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Abstract

An established paradigm in current drug development is (i) to identify a single protein target 

whose inhibition is likely to result in the successful treatment of a disease of interest; (ii) to assay 

experimentally large libraries of small-molecule compounds in vitro and in vivo to identify 

promising inhibitors in model systems; and (iii) to determine whether the findings are extensible 

to humans. This complex process, which is largely based on trial and error, is risk-, time- and cost-

intensive. Computational (virtual) screening of drug-like compounds simultaneously against the 

atomic structures of multiple protein targets, taking into account protein–inhibitor dynamics, 

might help to identify lead inhibitors more efficiently, particularly for complex drug-resistant 

diseases. Here we discuss the potential benefits of this approach, using HIV-1 and Plasmodium 

falciparum infections as examples. We propose a virtual drug discovery ‘pipeline’ that will not 

only identify lead inhibitors efficiently, but also help minimize side-effects and toxicity, thereby 

increasing the likelihood of successful therapies.

Promise for a new paradigm in drug discovery

Current therapeutic strategies for several diseases including human immunodeficiency virus 

type 1 (HIV-1) infection have evolved from an initial single-target treatment to a multitarget 

one [1]. Single antiretroviral drug regimens are no longer recommended for clinical use 

against HIV-1 owing to the rapid emergence of drug-resistant strains after initiation of 

therapy [2,3]. A combination of antiretroviral drugs (see Glossary) targeting different viral 
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proteins is more effective at suppressing viral growth [4]. In many cases, however, these 

regimens are expensive and result in greater toxicity and in poor patient adherence [5–7]. 

New paradigms in multitarget drug discovery have emerged [8–11], particularly for the 

treatment of HIV-1 infection [12,13]. For example, the multitarget antiretroviral drug 

Cosalane has been developed to inhibit several HIV-1 proteins (gp120, integrase, protease 

and reverse transcriptase) simultaneously [14–19].

Computational screening of small-molecule compounds against protein targets implicated in 

a disease of interest has been widely used to discover potential inhibitors. This process 

typically involves identifying putative hits either by systematic chemical group perturbations 

to a compound already known to inhibit a target, as in quantitative structure–activity 

relationships (QSARs), or by ‘docking’ a molecule from a large database of compounds into 

the active site of the three dimensional (3D) structure of a protein target on the basis of the 

calculated binding affinity of the molecule to the target. As the number of high-resolution 

protein structures and computer processing capabilities have increased exponentially in 

recent years, so computational docking methods have been used to complement 

experimental high-throughput screening (HTS) methods to improve the efficiency and 

efficacy of discovering lead inhibitors. In addition, studies have shown that the success rates 

of HTS are increased several fold when compounds are pre-filtered by computational 

screening [20–22].

Here we describe a novel methodology with the capacity to catalyze drug discovery 

profoundly for all diseases. The opinion and evidence presented here are largely in the 

context of therapeutic targets in infectious disease; however, this computational multitarget 

approach can be readily extended to other complex human diseases such as cancer that 

require the inhibition of multiple proteins in a developmental pathway to be effective.

Summary and advantages of our computational paradigm

We have developed a new computational paradigm for the discovery of potential lead 

inhibitors that is based on a combination of three tenets (Figure 1) [23].

i. Incorporation of protein side chains and main chain dynamics during the docking 

process to more accurately evaluate binding affinities.

ii. Selection of single inhibitors that bind to multiple protein targets simultaneously.

iii. Use of a screening library consisting of drug and drug-like compounds.

Each tenet increases the probability that a predicted compound will successfully inhibit the 

disease; furthermore, screening with drug-like compounds specifically increases 

pharmacological viability. Overall, this new paradigm produces hits that will more 

expediently and predictably become lead compounds that can potentially be developed 

further into viable drugs for all diseases (see Supplementary Table S1 online).

