
Turner et al. BMC Bioinformatics  (2015) 16:272 
DOI 10.1186/s12859-015-0707-9

METHODOLOGY ARTICLE Open Access

Quantitative gene set analysis generalized
for repeated measures, confounder
adjustment, and continuous covariates
Jacob A. Turner1*, Christopher R. Bolen2 and Derek M. Blankenship1

Abstract

Background: Gene set analysis (GSA) of gene expression data can be highly powerful when the biological signal is
weak compared to other sources of variability in the data. However, many gene set analysis approaches utilize
permutation tests which are not appropriate for complex study designs. For example, the correlation of subjects is
broken when comparing time points within a longitudinal study. Linear mixed models provide a method to analyze
longitudinal studies as well as adjust for potential confounding factors and account for sources of variability that are
not of primary interest. Currently, there are no known gene set analysis approaches that fully account for these study
design and analysis aspects. In order to do so, we generalize the QuSAGE gene set analysis algorithm, denoted Q-Gen,
and provide the necessary estimation adjustments to incorporate linear mixed model analyses.

Results: We assessed the performance of our generalized method in comparison to the original QuSAGE method in
settings such as longitudinal repeated measures analysis and accounting for potential confounders. We demonstrate
that the original QuSAGE method can not control for type-I error when these complexities exist. In addition to
statistical appropriateness, analysis of a longitudinal influenza study suggests Q-Gen can allow for greater sensitivity
when exploring a large number of gene sets.

Conclusions: Q-Gen is an extension to the gene set analysis method of QuSAGE, and allows for linear mixed models
to be applied appropriately within a gene set analysis framework. It provides GSA an added layer of flexibility that was
not currently available. This flexibility allows for more appropriate statistical modeling of complex data structures that
are inherent to many microarray study designs and can provide more sensitivity.
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Background
Linear mixed models (LMMs) have been widely accepted
as powerful approaches for modeling microarray data
[1, 2]. LMMs are useful when the study designs are more
complex than a traditional case-control study. For exam-
ple, LMMs can be used to adjust fold change estimates
between groups by accounting for confounding factors
that could not be controlled through randomization [3].
This is a very important feature that can be overlooked
in observational studies and can bias the fold change esti-
mates if not adjusted properly. The linear mixed model
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can also be used to account for repeated measures in lon-
gitudinal studies as well as account for additional sources
of variability through the inclusion of random effects in
themodel [1, 2]. Repeatedmeasures can also be accounted
for by modeling the residual side covariance parameters
in a wide number of ways and can allow for unequally
spaced time points. The flexibility and robustness of mod-
eling options with a mixed linear model makes it a great
candidate for many challenging study designs.
Another challenging aspect of many microarray analy-

ses is detecting differential gene expression when signal is
relatively weak due to technical reasons or to the specific
biological components of the study. Gene set enrichment
analysis can be a more powerful approach that offers
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statistical analyses on gene sets defined by biological func-
tion. By summarizing probe level information within a
gene set, the resulting statistical inference on the gene
sets often lead to very informative, statistically significant
findings, even when gene level analysis produces a very
small number of significant genes. The developement of
gene set analysis approaches has been ongoing for the past
decade. For a thorough discussion and overview of many
of the gene set analysis methods see [4–8].
Our work has hinged on the necessity to incorporate

gene set enrichment analysis to microarray studies with
complex studies designs. Most gene set analysis algo-
rithms were designed for simple case-control or paired
study designs. Some have been extended to incorporate
more general models such as one way ANOVA or lin-
ear regression models [5, 9–11]. In reality, study designs
are often much more complicated due to unbalanced
numbers of patient groups, missing samples, confounding
factors that could not be controlled in collection, and cor-
related data inherent to longitudinal studies. One statisti-
cal modeling approach to tackle many of these issues is the
use of general linear mixed models. The ability to model
repeated measures at the probe level with either random
effects or structuring the residual covariance matrix in
addition to simple linear regression models is needed to
obtain optimal and unbiased results. A key component to
the lack of this generalization is the fact that many algo-
rithms perform sample based permutation tests to obtain
p-values. These permutations do not preserve the correla-
tion structure that repeated measures have over time and
thus are not appropriate to apply.
Most methods claiming to be appropriate for longitudi-

nal studies simply will use paired t-tests when the specific
comparison of interest involves paired data. Incoporating
a mixed model however can provide a more stable esti-
mate of variaibility when the number of observations at
each time point is low and can specifically model subject
variability. Zhang et al provide a nonparametric approach
in GSA for longitudinal studies, but their procedure only
allows for the tests of overall main and intereaction effects
[12]. There is no ability to test for a specific contrast
of interest over time. Our objective is to produce an
appropriate gene set testing procedure that allows for the
incorporation of any pairwise tests derived from a LMM.

