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Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to spe-
cific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on au-
tophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on au-
tophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of
ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was ob-
served with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in
the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that
increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal
stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates
degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis.

Eukaryotic cells are able to degrade and recycle their own ma-
terial when they are exposed to nutrient starvation or other

adverse conditions through a catabolic pathway known as mac-
roautophagy or autophagy. This process is characterized by the
formation of double-membrane vesicles termed autophagosomes
that engulf and deliver cytosolic components to the vacuole/lyso-
some for degradation (1–4). The primary function of autophagy is
to recycle cytoplasmic material as well as to clear damaged organ-
elles or toxic cellular components generated during stress in order
to maintain cellular homeostasis. In higher eukaryotes, autophagy
has also been implicated in cell differentiation, development and
cell death, and several human pathologies, such as cancer and
neurodegenerative diseases (5, 6).

Autophagy is mediated by highly conserved autophagy-related
(ATG) genes, which have been described in organisms ranging
from yeasts to mammals. Some ATG proteins are required for the
formation of the autophagosome and constitute the core au-
tophagy machinery (4, 7, 8). This group of proteins includes the
ATG8 and ATG12 ubiquitin-like systems required for vesicle ex-
pansion. The ATG8 protein has been widely used to monitor au-
tophagy in many systems (9) because, unlike other ATG proteins,
this protein firmly binds to the autophagosome membrane
through a covalent bond to phosphatidylethanolamine (PE).
Most of the core ATG proteins are conserved in land plants (10–
12) and in evolutionarily distant algae, including freshwater spe-
cies, such as the model green alga Chlamydomonas reinhardtii
(herein referred to as Chlamydomonas) (13) and marine species
(14). Our current knowledge about autophagy in algae is still lim-
ited compared to our knowledge about autophagy in other eu-
karyotes, but recent studies, mainly performed in Chlamydomo-
nas, have shown that this degradative process is elicited under
various stress conditions. Deprivation of nutrients (nitrogen, car-
bon, or sulfur) or progression into stationary growth phase acti-
vates autophagy (15–19). Oxidative stress, photooxidative dam-
age generated by carotenoid deficiency, high light stress, cold
stress, or the accumulation of unfolded proteins in the endoplas-
mic reticulum (ER) also triggers autophagy in Chlamydomonas
(19–22). Moreover, a loss of chloroplast integrity due to depletion

of the chloroplastic ClpP protease has been shown to activate au-
tophagy in this alga (23). Recent studies have also linked this cat-
abolic process with the degradation of lipid droplets in the green
alga Auxenochlorella protothecoides (24) or with the propagation of
DNA viruses in the marine alga Emiliania huxleyi (25). In land
plants, the availability of mutant lines defective in key ATG genes
has contributed to the identification of cellular processes medi-
ated by autophagy. Functional studies have revealed that au-
tophagy is required for the proper response of plant cells to abiotic
stresses, senescence, and pathogen infection (for recent reviews,
see references 1, 2, and 26).

The signaling mechanisms that regulate autophagy in plants
and algae are still poorly understood, but mounting evidence in-
dicates that reactive oxygen species (ROS) generated during spe-
cific stresses may be involved in the activation of autophagy. Sup-
porting this hypothesis, it has been shown that treatment of
Arabidopsis plants or Chlamydomonas cells with the ROS inducer
hydrogen peroxide (H2O2) or methyl viologen results in severe
oxidative stress and leads to autophagy induction (19, 21, 27).
Moreover, carotenoid depletion in Chlamydomonas causes ROS
accumulation, which in turn triggers autophagy (21). Metal tox-
icity has been associated with ROS production and oxidative stress
signaling in plants and algae (28–32), but it remains unknown
whether the cellular response to metals in these organisms may
include the activation of autophagy. Chlamydomonas has been
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widely used to investigate metal metabolism and the cellular re-
sponse to metal excess and metal-limiting conditions (28, 33, 34),
and the development of genome-wide technologies has increased
our current understanding about metal signaling in this alga. In
this study, we show that high concentrations of nickel, cobalt, or
copper trigger autophagy in Chlamydomonas.