Rationale for the use of dynamics

Biologically active proteins are in continuous motion, yet the majority of protein structure 

information is limited to the most stable form of a protein when crystallized in artificial 
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conditions. The differing conformations of bound and non-bound crystallographic structures 

suggest that binding events and protein motions induce variance in the dimensions and 

electrostatics of the catalytic site. It is likely that, in physiological conditions, an inhibitor 

will bind to one of these variant conformations with an affinity higher than that observed for 

the artificially stabilized structure. Thus, dynamics simulations increase the possibility of 

surveying a physiologically relevant conformation beyond using the static crystal structure 

alone.

We perform docking with dynamics by (i) docking the ligand of interest, (ii) solvating in a 

water and salt shell, (iii) applying 100 steps of energy minimization, (iv) simulating protein 

movement through cycles of random structure perturbations and (v) selecting the most 

relaxed of these models with a knowledge-based scoring function. We have demonstrated 

that this dynamic docking method is successful, as compared with static docking methods, in 

targets of two important pathogens, HIV-1 [24–28] and P. falciparum [23].

Rationale for multitargeting

Functional promiscuity of a given compound, coupled with structural conservation of active 

sites and/or binding pockets, enables activity of that compound in multiple proteins, as 

indicated by large regulatory systems such as ATP-facilitated energy transmission [29,30]. 

This same principle creates a common susceptibility of proteins involved in functions 

essential to life, creating a niche for multitargeting drugs. From a computational perspective, 

a compound that is predicted to inhibit multiple targets in a disease has an additive 

probability of having pharmacological activity against that disease. Most importantly, 

inhibitor resistance is largely overcome by the exponentially decreased probability of 

resistant mutations simultaneously arising in genes encoding proteins corresponding to all 

targets [31].

Rationale for use of drug-like compounds

Living organisms have evolved in comparable chemical environments containing similar 

sets of organic molecules. This shared evolutionary chemical context sets the stage for 

various organisms to use the same compounds to control different processes, making one 

molecule relevant to diverse physiological activity.

This principle is supported by the evolutionary observation that structure is much more 

conserved than sequence or function. Similar structures with comparable active and binding 

sites but different chemistries are used to perform a host of diverse functions [32,33]. This 

observation that structural folds are largely conserved, even when sequence and function are 

not, provides logical evidence that one compound can be an excellent initial candidate for 

many different protein targets.

Example applications of our computational paradigm

We can compare the efficacy of lead compound identification by our multitarget 

computational screening approach to the traditional experimental HTS and single-target 

screening approaches (Figure 1), by using HIV-1 and its associated opportunistic pathogen 

infections and the malarial parasite P. falciparum infection as examples. As we first describe 
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in this section, several compounds show simultaneous effectiveness against HIV-1 and 

associated opportunistic pathogen infections and thus are potential multitarget drugs (Table 

1). We then show how our computational multitarget screening approach can be used to 

discover effective inhibitors against the malarial parasite P. falciparum. We argue that our 

multitarget approach is likely to result in higher success rates, in reduced costs and time and 

in the identification of new lead inhibitors. Lastly, we describe how our proposed approach 

might also be used to minimize side-effects and toxicity, thereby reducing risk in the drug 

discovery pipeline and increasing the likelihood of developing successful therapies against 

diseases of interest.

Diseases caused by multiple microorganisms: HIV-1 and AIDS-related opportunistic 
infections

Traditionally, the treatment of complex diseases such as acquired immune deficiency 

syndrome (AIDS) that involve several microorganisms, especially those with a high 

mutation rate, requires a therapeutic regimen based on several drugs, wherein each drug 

inhibits a single target in a particular microorganism. Multidrug regimens have been 

successfully used in several studies to treat complex diseases and to control the emergence 

of drug-resistant strains of infectious agents such as HIV-1 [1,4]. The use of several drugs in 

treatment regimens, however, typically causes serious adverse effects and is associated with 

low patient adherence owing to toxicity and high costs [5–7].