GSA overview and extensionmotivation
Goeman and Buehlman [5] provide a thorough overview
of the key components of gene set analyses as well as their
potential drawbacks and difficulties. We simply summa-
rize a few key points. There are generally two types of
GSA tests. Competative tests define the null hypothesis
that genes within a gene set are differentially expressed as
frequently as genes not within the gene set [5]. Some com-
mon competative based testing procedures include PAGE,

SAFE, and the CAMERA procedures [10, 11, 13]. The null
hypothesis of a self-contained test is that no genes are dif-
ferentially expressed in the gene set. Self-contained tests
are invariably more powerful than competative tests due
to the fact that any null scenario under a self-contained
setting is also null under the competative definition. How-
ever, the reverse is not necessarily true. This leads to a
much stricter form of alternatives for the competetive test
and thus a decrease in statistical power. Given this, our
focus will be on self contained gene set testing.
The declaration of the null hypothesis is closely related

to the resulting statistical procedure that is developed. For
self contained gene set testing, a test statistic is defined to
summarize the overall differential expression amongst the
genes in a gene set. The null distribution of these statistics
are typically deriveable based on asymptotic theory and
unknown for a small number of samples. Therefore, it is
quite common for the gene set algorithms to obtain appro-
priate p-values under the null by performing sample based
permutations of the data. Permutating samples preserve
the probe to probe correlation structure of the expres-
sion data. This is a necessary property since genes within
a gene set are typically correlated with each other. Much
of the debate and developement of gene set enrichment
testing procedures have revolved around the selection of
an appropriate and powerfull test statistic that summa-
rizes the gene set as well as what role sample and probe
based permutations should be involved in obtaining the
null distribution. For example, the GSEA algorithm is a
hybrid of sorts [14]. Its gene set statistic is an enrichment
score based on the abundance of highly expressed genes
in a gene set compared to all the other genes (competa-
tive), but obtains the null distribution of the enrichment
score by permutating the sample lables (self contained).
The approach developed by Efron and Tibshirani uses
a maxmean statistic to quantify each gene set and they
argue that permutation on both the sample and probe
labels is necessary [15].
Extending a gene set analyisis methodology to incorpo-

rate complex designs such as longitudinal studies has two
general requirements. The first is that statistical inference
should not be based on sample permutations.We envision
it is possible to achieve inference based on permuta-
tion, however, greater detail must be made to ensure that
the permutations preserve the corrleation structure when
there are repeatedmeasures over time for each probe, per-
haps through a decorrelate, permutate, recorrelate type
procedure. Secondly, if inference is no longer based on
sample permutations, the procedure must account for the
correlations that exist among the probes within a gene
set. Restricting ourselves to self-contained gene set test-
ing without the use of permutation quickly reduces the
field of possible contenders. It is our view that the gene set
algorithm Quantitative Set Analysis for Gene Expression
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(QuSAGE) comes the closest to meeting our needs for
extensions to linear mixed models [16].
QuSAGE approaches self-contained gene set analysis by

testing whether the average log2 fold changes within a
particular gene set is different from zero [16]. In addi-
tion to some of its methodological advantages, using the
average log2 fold change as the gene set statistics provides
easily interpritable estimates. QuSAGE’s method to test
for the average fold change of a gene set is equal to zero
is straight forward. Under the assumption of normality
for log2 expression data, the distribution for each probe
level fold change estimate is simply a shifted and scaled
t-distribution. The scaling is provided by the appropriate
degrees of freedom and standard error of the fold change.
QuSAGE determines the distribution for the average fold
change statistic by approximating the distribution of the
sum of the shifted and scaled t-statistics for each probe
through numeric convolution and then scales it by the size
of the gene set. This allows for the calculation of confi-
dence intervals in addition to p-values. An issue with the
density approximation is that it assumes that each fold
change estimate is independent of the other. To account
for correlations among the probes within the gene set,
the density is then rescaled by an estimate of the vari-
ance inflation factor (VIF) which is a common method to
measure strength of correlation among multivariate vari-
ables. Inference based on the final, VIF scaled, distribution
is shown to control the type-I error rate under the two
indendent sample setting with unequal variances.
Another advantage to QuSAGE is post hoc testing can

be conducted. A typical comparison in immunology set-
tings is to test for differences in changes over time with
respect to a baseline time point for different groups of
subjects. Since QuSAGE provides a full density estimate
of the average fold change for each one comparison, the
density can then be used to test for the change from base-
line in one group of subjects versus the change in another.
This comparison is often referred to as “the difference of
the differences”. However, the procedure for conducting
these types of post hoc tests assumes that the two tests
being compared are independent. In repeated measures
designs, it is possible to compare tests that are correlated
and QuSAGE’s post hoc procedure can not appropri-
ately account for it. Fortunately, linear mixed models can
directly test for these type of post hoc tests by simply writ-
ing the appropriate contrast statment. The test is directly
built into the probe level analysis so that no post hoc
testing is then required.
The QuSAGE method is appealing for the incorpora-

