that NP 

differed significantly from DP for midband fit, intercept, and RMS deviation. The midband 

fit and intercept were higher (less negative) on average for NP than DP, while the RMS 

deviation was less for NP than for DP. Table 2 shows the mean values of the spectral 

parameters comparing the PC with the CP cases. Again, the T-tests showed that PC differed 

significantly from CP for midband fit, intercept, and RMS deviation.

LDA was performed to classify the data between the PC and CP classes using midband fit 

and RMS deviation and leave-one-out cross-validation with the results shown in Table 3. 

The canonical discriminant function coefficients were 0.101 for the midband fit and −0.496 

for the RMS deviation with a constant value of 8.74. (The use of intercept and RMS 

deviation or intercept and midband fit gave comparable or worse results.) With the 

malignant outcome considered a “positive” test result, the classification had sensitivity of 
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80%, specificity of 87%, positive predictive value of 86%, negative predictive value of 81%, 

and overall accuracy of 83%. Figure 3A shows the scatterplot of the PC and CP data along 

with the dividing line between these cases according to the LDA, while Fig. 3B shows the 

corresponding binormal estimate of the ROC curve with AUC of 0.83.

Discussion

In this study, we have demonstrated the ability of spectrum analysis of EUS backscattered 

RF signals acquired from electronic-array echoendoscopes to distinguish between chronic 

pancreatitis and pancreatic cancer. Many EUS systems in clinical use today use 

echoendoscopes with electronically controlled transducer arrays. These systems are often 

preferred because of their higher frame rates, a wider range of adjustable focal depths on 

transmission, and improved image quality using dynamic focusing on reception of the 

backscattered signals from tissue. Hence it is encouraging to see that similar or better results 

can be obtained using this more prevalent endoscopic imaging technology. While the current 

results were obtained for a particular set of electronic-array echoendoscopes, the method is 

applicable to any system where the RF data is available and appropriate calibration is 

performed.

In our previous studies with single-element echoendoscopes,41,42 we reported that midband 

fit and correlation coefficient R2 were useful for discriminating between CP and PC with PC 

having lower midband fit and correlation coefficient with sensitivity of 85%, specificity of 

71%, and overall accuracy of 85% using all data from both studies.42 The current study 

found that midband fit, intercept, and RMS deviation were the parameters that showed the 

most significant differences between the tissue states with sensitivity of 80%, specificity of 

87%, overall accuracy of 83%, and ROC AUC of 0.83. Hence in both the current and 

previous studies, midband fit and a measure of spectrum nonlinearity were useful, and the 

current study gave comparable results. One additional difference between our previous and 

current studies that may account for the improved result is that the effects of signal 

attenuation were approximately compensated for in the current study, an effect that may be 

important when imaging pancreas tissue at larger depths. Finally, we note that our results are 

consistent with a recently-reported study using the same EUS system which demonstrated 

that midband fit and intercept could be used to distinguish between CP and PC, with PC 

showing reduced midband fit and intercept as compared to CP.51

Spectrum analysis of backscattered RF ultrasound signals brings added value to B-mode 

images because the RF signals have been shown to be sensitive to microstructural scatterer 

properties (e.g., size, concentration, acoustic impedance), which may have dimensions that 

are beyond the normal resolution of the grayscale B-mode image. In addition, the use of 

calibrated spectra removes the effect of instrument settings and operator interpretation and 

thereby allows for more objective, quantitative analysis of the imaging data. Based on the 

current results, the reduction in midband fit and intercept without significant change in the 

slope observed in pancreatic cancer suggests that changes in scatterer concentration and 

acoustic impedance may be more significant than those due to scatterer size.52,53 However, 

this interpretation should be made with care as the traditional theoretical framework for 
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relating spectral backscatter parameters to microstructural properties is based on the 

assumption of single-element transducer.19

Additional work will be useful to address the limitations of this study. Because histological 

results were only available for cases with suspected malignancy (PC), the benign cases had 

to be inferred from other more indirect clinical and “classic” EUS diagnosis criteria. As 

such, the study only included fairly well-defined cases, and additional work is needed to 

assess the utility of the approach in more ambiguous situations. Ex vivo scanning of resected 

tissue could be useful for better explaining the microstructural origin of the observed 

changes in the spectral parameters. Second, theoretical formulation of spectrum analysis of 

RF data from array transducers is needed to provide better interpretation of spectral 

parameters, because array transducers usually have no axis symmetry for the ultrasound 

beam, unlike single element transducers. Third, the modest sample size precluded the use of 

additional criteria (e.g., texture or morphological parameters) with more sophisticated 

classification methods (e.g., support vector machines) that could result in an improved 

ability to discriminate between tissue states. Finally, the spatial averaging inherent in the 

ROI method limits the spatial resolution over which the spectral parameters can be 

computed. As suggested in a previous pilot study,41 the use of higher frequency modes 

available in some echoendoscopes (up to 10 MHz in the endoscopes in this study) could 

improve resolution and provide wider bandwidth for spectrum analysis, provided that the RF 

signals are not decreased severely by attenuation. The use of multiple frequency modes 

would necessitate additional calibration measurements.