HIV-1, first discovered in 1981, is a pandemic human pathogen that has resulted in more 

than 25 million deaths caused by AIDS, in which the immune system ceases to function, 

leading to life-threatening opportunistic infections. Individuals infected with HIV-1 need a 

regimen consisting of drugs to treat both HIV-1 and opportunistic infections that arise 

because of immunosuppression. These individuals thus present a therapeutic challenge for 

which multitarget computational screening might provide an effective solution, because a 

regimen consisting of a single drug that could simultaneously inhibit protein targets from 

multiple microorganisms would be ideal for treatment and control of the complex 

combinations of infectious diseases present in these individuals.

HIV-1 infection is commonly co-morbid with opportunistic infection by bacterial, fungal, 

protozomal and viral pathogens. Pharmacological prophylaxis is available for several of 

these pathogens [34]. Cotrimoxazole is a broad-spectrum antibiotic that is effective at 

preventing many opportunistic infections. This drug is both cheap and widely available [35]; 

however, it does not inhibit HIV-1 replication. Because HIV-1 infection is a chronic disease 

that requires life-long antiretroviral treatment, a new generation of antiretroviral drugs that 

simultaneously control HIV-1 and opportunistic pathogens would benefit HIV-1-infected 

individuals, especially those with limited access to antiretroviral and prophylactic drugs.

Several drugs approved for the treatment of human diseases other than HIV-1 infection, in 

addition to other drug-like compounds, have been shown to inhibit HIV-1 protein targets 

either in vitro or in vivo (Table 1). These compounds include drugs developed primarily to 

treat Alzheimer's disease, cancer and infectious diseases caused by bacteria, fungi, protozoa 

and viruses. The multitargeting features of these compounds against HIV-1 and its 

opportunistic pathogens have been largely identified by HTS through serendipity. 
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Computational multitarget screening using the X-ray diffraction structures of HIV-1 protein 

targets present in the Protein Data Bank (PDB; http://www.pdb.org), however, would have 

helped to facilitate the rational identification of these multitarget drugs.

The data in Table 1 provide evidence that one or more compounds can inhibit infection by 

multiple bacteria, fungi, protozoa and viruses, including HIV-1, simultaneously. A striking 

example is the inhibitor KNI-764 (also known as JE-2,164) (Table 1, row 36), which inhibits 

both HIV-1 protease and plasmepsin II enzyme from the malarial parasite Plasmodium 

malariae (Table 1) [36]. Complexes of both of these targets with KNI-764 have been solved 

by X-ray diffraction (PDB identifiers 1msm and 2anl, respectively); thus, this inhibitor 

provides strong evidence for the existence and utility of multitarget drugs, because the 

binding mode of a single inhibitor bound to targets from two very different and destructive 

pathogens has been elucidated to atomic detail. Another example is minocycline (Table 1, 

row 37), a broad-spectrum antibiotic that has been shown to possess inhibitory activity 

against HIV-1 in vitro (Table 1) [37,38]. Our docking simulations predict that it inhibits 

HIV-1 integrase [28], thereby illustrating how computational screening methods can be used 

to identify targets and binding modes of multitarget inhibitors discovered fortuitously.

Diseases caused by a single microorganism: the malarial parasite P. falciparum

We previously screened a library of 2344 drug and drug-like compounds against 14 proteins 

of the malarial parasite P. falciparum [23] (see Figure I in Box 1), by using a computational 

docking with dynamics protocol that predicts inhibitors of target protein structures by 

simultaneously considering protein–inhibitor flexibility and dynamics [24,26]. We have 

subsequently evaluated experimentally 16 of the top ranking multitarget predictions for P. 

falciparum growth inhibition, and five compounds predicted to have no inhibitory activity 

were used as negative predictions. Six (38%) of the sixteen top predictions had a half-

maximal effective dose (ED50) of ≤1 μM against either the chloroquine-sensitive or the 

chloroquine-resistant strain of P. falciparum (see Figure Ia in Box 1). None of the five 

negative prediction compounds inhibited P. falciparum growth at the desired level, 

producing an overall prediction accuracy of 52% (11/21; see Table S1a online).