tion of more general models used in longitudinal studies
due to the fact that, with exception of the VIF estima-
tion, all that is needed to provide statistical inference is
the information used in the construction of the gene level
t-statistics. At first glance, it might seem reasonable to

simply feed results from any statistical model the user
chooses through the QuSAGE algorithm and estimate
the VIFs using the functions provided within QuSAGE’s
Bioconductor package. Through our investigation of this
approach, it is clear that in order to incorporate the
QuSAGEmethod to a more general framework, care must
be taken with the VIF estimations in particular when addi-
tional sources of variablity from continuous covariates or
random effects are present. If the VIFs are incorrectly
estimated, type-I error rates can be drasticaly inflated or
deflated depending on the setting. This could lead to erro-
neous results. Our extension to QuSAGE adjusts the VIF
estimation procedure so that the QuSAGE methodology
can be applied with models typically used in longitudinal
settings that appropriately control the type-I error.

Our approach
1. Fit LMM appropriate for study design and obtain the

t-statistic information required by QuSAGE
2. Obtain the conditional residual matrix of the gene

expression data derived from the LMM
3. If a random effect is present and has few number of

observations per level, refit the model treating the
random effect as fixed and obtain the residual matrix

4. Calculate VIFs on final residual matrix assuming
equal or unequal variances as specified by the LMM

5. Run QuSAGE methodology with model specific fold
changes, standard errors, and adjusted VIFs

Methods
The methodology we present can be applied to any gen-
eral linear mixed model. Following the notation of the
QuSAGE authors, let Ei represent the ith probe in a gene
set of interest that is an n x 1 vector of expressions where
n is the total number of samples. The linear mixed model
for a single probe can be written in matrix form as

Ei = Xβi + Zγi + εi

where X and Z are design matrices for fixed and random
effects respectively, βi is a vector of fixed effect param-
eters, γi is a multivariate normal random effects vector
with mean 0 and covariance matrix �rand, and εi is a mul-
tivariate normal random vector of residuals with mean 0
and covariance matrix �res. Note the model above cov-
ers a wide variety of scenarios including all of the models
discussed in the original QuSAGE paper. Statistical infer-
ence can then be applied for various hypotheses by testing
different contrasts of β using general t-statistics with
appropriate standard errors while accounting for repeated
measures, potential confounders, and additional sources
of variability.
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Let FCi, si, dfi, be the corresponding fold change esti-
mate, standard error, and degrees of fredom used in
construction of test statistics for a particular hypothesis
for probe i. Applying the QuSAGE method to obtain a
full probability density for the average fold change of a
gene set can now be obtained under the assumption of
uncorrelated probes. To adjust for the correlations present
between probes in a gene set, the density must be scaled
by a variance inflation factor. The QuSAGE authors pro-
pose twomethods to estimate the VIF, one assuming equal
variances among the conditions being modeled within
the data set and the other assuming unequal. We will
introduce the equal variances estimation first as it pro-
vides a reasonable transition into a more generalizeable
estimation technique.
For a set ofN genes, E1, . . . ,EN , the typical VIF estimate

is defined by

V̂IF =

N∑
i=1

N∑
j=1

Ĉov(Ei,Ej)

N∑
i=1

Ĉov(Ei,Ei)
(1)

where Ĉov is the standard covariance estimate between
two normal random variables. This simple formula is valid
when the samples from the expression set are indepen-
dent and have a commonmean and variance. Since typical
expression sets have samples coming from more than one
condition it is more than likely that the samples do not
share a common mean. To account for this the QuSAGE
authors, define the covariance estimates on a group
of samples indexed by g where g ∈ G are the indexes of
the samples that belong to a single group and G is one
of the conditions, typically either control or treatement.
The covariance estimate of group G is defined as

̂CovG(Ei,Ej) =

∑
g∈G

(
Egi − ĒGi

)
·
(
Egj − ĒGj

)

NG − 1
(2)

where ĒGi is the usual sample mean for group G and NG
is the total number of samples within group G. If one
assumes equal covariances across the conditions in the
expression set, the individual group covariance estimates
can be pooled together to estimate the overall variance

̂Covp(Ei,Ej) =
∑

G∈T ,C
(NG − 1) · ̂CovG(Ei,Ej)

∑
G∈T ,C

(NG − 1)
(3)