MATERIALS AND METHODS
Strains and growth conditions. Chlamydomonas reinhardtii cw15 4B�, a
cell wall-deficient strain, was obtained from the laboratory of Jean-David
Rochaix. The crr1-1 mutant strain (strain CC-3959) has been previously
described (35). Chlamydomonas cells were grown under continuous illu-
mination at 25°C in Tris-acetate phosphate (TAP) medium as described
previously (36). All treatments were performed in liquid cultures in ex-
ponential growth phase (106 cells/ml).

Generation of the SATG8 Chlamydomonas strain. To obtain a Chla-
mydomonas strain expressing nickel-induced ATG8, cw15 cells were
transformed by electroporation (37) with the pMPM1 plasmid harboring
the cDNA of the Chlamydomonas ATG8 gene under the control of the
CYC6 promoter (PCYC6). To generate the pMPM1 plasmid, an 857-bp
DNA fragment containing the promoter of the CYC6 gene from Chlamy-
domonas (38) was amplified by PCR using primers 5=-CCGGCTCGAGG
CCTTGGACAAGGCACTTCAGTAAC-3= and 5=-CCGGCATATGGGA
GTAGGTTGAGTTAGTTCTGTG-3=, digested with flanking XhoI and
NdeI restriction enzymes, and cloned into the pSL18 plasmid (S. Lemaire
and J. D. Rochaix, unpublished data) at the XhoI and NdeI restriction
sites. Next, a synthetic cDNA of the Chlamydomonas ATG8 gene with an
N-terminal Strep tag (Trp-Ser-His-Pro-Gln-Phe-Glu-Lys) (39) was
cloned into pSL18 containing the CYC6 promoter at the SpeI restriction
site.

Protein preparation and immunoblot analysis. Chlamydomonas
cells from liquid cultures were collected by centrifugation (4,000 � g, 5
min), washed once in 50 mM Tris-HCl (pH 7.5) buffer, and resuspended
in a minimal volume of the same solution. Cells were lysed by two cycles of
slow freezing to �80°C, followed by thawing at room temperature. The
soluble cell extract was separated from the insoluble fraction by centrifu-
gation (15,000 � g, 15 min) in a microcentrifuge at 4°C. For immuno-
blot analyses, total protein extracts (30 �g) were subjected to 15% SDS-
PAGE and then transferred to nitrocellulose membranes (catalog no.
HATF00010; Millipore). Anti-Chlamydomonas ATG8 (anti-CrATG8)
(19) and secondary antibodies were diluted 1:2,500 and 1:10,000, respec-
tively, in phosphate-buffered saline containing 0.1% (wt/vol) Tween 20
(catalog no. A4974; Applichem) and 5% (wt/vol) milk powder. A Lumi-
nata Crescendo immunoblotting detection system (catalog no.
WBLUR0500; Millipore) was used to detect the proteins with horseradish
peroxidase-conjugated anti-rabbit immunoglobulin secondary antibod-
ies (catalog no. A6154; Sigma-Aldrich).

Fluorescence microscopy. Chlamydomonas cells were fixed and
stained for immunofluorescence microscopy as previously described (19).
Affinity-purified polyclonal anti-ATG8 was used as the primary antibody
at a 1:500 dilution. For signal detection, a fluorescein isothiocyanate-
labeled goat anti-rabbit immunoglobulin antibody (1:500; catalog no.
F4890; Sigma-Aldrich) was used. Preparations were photographed on a
DM6000B microscope (Leica) with an ORCA-ER camera (Hamamatsu)
and processed with Leica Application Suite advanced fluorescence soft-
ware.

RNA isolation and quantification. Chlamydomonas total RNA was
isolated from frozen cell pellets as previously described (40). First-strand
cDNA was produced using 2 �g total RNA, an oligo(dT) primer, and 100
units of SuperScript II RNase H-reverse transcriptase (catalog no. 18064-
014; Invitrogen) in a 50-�l reaction mixture. Quantitative real-time re-
verse transcription-PCR was performed on an iCycler apparatus (Bio-
Rad). The PCR mixtures, in a final volume of 20 �l, contained 10 �l of
FastStart Universal SYBR green master mix (catalog no. 04913850001;
Roche), 1 �l of cDNA dilution, 250 nM each primer, and distilled water.