Two studies using structure-based single-target computational screening of different 

libraries of compounds against two P. falciparum cysteine proteases (falcipain-2 and 

falcipain-3) have shown low success rates [39,40]. Out of 355 000 compounds in the 

Available Chemical Directory (ACD) database, one study computationally predicted 100 

putative inhibitors, of which 1 demonstrated an experimental antimalarial activity of ≤10 μM 

in vitro [39]. The second experiment carried out on the same targets with 241 000 

compounds from the ChemBridge database predicted 84 putative inhibitors, of which 4 

demonstrated an antimalarial activity of ≤10 μM [39]. The overall success of this screening 

method therefore yields a hit rate of 0.0008% (5/596 000), as compared with a hit rate of 

0.3% (6/2344) at ≤1 μM activity by computational docking with dynamics screening of 

drug-like compounds [23]. Although 36 compounds in total showed an activity of ≤50 μM 

against the predicted target proteins, only 5 worked against P. falciparum, clearly 

demonstrating the benefit of starting with compounds with known biological activity: 
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namely, these compounds are more likely to find their way to the site of biological 

interference.

Two recent experimental HTS studies demonstrate the increased success of our third tenet: 

that is, screening with drug-like compounds [41,42]. However, their experimental success 

rates of 0.7–1.7% for identifying inhibitors of P. falciparum growth points to the advantages 

of our other tenets: namely, multitargeting and docking with dynamics. In the first study, 

2687 existing drugs were screened for P. falciparum growth inhibition and 19 novel 

antimalarial compounds with an activity of ≤1 μM were discovered, yielding a success rate 

of 0.7%, although five of these compounds were found to show an activity of ≤100 nM [41]. 

In the second study, 2160 compounds were screened and 36 novel antimalarial compounds 

with an activity of ≤1 μM were found, giving a success rate of 1.7% [42]. Thus, the 

experimental success rate (38%) of our multitarget screening approach represents a 

significant improvement over the previous success rates of single-target computational 

screening (2.7%) [39,40] and HTS (0.7–1.7%) [41,42].

Multitarget computational screening can also be applied to predict the potential targets of an 

inhibitor identified by HTS but with an unknown mechanism of action. This application is 

illustrated in Figure Ib in Box 1, which shows predicted targets for 12 experimental hits 

from the two HTS studies [28,41,42]. By our computational protocols, these hits are 

predicted to inhibit multiple P. falciparum targets and generally have low consensus 

weighted ranks. These predictions reveal a putative multitargeting function for 12 of the best 

inhibitors found by the HTS studies.

The high success rates of experiments guided by multitarget computational screening (38%; 

Table S1a) can be coupled with HTS screens to select the compounds to be followed up in 

the subsequent time-consuming and costly further characterization (54%; Table S1b). With 

our protocol, a smaller number of experiments will produce better hits at a fraction of the 

time, effort and cost that would have been required to follow protocols based on 

experimental HTS and subsequent characterization.

Toxicity and side-effect minimization

Although a multitarget inhibitor is expected to bind to multiple disease protein targets with 

high affinity, it might undesirably inhibit other human proteins, leading to toxicity (see 

above sections on rationales). Strategies to identify and to predict side-effects such as acute 

toxicity, mutagenicity and carcinogenicity have been extensively studied and reviewed [43–

49].

In terms of computational screening, a library of either approved drug and drug-like 

compounds that have been evaluated in clinical trials or compounds with known toxicity 

profiles can be used to identify initial lead inhibitors, thereby reducing the likelihood of 

deleterious side-effects. Additional compounds could be selected from larger libraries 

containing synthetic and natural compounds if the whole library is filtered and categorized 

into groups according to their onset and severity of toxicity. The latter can be accomplished 

by using data in the TOXNET database (http://toxnet.nlm.nih.gov) [50] or by examining the 

absorption, distribution, metabolism and elimination profiles of the compounds [51]. 
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Focusing on infectious disease targets that are not similar to essential proteins in humans 

also reduces the likelihood of a toxic reaction.