With the assumption of equal variances, the covariance
estimate in Eq. 1 can be replaced with that of the pooled
estimate in Eq. 3 and the estimated VIF is updated and
accounting for the additional variability due to the condi-
tions of the samples. If it is assumed that the variances are

not equal, then the VIF is estimated separately for each
group using Eq. 2 and averaged together and weighted by
the number of samples in each group.
Amore general VIF estimation technique can intuitively

be argued by the numerator in Eq. 2. Regardless of the
index, the component Egi −ĒGi used to calculate the covari-
ance is simply the residual of fitting a linear model with a
single main effect for the condition. The residual has vari-
ability due to the condition subtracted out so the VIFs are
estimated using the variability due to measurement error.
The VIF estimate is exactly the same whether you per-
formQuSAGE’s technique on the raw data or you conduct
the VIF estimates on a raw residual expression matrix.
We explicitly use the term raw residual advocating that
no other transformation or standardization of the residu-
als need to be calculated which is inherent to other VIF
estimation techniques such as the method implemented
in the competitive gene set approach CAMERA [11]. The
reason for this is that the VIF is not invariant to transfor-
mations. For example, the VIF of a particular covariance
matrix will not equal the VIF of its corresponding corre-
lation matrix, which is just a simple standardization of the
variables to have mean zero and unit variance. We have
found that using standardized residuals provides more
conservative results.
QuSAGE only allows the VIF estimate to account

for categorical conditions in the data that are poten-
tial sources of variaibility, however, for the general linear
mixed model, additional sources of variaibility can be
present due to continuous covariates and random effects.
The VIF estimates can not fully be realized under the gen-
eral framework of QuSAGE and are potentially biased.
For the general linear model setting, one simply needs
to obtain the VIF estimates using the residual expres-
sion values of the model, rather than the raw expression.
For the equal variance approach, our general pooled (gp)
covariance estimate used for VIF calculation is

̂Covgp
(
Ei,Ej

) =

n∑
k=1

(
Eki − Êki

)
·
(
Ekj − Êkj

)

n − p
(4)

where Eki is the kth sample expression value for gene i
and Êki = Xβ̂i + Zγ̂i, the Best Linear Unbiased Predic-
tor (BLUP) from the linear model of gene i. The residuals
defined in this way have all sources of variability due
to both fixed and random effects removed. If the linear
model allows for unequal variance estimation across a par-
ticular group of categorical conditions, then the original
QuSAGE technique can be applied to the residual matrix
of expression values to account for the unequal variances.
This procedure is valid for all linear models and linear
mixed models when the random effects have an adequate
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number of observations per random effect level. For longi-
tudinal microarray studies where the individual subject is
used as a random effect, we suggest that four time points
is adequate. When the number of observations is low, the
conditional residuals from the mixed model are shrunk
closer to zero, biasing the VIF estimate. The shrinkage of
the residual is inherant to linear modeling with random
effects [17]. To correct for this, residuals must be obtained
from a sperate linear model that treats the random effects
as fixed effects.
In summary, our generalization of theQuSAGEmethod,

denoted as Q-Gen, allows for one of the most flexible
and general modeling techniques, the linear mixed model,
to be incorporated in a gene set analysis approach. By
incorporating statistical models appropriate to the study
design, adjusted fold change and variability estimates
within QuSAGE, along with their associated p-values are
more reliable. Effects of ignoring statistical issues such as
confounders and random effects can lead to erroneous
results.

Results and discussion
Simulation studies
We use simulation studies to illustrate the advantages
and necessity of using residuals to estimate the VIF when
incorporating the QuSAGEmethod with probe level anal-
ysis derived from LMMs. For conciseness, we compared
QuSAGE to Q-Gen when analysing a single gene set. The
simulation study consists of two main components, one
involving the inclusion of a confounding variable. The
second component is to explore the effect of repeated
measure designs and longitudinal studies.
The simulations were generated using the following pro-

cedure. First, a residual matrix of expression values, Rpxn,
where p is the number of genes in the gene set and n is the
number of samples, is randomly generated from a mul-
tivariate normal distribution with a defined covariance
structure so the VIF is known. A signal matrix Spxn is then
generated row by row from the linear mixed model frame-
work Xβ + Zγ , where β and γ are the specified fixed and
random effects for that gene. The final simulated expres-
sion data set was then obtained by simply adding E =
S + R. QuSAGE and Q-Gen were then applied on 10,000
simulations and the estimates of the type-I error rates,
VIFs, and power were recorded and compared across a
number of scenarios including varying degress of VIFs.
We considered scenarios in which the genes within the
gene set were uncorrleated, pairwise correlated 0.2, and
pairwise correlated 0.7 and correspond to VIFs of 1, 6.434,
20.024 respectively.
For our first study, we compared the effects of a simple

case-control study, 5 and 15 samples within each group,
with the addition of a confounded continuous covariate

variable, age, that can be described by the following linear
model

E = β0 + β1Xtreat + β2Xage + ε (5)