All reactions were performed in triplicate with 2 to 4 biological replicates.
CBLP was used as a constitutively expressed gene (41). The primer pairs
used for quantitative PCR (qPCR) were 5=-CTTCTCGCCCATGACCA
C-3= and 5=-CCCACCAGGTTGTTCTTCAG-3= for CBLP, 5=-TCCCCG
ATATCGACAAGAAG-3= and 5=-TGCGGATGACGTACACAAAT-3= for
ATG8, 5=-CGCAGTTCGAAAAGGGTGCA-3= and 5=-ATGACTGGAAT
TCGGTCTGG-3= for Strep-ATG8, 5=-GCTTCAAGGTGGAGAGCAT
C-3= and 5=-TAGTACTTCCAGGCGGCATC-3= for CYC6, 5=-GCGGTC
GCCAATAACCAAT-3= and 5=-AAGGGCTGTCCCGAAAGC-3= for
GPXH/GPX5 (42), 5=-CAGAGGTGAAAGGCGGATAC-3= and 5=-GTGT
TGCAATGGACTTCAGC-3= for GSTS1 (43), 5=-TGTCAACCTGCTCAT
CAACC-3= and 5=-CTGCTGCTGCTACTGCTGTC-3= for ERO1, and 5=-
GGTGTGGCTGGTTGAGTTCT-3= and 5=-CTCTTTGGCGTCCTCACA
GT-3= for PDI6.

Transcriptome analysis. To identify transcripts whose abundance
was affected by the addition of Ni2� independently of CRR1, we reana-
lyzed transcriptome sequencing (RNA-Seq) data previously collected to
identify CRR1-dependent Ni2�-induced transcripts (C. E. Blaby-Haas et
al., unpublished data). Our analysis included all transcripts from strains
CC-5071 (crr1-2:CRR1 mt� [referred to as the CRR1 strain]) and CC-
5073 (crr1-2:CRR1-�Cys mt� [referred to as the CRR1-�Cys strain])
whose abundance was considered to be significantly differentially abun-
dant by the Cuffdiff algorithm (44) (q value, �0.05) between growth in
the absence and growth in the presence of 50 �M NiCl2 and whose abun-
dance was greater than or equal to 10 fragments per kilobase per million
(FPKM). From this data set we generated the final list of CRR1-indepen-
dent Ni2�-induced transcripts by identifying those transcripts not con-
sidered to be significantly differentially abundant by the Cuffdiff algo-
rithm (q value, �0.05) between the CRR1-�Cys and CRR1 strains in the
presence of Ni2�. For comparison of this list of transcripts to H2O2-
responsive transcripts, the RNA-Seq reads presented previously (45) were
realigned using the v5 genome assembly and v5.5 gene models as a refer-
ence. The set of transcripts whose abundance was considered to be signif-
icantly differentially abundant (as described above) between 1 h after
addition of 1 mM H2O2 and immediately prior to addition was generated.
For comparisons of transcripts with increased abundance in the presence
of Ni2 in the CRR1 strain and increased abundance in previously pub-
lished RNA-Seq experiments, before determining the overlap we applied
the cutoffs of �10 FPKM/reads per kilobase per million and a �2.0-fold
change in expression between mock-treated cultures and cultures to
which rose bengal was added (46), 0 h and either 12 h, 31 h, 43 h, or 48 h
of ClpP1 depletion (23), 0 h and either 2 h or 8 h after rapamycin addition
(23), 0 h and 6 h after transfer to dark anoxic conditions (47), conditions
with 20 �M Fe supplementation and conditions with either 1 �M or 0.25
�M Fe supplementation (48), the presence and absence of Cu (49), and
the presence and absence of Zn (50). The list of upregulated transcripts
(that met these cutoffs) from each data set was then compared to the list of
transcripts that increased in abundance (using the same cutoffs) in the
CRR1 strain after Ni2� addition. The P value for each overlap was calcu-
lated using R with the command sum(dhyper((q:m, k, 17301-k, m))),
where q is the number of transcripts in the overlap, m is the number of
transcripts that increased in abundance in the data set being compared,
and k is the number of transcripts that increased in abundance following
Ni2� addition. Because most of the data sets that we performed these
comparisons with were aligned to the v4 assembly of the Chlamydomonas
genome, we converted locus identifiers in the Ni2� and H2O2 data sets
from v5 to v4 (which contains 17,301 loci, the total population in the
equation) and the Cu deficiency data set from v3 to v4 using the cor-
respondence table available at http://genome.jgi.doe.gov/pages
/dynamicOrganismDownload.jsf?organism	PhytozomeV10.