Toxicity filtering can also be done by structural similarity comparison or by a SMILES 

strings similarity search [52] between successful lead candidates and compounds with 

known toxicity profiles. The purpose of categorizing compounds is to prioritize the 

experimental verification of the computational screening results for a given set of targets or 

diseases. Compounds with moderate toxicity could be included in our screening library for 

diseases that require short courses of treatment. By contrast, the same compounds might be 

eliminated from our library for chronic diseases.

Potential side-effects can also be predicted by using computational multitarget screening to 

screen lead inhibitors against essential human proteins with known structure. Lead inhibitors 

can also be screened against proteins involved in human drug metabolism (such as the 

cytochrome P450 family of enzymes) to ensure their proper metabolism and to minimize the 

risk of producing toxic metabolites.

Comparison of our computational paradigm with traditional pharmaceutical 

methods

Although some screens using the latest technologies can screen up to 50 000 compounds per 

day, the blind pharmaceutical approach has severe disadvantages compared to computational 

ones. Screening compounds efficiently against either the target or the organism necessitates 

the design of a specific assay, whereas our computational protocol is completely general and 

applicable to any target with an experimentally determined structure or with a close 

homolog (>50% sequence identity) of known structure. Distant homologs can also be used, 

but docking accuracy decreases as the sequence similarity decreases. Furthermore, the 

pharmaceutical screens do not identify the targets or binding mode, so any optimization is 

typically done in a blind manner. Lastly, large-scale HTS screens create monumental 

environmental waste, a problem that is mostly avoidable in computational multitarget 

screening.

QSARs correlate chemical structure similarity with biological activity. This type of 

approach finds compounds related to those of known function through pattern recognition of 

structure and functional groups. Variation in the catalytic site can limit functional analogy 

for even tiny chemical changes made in such pharmacophore-based screening. Docking 

simulations such as INVDOCK [53] resolve these high-resolution challenges by comparing 

the electrochemical topography of ligand and target, thereby avoiding the necessity of 

starting with a known active compound and raising the possibility of finding completely new 

families of drugs for a disease. Moreover, our computational docking with dynamics 

approach assesses this relationship in physiologically relevant movements, leading to higher 

experimental success. The current limitations of this method are thought to be the scoring 

functions and protein dynamics movements; however, our scoring functions and dynamics 

simulations do increase success rates. Overall, our method can be used either to discover 

completely new hits, or in conjunction with pharmacophore methods such as QSAR to 

modify a compound computationally in accordance with medicinal chemistry rules and to 
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assess immediately the affinity of the newly designed compound, leading to improved 

multitarget selectivity.

In terms of optimization of processing speed, the first protocol that we developed is rather 

naive, whereas our second-generation protocol is capable of screening hundreds of 

thousands of existing compounds, or designing new ones computationally on the basis of 

medicinal chemistry rules, on a single central processing unit (CPU) in a single day. 

Nonetheless, our current computer cluster can be arbitrarily scaled to include a larger 

number of CPUs and to screen within six hours up to a million compounds with the first-

generation version of our protocol because it can be run completely in parallel. The cost of 

such an installation would be only a few hundred thousand dollars initially, and it has the 

advantages of being completely general (i.e. applicable to any protein target of interest) and 

easily maintained (our ‘farm’ is maintained with <25% of the time of a single staff member, 

minimal parts replacements and no cost for screened compounds or reagents).

Conclusion and future directions

Multitarget computational screening using a docking with dynamics protocol and a drug-like 

compound library has the promise to enhance significantly the identification of lead 

inhibitors for drug development. This protocol can identify inhibitors that simultaneously 

and selectively bind to multiple targets with high affinity, in contrast to most drug 

development strategies that focus on only single-target inhibition. The efficacy and 

efficiency of multitarget computational screening have the potential to reduce time, effort 

and cost considerably to obtain promising lead candidates for drug development.