where β0 is the control level mean expression set to 6, β1
is the added effected of treatment group. Xage is a con-
tinuous covariate we selected that ranges from 15 to 30
with a mean of 25 to mimic a clinical variable such as
age and its regression coefficient β2 was set to 0.03. This
can be interpreted as an increase of a subject’s age by
10 years corresponds to an increase in expression level
of 0.3. In addition, we confounded the variable with the
treatment group so that larger values of Xage were pri-
marily contained in the treatment group. Setting β1 = 0,
we assessed the type-I error rates and VIF estimates of
the original QuSAGE method and Q-Gen using a mixed
model adjusted for Xage. In addition to varying degrees of
VIFs, we also considered the abundance of genes within a
gene set that truly had the confounder present. We con-
sidered three cases. We looked at a control scenario when
no probes have a confounder, 0 % as well as when 25 and
50 % of the probes have the confounding variable present
within its expression.
Table 1 provides a summary of both VIF estimates and

type-I error rates. Under the control scenario of no con-
founding present, there is relatively no difference. They
both adequately estimate the VIF and control type-I error
rate at the 0.05 level. As more and more probes are
included with the confounder, the VIF and the fold change
estimates of the original QuSAGE method become biased
and the type-I error rates are inaccurate. An interesting
point for the larger sample size scenario is that when the
true VIF is equal to one, the VIF is overly estimated sug-
gesting that the test would be more conservative, but in
somewhat contradictory fashion, still has an inflated type-
I error rate. This is due to the fact that the fold change
estimates for QuSAGE are biased and even though the
over estimated VIF is providing a harsher penalty, the
magnitude of the bias in the fold change estimate is over-
whelming. This was not seen in the small sample size
scenario because the degree of confounding was not as
extreme.
The effect of the confounding variable can be illustrated

further by examing the properties of the power curves of
the two methods. Figure 1, provides the power estimates
when 50 % of the probes are confounded and the VIF
is equal to 20.024 under the 15 samples per group sce-
nario. It is clear that the entire power curve is biased and
shifted to the left which creates the inflation of the type-
I error rate. Since the confounder slightly increases the
expression within the treatment group, it is much harder
to detect a down regulated gene set. The conservativeness
of QuSAGE’s VIF estimate can be seenwhere itsminimum
power estimate is below 0.05.
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Table 1 VIF and Type-I Error Control in the presence of a confounder

VIF Estimate Type-I Error

Sample Size Percent Conf. True VIF QuSAGE Q-Gen Qusage Q-Gen

5 0 20.024 19.04 18.89 .046 .054

5 .25 20.024 17.43 18.87 .042 .050

5 .5 20.024 17.89 18.89 .041 .055

5 0 6.435 6.20 6.16 .044 .050

5 .25 6.435 6.282 6.2 .040 .054

5 .5 6.435 8.04 6.16 .045 .055

5 0 1 0.99 0.99 .048 .053

5 .25 1 1.72 1.00 .041 .054

5 .5 1 4.16 0.99 .010 .057

15 0 20.024 19.75 19.74 .047 .047

15 .25 20.024 18.72 19.72 .056 .049

15 .5 20.024 18.59 19.71 .0822 .053

15 0 6.435 6.36 6.36 .053 .052

15 .25 6.435 6.43 6.36 .072 .052

15 .5 6.435 8.27 6.34 .101 .051

15 0 1 1.00 1.00 .048 .049

15 .25 1 1.719 1.00 .097 .050

15 .5 1 4.176 1.00 .074 .051

VIF and type-I error estimates under a case-control simulation in the presence of a confounding variable where the percentage of genes that are affected by the confounder
are examined for 0, 25, and 50 % respectively. Error rates in bold indicate they are within the margin of error (0.05 ± 0.00427) for the simulation study. Since Q-Gen allows for a
linear model that adjusts for covariates, VIF estimation and the controlling of the type-I error is more consistent than the standard two sample t-testing conducted within
QuSAGE

In our second simulation, we investigated the effects
when an additional source of variability is present in the
expression other than measurement error in the residual.
In a longitudinal study when subjects have repeated
measurements over time, a random effect can be used to

take into account for subject specific variability. Under
this particular model, correlation between the repeated
measures over time is assumed to be equal between any
two pairs of time points [18]. Using the same VIF values,
we simulated longitudindal data sets of 5 and 15 subjects

Fig. 1 Power estimates in the presence of a confounder. Plot of estimated power vs. true fold change differences (effect size) using a significance
threshold of 0.05 under a gene set simulation with VIF = 20.024 and 50 % of probes are confounded. QuSAGE’s power curve is biased to the left and
does not maintain a minimum at zero. Q-Gen’s adjustments appropriately controls for type-I error rate and its statistical inference can be trusted
when true differences occur
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having 2, 5, and 10 repeated measures. For each number
of repeated measures, we investigated the properties of
testing the difference between the second and first repli-
cate, or in other words, difference between the first time
point and a baseline timepoint. This should have no con-
sequence on QuSAGE’s paired t-test approach, but the
added replicates will help the linear mixed model estimate
the random effect which could have an influence. The
parameters for the subject specific random effect were
chosen such that the pairwise correlation between any two
time points is 0.7.
Table 2 provides the simulation results under the ran-