Conclusion

This study shows that spectral analysis of the EUS RF backscatter signals from radial and 

curvilinear electronic-array echoendoscopes can discriminate between chronic pancreatitis 

and pancreatic cancer in vivo. Significant differences were observed between tissue states 

using the mean midband fit, intercept, and RMS deviation parameters with classification 

accuracy of 83% for chronic pancreatitis vs. pancreatic cancer (ROC AUC = 0.83). With 

further development, this method may prove useful for providing real-time “digitally-

stained” images with coloration corresponding to the probability of various normal or 

disease states, thereby providing endoscopists with more timely and improved accuracy of 

diagnosis with EUS.
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Acronyms

AUC Area under the curve

CP Chronic pancreatitis

EGD Esophagogastroduodenoscopy

EUS Endoscopic ultrasound

FFT Fast Fourier transform

FNA Fine needle aspiration

LDA Linear discriminant analysis

NP Normal pancreas

PC Pancreatic cancer

RF Radio frequency

ROC Receiver operating characteristic
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ROI Region of interest
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Figure 1. Comparison of system images with images reconstructed from RF EUS data
Radial echoendoscope (Olympus GF-UE160-AL5): (A) system image and (B) reconstructed 

image. Curvilinear echoendoscope (Olympus GF-UC140P-AL5): (C) system image and (D) 

reconstructed image.
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Figure 2. Calibration experiments
Calibration was performed by measuring the RF EUS signal reflected from a flat plastic 

reflector using an appropriate phantom material to prevent signal saturation. (A) Radial 

echoendoscope. (B) Curvilinear echoendoscope. In both cases, the green arrows on the right 

side of the display indicate the focus of the transducer.
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Figure 3. Linear discriminant analysis and receiver operating characteristic (ROC) curve for the 
diseased pancreas data
(A) Scatterplot of data with coordinates given by midband fit and RMS deviation. The 

dividing lines for the classification of pancreatic cancer (PC) vs. chronic pancreatitis (CP) 

are based on linear discriminant analysis. (B) Corresponding binormal maximum likelihood 

estimate of the ROC curve. The area under the curve is 0.83. (See Table 3 for the 

corresponding classification matrix.)
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Table 1
Descriptive statistics and hypothesis testing results comparing normal and diseased 
pancreas (pancreatic cancer and chronic pancreatitis) data

Column 1: Spectral parameters. Column 2–3: Means and standard deviations of spectral parameters averaged 

over the regions of interest. Row 3: The p-values resulting from Student's T-test assuming equal variance 

between groups unless otherwise noted.

Mean Parameter Normal Pancreas (n = 11) Diseased Pancreas (n = 30) T-test p-value

Midband Fit [dB] −53.2 (8.9) −63.5 (9.0) 0.002

Slope [dB/MHz] 0.085 (0.56) 0.040 (0.60) 0.83

Intercept [dB] −53.6 (10.7) −63.7 (9.3) 0.005

Corr. Coefficient R2 0.36 (0.10) 0.34 (0.08) 0.52

RMS Deviation [dB] 4.08 (0.29) 4.65 (0.72) < 0.001a

a
T-test assumes unequal variances because Levene's test indicates p < 0.05.
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Table 2
Descriptive statistics and hypothesis testing results comparing pancreatic cancer and 
chronic pancreatitis data

Column 1: Spectral parameters. Column 2–3: Means and standard deviations of spectral parameters averaged 

over the regions of interest. Row 3: The p-values resulting from Student's T-test assuming equal variance 

between groups unless otherwise noted.

Mean Parameter Chronic Pancreatitis (n = 15) Pancreatic Cancer (n = 15) T-test p-value

Midband Fit [dB] −58.3 (9.0) −68.6 (5.5) < 0.001

Slope [dB/MHz] −0.075 (0.56) 0.15 (0.64) 0.31

Intercept [dB] −57.9 (8.9) −69.5 (5.1) < 0.001

Corr. Coefficient R2 0.36 (0.09) 0.31 (0.05) 0.12a

RMS Deviation [dB] 4.28 (0.68) 5.01 (0.56) 0.003b

a
T-test assumes unequal variances because Levene's test indicates p < 0.05.

b
Normality assumption may be violated for chronic pancreatitis data as the Shaprio-Wilk statistic has p < 0.05. However, a nonparametric Mann-

Whitney U test still indicates a significant result with p < 0.001.
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Table 3
Classification results from linear discriminant analysis of pancreas data into pancreatic 
cancer (PC) and chronic pancreatitis (CP) groups

Classification was performed using midband fit and RMS deviation as independent variables, and the reported 

values used “leave one out” cross-validation. Rows 1–2: Classification results using counts. Rows 3–4: 

Classification results using percentages. The overall accuracy of classification was 83%. (See Figure 3 for the 

corresponding scatterplot and ROC curve.)

Tissue State
Predicted State

PC CP Total

Count
PC 12 3 15

CP 2 13 15

%
PC 80.0 20.0 100

CP 13.3 86.7 100
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