We have provided evidence that multitarget inhibitors exist for complex diseases, including 

AIDS that involve several microorganisms such as HIV-1 and associated opportunistic 

pathogen infections, and that these lead compounds are excellent starting points for further 

chemical modification to improve potency and specificity against targets of interest. We 

have also demonstrated that computationally predicted multitarget antimalarial inhibitors 

show high potency at inhibiting P. falciparum growth in vitro with a success rate higher than 

that of single-target computational screening and experimental HTS. The onset of drug 

resistance, a considerable problem in both HIV-1 and P. falciparum infection, might be 

significantly delayed by inhibiting multiple targets simultaneously.

Box 1

Multitargeting predictions

We computationally evaluated the ability of 2344 compounds from a library of known 

physiologically active compounds to inhibit a multitargeting combination of 14 P. 

falciparum proteins, using a computational docking with dynamics protocol 

simultaneously considering protein–inhibitor flexibility and dynamics [23]. Thirteen of 

the potential drug targets were selected because of their known identity as enzymes 

necessary for the P. falciparum life cycle and because high-quality structures were 

available for these proteins. Another available P. falciparum protein structure, 

erythrocyte-binding antigen, was chosen for its known role in pathogenesis.
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The screened compounds were ranked according to the consensus weighted rank (the 

average of the ranks of the compound observed in all simulations divided by the number 

of proteins predicted to be inhibited by that compound; the lower the rank, the better the 

predicted efficacy), which is a measure of the multitargeting capability of a compound.

We experimentally evaluated the 16 top ranking compounds from these predictions, 

along with five compounds predicted to have no inhibitory activity as negative 

predictions. Experimental verification was performed against the chloroquine-sensitive 

strain 3D7 and the chloroquine-resistant strain K1 of P. falciparum cultures. Six of the 

sixteen top predictions had an ED50 of ≤1 μM activity against either the 3D7 or K1 strain 

(Figure Ia).

By experimentally screening only 16 predictions from a computational library of 2344 

compounds [23], six lead candidates with submicromolar antimalarial activity were 

obtained at a fraction of the time, effort and cost that would have been required to 

perform experimental HTS. Overall, the experimental success rate of ∼38% for the 

multitarget computational screening is significantly higher than the rates of 0.7–1.7% 

produced by the two experimental HTS studies for identifying antimalarial inhibitors 

[41,42].

In addition, we compared the multitarget computational screening predictions to the two 

experimental HTS studies to discover potential targets of P. falciparum growth inhibitors 

[41,42]. Twelve of the compounds for which experimental inhibition values were 

provided and were considered by the HTS screening studies to be valid antimalarial hits 

are predicted to inhibit multiple proteins (Figure Ib). This application of multitarget 

computational screening is therefore useful in prioritizing targets for further study, for 

compounds with unknown inhibitory mechanisms.
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Figure I. 
Multitargeting predictions for 18 antimalarial compounds. (a) Six compounds predicted 

for multitargeting by our computational screening study [23] that were subsequently 

verified for experimental antimalarial activity (see supplementary material). (b) Twelve 

compounds selected for antimalarial activity by two HTS studies were subsequently 

predicted computationally as multitargeting [41,42]. Shown for each compound are their 

predicted inhibitory constants against each of 14 P. falciparum proteins (shaded boxes; 

dark brown indicates highest inhibition) and the total number of proteins predicted to be 

inhibited. Some proteins have inhibitors in the mid-picomolar range (e.g. Glutathione 

reductase) but others have predicted inhibitors in the micromolar range (e.g. 1-Cys 

peridoxin). Our predictions indicate that a compound such as U-74389G is more likely to 

inhibit Glutathione reductase and Lactate dehydrogenase (all picomolar inhibitory 

constants) than 1-Cys peridoxin, Dihydrofolate reductase, Glutathione-s-transferase, 

Protein kinase-5, S-Adenosyl-L- homocysteine hydrolase or Thymidylate synthase 

(micromolar to nanomolar inhibitory constants). Predicted inhibitory constants from 
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docking with dynamics simulations reflect hypothetical local concentrations, such that a 

given compound will inhibit its target at the predicted concentration in a simple in vitro 

experiment, but the whole organism might require different concentrations for toxicity.