dom effects model setting. The QuSAGE method across
all scenarios drastically underestimates the VIF, and thus
inflates the type-I error rate. Q-Gen adequately controls
the type-I error rate across most of the scenarios and
exhibits mild inflation when the number of subject repli-
cates is low. Examining the power curve in Fig. 2 for
five replicates on 15 subjects and a VIF of 20.024, the
fold change estimates are unbiased for both estimates as
both methods obtain a minimum when there is no change
between the two time points. However, there is an upward
shift in the power curve for QuSAGE indicating it’s over
optimism due to the under estimation of the VIF.
The reason for this drastic difference in VIF estimates

is because the subject specific variability was added to
each probe independently in our simulations. Random
effects are random variables just like the residual compo-
nent of a linear model, when QuSAGE estimates the VIF,
the independence of the variablity between subjects and
the correlation between the probes cannot be parsed out.

Therefore, the QuSAGE estimate is pulled closer to a VIF
of one. This of course may not be realistic in real data,
but the only way for the VIF estimates from QuSAGE and
Q-Gen to correspond exactly under this scenario is when
the covariances of the random effects and the covariance
of the probes are exactly the same. We do not feel this is
a safe assumption in reality, and recommend the Q-Gen
approach as the residuals have the covariances due to the
random effects subtracted out.
Another approach to modeling longitudinal expression

data with linear models is through structuring subject
specific correlations in the residuals. For example, autore-
gressive properties that assume the correlations between
time points decay exponentially the farther apart they
are in time. We explored the aspect of AR(1) processes
in a similar fashion as our random effects simulation.
Although we do not provide the results, the VIF esti-
mates are identical and the only difference that can be
seen is in the slightly more powerful linear model. One
must also consider that in real data, adjusting for con-
founders, adding random effects, and specifying residual
side covariance structures could be called for in one sin-
gle model. We only consider the effects of each one
of these components one at a time in our simulations.
Thus, the reasons why QuSAGE and Q-Gen may differ
in real analysis settings would be harder to assess. From
these simulation studies, it is clear that adding additional
complexities inherent to longitudinal and observational
study designs can have a negative impact on the origi-
nal QuSAGE methodology. Our generalization provides a
frame work to overcome these issues.

Table 2 VIF and Type-I Error Control in the presence of a random effect

VIF Estimate Type-I Error

Sample size Replicates True VIF QuSAGE Q-Gen Qusage Q-Gen

5 2 20.024 10.02 18.08 .129 .049

5 5 20.024 10.38 18.47 .114 .052

5 10 20.024 10.44 19.46 .105 .054

5 2 6.435 3.63 5.99 .093 .055

5 5 6.435 3.69 5.99 .077 .055

5 10 6.435 3.70 6.28 .061 .048

15 2 20.024 10.37 19.44 .147 .052

15 5 20.024 10.47 19.13 .138 .052

15 10 20.024 10.49 19.75 .137 .051

15 2 6.435 3.69 6.27 .124 .057

15 5 6.435 3.72 6.18 .121 .054

15 10 6.435 3.71 6.38 .114 .053

VIF and type-I error estimates under a longitudinal simulation in the presence of a subject specific random effect. Under the current simulation setting, the VIF estimates
under QuSAGE are drastically underestimated and lead to inflated type-I error rates. Error rates in bold indicate they are within the margin of error (0.05 ± 0.00427) for the
simulation study. The type-I error rates for Q-Gen are consistantly in control with mild error inflation when there are fewer replicates
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Fig. 2 Power estimates in the presence of a random effect. Plot of estimated power vs. true fold change differences (effect size) using a significance
threshold of 0.05 under a longitudinal gene set simulation (VIF = 20.024) with five time points using a random effect for subject. The
underestimation of the VIF under QuSAGE yields overly optimistic p-values. Q-Gen remains conservative for an adequate number of replicates

Influenza study revisited
We re-examined the influenza study originally presented
in the QuSAGE paper [19]. Data from this study is pub-
lically available and reported by the researchers to have
been “approved by the relevant institutional review boards
and conducted according to the Declaration of Helsinki.”
The normalized expression data was downloaded from
theGEOdatabase (GEOID: GSE30550). In this study, tem-
poral whole blood gene expression data was taken from
17 healthy human subjects before and after they were
challenged with the H3N2 live influenza virus. After an
initial baseline measurement, 14 additional time points up
to 108 hours post challenge were collected at unequally
spaced time intervals. Each subject was identified as either
being symptomatic or asymptomatic to the challenge. The
QuSAGE authors illustrated how QuSAGE could iden-
tify changes in interferon related gene sets with respect to
baseline measurements earlier in time than previous GSA
methods such as GSEA and CAMERA within the symp-
tomatic subjects. However, if a single gene set analysis
would survive any multiple testing correction procedures
when an analysis is highly exploratory and a large number
of gene sets are used was not explored.
To illustrate the advantages of incorporating a linear

mixed model inside of the QuSAGE frame work, we com-
pared Qusage analysis to our generalized approach Q-gen
using 260 immunologically derived gene sets, three of
which are annotated as interferon gene sets [20]. The lin-
ear mixed model used for Q-Gen included time, subject
condition, their interaction term, a subject specific ran-
dom effect to account for the repeated measures over
time, and additional covariates to adjust the analysis for
age and gender. An assumption for equal variances was
also made. Tests for changes over time within condition

groups as well as changes between condition at each
time point were conducted using contrast statements
from the linear mixed model and p-values were adjusted
using the Benjamini-Hochberg procedure (FDR) for each
comparison.
The grouping of asymptomatic and symptomatic sub-

jects was conducted while the study was ongoing and
cannot completely control for potential confounders. For
example, although all the subjects could be considered
similar in age (median 25.5), there is not a way to guar-
antee that patients within asymptomatic and symptomatic
conditions will have a similar distribution. The subjects
mean age by condition are almost identical, 27.5 and 27.1
respectively. However, seven out of the eight symptomatic
subjects are 25 or older while five out of the eight asymp-
tomatic subjects are less than 25 years old. Therefore,
there is potential for an age confounder effect within the
expression data.
The distibution of p-values obtained from testing the

effects of age and gender at the gene level are presented in
Fig. 3. Both distributions are highly positively skewed indi-
cating a significant number of genes contain variation due
to these variables that are ignored in the original QuSAGE
framework. Due to theses effects in addition to subject
variablity, the VIF estimation technique of QuSAGE is
suspect.
Figures 4 and 5 illustrates by example how the different

estimates in VIF can have an impact on analyses. Gene set
module M6.6 in Fig. 4, which is annotated as a myeloid
lineage, provides an example when QuSAGE VIFs can be
too conservative. QuSAGE’s VIF estimate is 8.99 versus
Q-Gen’s estimate of only 6.52. This discrepancy is high-
lighted by the testing of changes over time with respect
to baseline as the confidence intervals for QuSAGE are
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Fig. 3 Age and gender effects within the flu longitudinal study. Distribution of p-values from testing age and gender effects under the linear mixed
model at the gene level

consistently larger than that of Q-Gen. Changes over time
and changes between symptomatic and asymptomatic
groups are detected up to two or three timepoints earlier
with Q-Gen after FDR correction.
Gene set module M8.83 is an unannotated gene set but

provides one of the biggest discrepancies in VIF estimates
between the two methods. Q-Gen estimates the VIF to
be 2.83 which is over three fold higher than QuSAGE’s
estimate of 0.89. The confidence intervals provided by

Q-Gen are drastically wider than that of QuSAGE as seen
in Fig. 5. This leads to more conservative results for this
particular gene set.
Figure 6 displays a comparison of results between

QuSAGE and Q-Gen for gene set module M1.2 which
is annotated as interferon. The collection of genes is
mostly induced by type I and type II interferon. Twenty
one out of the twenty seven genes are identified as
being IFN-induced. The VIF factors between the two

Fig. 4 Comparison of QuSAGE and Q-Gen analysis for the M6.6 myeloid lineage gene set. Results are organized as follows: QuSAGE across the top,
Q-Gen across the bottom. The left column provides the fold change estimates of testing changes over time relative to baseline, and the right
column for testing symptomatic versus asymptomatic at each time point. Each comparison’s significance level is color coded based on its FDR
adjusted p-value for that particular comparison across all 260 gene sets. Q-Gen’s VIF estimation is less conservative and, combined with the pooled
estimate of the variance, provides narrower confidence intervals and provides additional sensitivity at earlier time points
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Fig. 5 Comparison of QuSAGE and Q-Gen analysis for the M8.83 unannotated gene set. Results are organized as follows: QuSAGE across the top,
Q-Gen across the bottom. The left column provides the fold change estimates of testing changes over time relative to baseline, and the right
column for testing symptomatic versus asymptomatic at each time point. Each comparison’s significance level is color coded based on its FDR
adjusted p-value for that particular comparison across all 260 gene sets. Q-Gen’s VIF estimation is more conservative at almost three times that of
QuSAGE. This yields wider confidence intervals and more conservative p-values across all of the comparisons under Q-Gen

methods are very comparable as are the estimates and
confidence intervals. However, the additional power the
linear mixed model provides by pooling the variance
and accounting for the variability contributed to age and
gender is apparent across all genes and all gene sets.

The real advantage of this added sensitivity is the ability
to detect the earlier changes at hours 36 and 45 even
after multiple testing correction was conducted. Similar
findings can be found with the remaining two interferon
gene set modules M3.4 and M5.12.