An important application of multitarget computational screening is in identification of the 

potential targets of a drug with an unknown inhibitory mechanism. Starting with drug and 

drug-like compounds that are well characterized in terms of their pharmacological properties 

will increase the probability that an identified lead will be successful as a drug further down 

the development pipeline. Modification of lead compounds using medicinal chemistry rules 

can be performed computationally. Screening for side-effects against essential human 

proteins (a chief focus in structure determination; many such structures are available) can 

also be performed computationally to refine potential candidates, and screening against 

important human enzymes involved in eliminating drugs from the body can help to ensure 

proper metabolism without a build-up of toxic metabolites.

Developing a comprehensive computational pipeline that integrates the concepts described 

here not only will lead to the discovery of new inhibitors but also has the potential to 

facilitate significant advances in the efficacy and efficiency of the whole process of drug 

discovery and development, from in vitro and in vivo preclinial studies to clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Drug a compound with Food and Drug Administration (FDA) approval for 

human use.

Drug-like 
compound

a compound (including research and experimental drugs) that has been 

shown to have physiological activity in at least non-human in vivo 

systems.

Hit a compound that inhibits (or has high binding affinity for) one or more 

targets. In our case, the hits are initially virtual – that is, computationally 

derived.

Lead a hit that has been well-characterized experimentally. For example, one 

that has been shown to have a high dissociation constant (Kd) for the 

target of interest such that the functional activities of the target are 

decreased on binding and/or has demonstrated effectiveness of treatment 

against disease in an animal model.

Potential lead a computationally predicted hit that has been shown to work 

experimentally against in vitro (cell culture) disease models of the 

organism.
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Figure 1. 
Comparison of our multitarget inhibitor discovery protocol with currently used traditional 

approaches. The advantages of using our novel broad-spectrum multitarget inhibitor 

discovery protocol (right) against key pathogens and diseases are contrasted with traditional 

approaches (left). The main differences in our protocol, corresponding to reasons why it is 

more effective, are as follows. (i) The use of a docking with molecular dynamics algorithm 

to take both protein and inhibitor flexibility completely into account (http://

compbio.washington.edu/papers/therapeutics.html). This algorithm is effective because all 

molecules in biology undergo dynamic or thermal motion. Traditional rigid-docking 

approaches do not account for this motion, resulting in poor accuracy in predicting binding 

energies or inhibitory constants as compared with our approach. (ii) The use of compounds 

that bind to multiple targets simultaneously. The most effective drugs in humans (e.g. 

aspirin or Gleevec) inevitably interact with and bind to multiple proteins, a feature that 

traditional models based on single-target drugs fail to take into account. The multitarget 

approach is a necessary one because every drug has to be effective at its site of action (e.g. 

HIV-1 protease inhibitors have to bind and inhibit the protease molecule) and has to be 

readily metabolized by the body (e.g. the cytochrome P450 (CYP450) enzymes, which are 

responsible for metabolizing the majority of drugs) [54]. Computational screening for 
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multitarget binding and inhibition is effective because it exploits the evolutionary fact that 

protein structure is conserved much more in nature than is function or sequence. (iii) The 

use of FDA-approved and experimental drug and drug-like compounds in the computational 

screening process. Screening drugs developed for other conditions against infectious 

diseases is likely to lead to fewer side-effects because the toxicity, absorption, distribution, 

metabolism and excretion pharmacokinetics is typically well established in human and in 

animal models. To our knowledge, this is the first time that these three elements have been 

combined to create an effective inhibitor and drug discovery protocol with predictions that 

have been experimentally verified to yield highly promising lead inhibitors for further drug 

development. The computational aspects of our protocol are fully automated, can be run 

completely in parallel and require only a fixed initial investment in the number of processors 

purchased (i.e. the greater the number of CPUs, the more targets and compounds that can be 

screened). Our novel protocol is extremely effective and increases success rates downstream 

in preclinical and clinical use with a considerable reduction in time, effort and cost 

expended.
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