Fig. 6 Comparison of QuSAGE and Q-Gen analyses for the M1.2 Interferon gene set. Results are organized as follows: QuSAGE across the top, Q-Gen
across the bottom. The left column provides the fold change estimates of testing changes over time relative to baseline, and the right column for
testing symptomatic versus asymptomatic groups at each time point. Each comparison’s significance level is color coded based on its FDR adjusted
p-value for that particular comparison across all 260 gene sets. Here, both method’s VIF are similar and thus provides a good comparison of just the
difference between simple t-test procedures versus a linear mixed model. Q-Gen is able to detect differences over time and between groups a few
time points earlier
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In this particular study, the number of subjects for the
asymptomatic and symptomatic groups is eight and nine
respectively. We assessed the sensitivity of Q-Gen com-
pared to the original QuSAGE method when the number
of subjects is even lower. We reduced the original analysis
to include only the symptomatic group and investigated
the results for comparing hour 60 versus baseline. Using
a raw p-value threshold of 0.05, the total number of sig-
nificant gene sets for Q-Gen and QuSAGE are 138 and
66 respectively. We then conducted a simulation using the
raw data to assess the effects of reducing the number of
subjects.
The simulation was conducted by performing Q-Gen

and QuSAGE on every possible data set with removing
just one subject. Since there were nine original subjects,
there were nine different data sets of removing one sub-
ject. We observed the total number of gene sets that were
statistically significant at the 0.05 significance level for
each data set and calculated the average number of sig-
nificant gene sets. We repeated the process for removing
two, three, four, and five subjects. Figure 7 plots the aver-
age number of significant gene sets as a function of the
number of subjects removed. The plot illustrates one of
the main advantages linear mixed models can have in lon-
gitudinal studies as it can take advantage of the many
replicates and produces higher number of significant gene
sets consistently even as the number of subjects decrease.

Limitations
The combination of linear mixed model analysis and
QuSAGE makes for a flexible and powerful gene set
enrichment approach. However, there are limitations.
Specifically, the limitations of linear mixed models, and

statistical modeling in general, are inherently limitations
of Q-Gen [21]. For example, the accuracy and preci-
sion of the covariate data is positively associated with
the accuracy and precision of estimates obtained from
the model. In other words, when the data is inaccurate
and/or imprecise, the results will be as well. Also, covari-
ates are modeled with an assumed association with the
outcome, linear in most cases, which may be inaccurate.
Correlated covariates, also known as multicollinearity,
will cause problems estimating the model parameters and
standard errors. The diagnostics for these issues are dif-
ficult to assess across tens-of-thousands of models run
for an expression data set. Additionally, whether adjusting
for confounders by including them in the model directly
or via other methods such as propensity scores, biased
results is still a possibility due to unknown confounders
not included in the analysis. Lastly, sample size relative to
the number of parameters estimated in the model should
be considered. Sample size is study specific, but, as a rule
of thumb, there should be at least ten observations per
covariate included in the model [22].

Conclusions
Q-gen is a gene set analysis method which extends the
current QuSAGE methodology to more flexible linear
mixed models that can account for confounding vari-
ables and random effects that are often used to model
the repeated nature of longitudinal studies. Although the
original QuSAGE method can be more powerful than
other gene set approaches such as GSEA and CAM-
ERA by more appropriately accounting for the intergene
correlation of the genes within the gene set, the VIF esti-
mation technqiue can not appropriately estimate the VIF

Fig. 7 Comparison of QuSAGE and Q-Gen analyses when reducing the total number of subjects. Plot of the average number of significant gene sets
as a function of the total number of subjects removed when making the comparison of hour 60 versus baseline within the symptomatic group. The
averages are calculated by conducting QuSAGE and Q-Gen analysis on all data set combinations of removing the specified number of subjects
indicated on the horizontal axis. Q-Gen provides higher averages consistently while both methods decline at a similar rate



Turner et al. BMC Bioinformatics  (2015) 16:272 Page 12 of 12

when confounding factors and random effects exist in
the data. Fortunately, accounting for this issue is cor-
rected through the methods presented in this paper and
the wonderful tools and interpretations provided by the
original QuSAGE package in Bioconductor can still be
used to its fullest. We provide Q-Gen as an R function
along with some additional documentation and example
code which is available in the Additional files 1 and 2. An
implementation of the Q-gen methodology will be made
available through the QuSAGE package in the next update
of Bioconductor in October, 2015.

Additional files

Additional file 1: An R script which provides a user made function to
implement the Q-Genmethodology. The original QuSAGE package is all
that is needed. Example code of how to implement the function is
provided as well. (TXT 2.61 KB)

Additional file 2: Documentation similar to that of an R help file
defining the requirements of the Q-Gen function inputs and details.
(DOCX 14.2 KB)
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