RESULTS
Nickel ions trigger autophagy in Chlamydomonas. The toxic ef-
fect of transition metals, such as nickel, copper, cobalt, or cad-
mium, in algae is well documented (29, 51–55), but the molecular
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processes that mediate the cellular response to these metals are still
poorly understood. In this study, we investigated the effect of
nickel and other transition metals on autophagy in the model alga
Chlamydomonas reinhardtii. Toward this goal, Chlamydomonas
cells were treated for 8 h with different concentrations of nickel (0,
15, 25, 50, 75, 100, 150 �M) and autophagy was monitored by
analyzing the protein abundance and lipidation of ATG8. Our
results revealed an increase in ATG8 abundance and the detection
of higher levels of lipidated forms in cells treated with 100 and 150
�M Ni2� than in cells treated with 75 �M Ni2� (Fig. 1a). We also
analyzed the transcript abundance of the ATG8 gene by qPCR
since it has been shown that enhanced transcription of this gene
correlates with the activation of autophagy in Chlamydomonas
(20). In close agreement with the ATG8 protein abundance, ex-
pression of ATG8 was progressively upregulated when cells were
treated with 75, 100, or 150 �M Ni2� (Fig. 1b). The levels of
mRNA for the CYC6 gene, whose expression is tightly regulated by
Ni2� (53), were also determined as a positive control for Ni2�

treatment. As expected, expression of CYC6 was strongly induced
at Ni2� concentrations above 25 �M (Fig. 1b). To further charac-
terize a possible effect of nickel on autophagy, we analyzed the
cellular distribution of ATG8 by immunofluorescence since in
previous studies we showed that autophagy activation has a strong
effect on the localization of ATG8 in Chlamydomonas (19). In
consonance with the findings of immunoblotting and qPCR anal-
ysis, treatment of Chlamydomonas cells with 50 �M Ni2� had only
a moderate effect on ATG8 localization compared to that found in
untreated cells, although a single spot could be observed in most

cells (Fig. 1c). Higher concentrations of Ni2� resulted in a pro-
nounced increase in the ATG8 signal and the detection of several
spots per cell (Fig. 1c). A similar punctate pattern has been ob-
served for ATG8 in Chlamydomonas cells subjected to different
autophagy-activating conditions (19–21). Taken together these
results indicate that the presence of high concentrations of Ni2�

ions in the medium triggers autophagy in Chlamydomonas. To our
knowledge, this is the first experimental evidence showing the
activation of autophagy by high concentrations of metal in a pho-
tosynthetic organism.

Nickel and tunicamycin-induced ER stress activate au-
tophagy through different mechanisms. The finding that high
concentrations of nickel activate autophagy prompted us to com-
pare this effect with the effects of other stresses that also upregu-
late this catalytic process in Chlamydomonas, such as ER stress (19,
20). To achieve this aim, we have generated a Chlamydomonas
strain (termed SATG8) that expresses a Strep-tagged form of
ATG8 under the control of the CYC6 promoter (PCYC6), in addi-
tion to the endogenous ATG8 protein. The CYC6 promoter has
been widely used as an inducible gene expression system in Chla-
mydomonas (56–59) because it is repressed by copper and induced
by nickel (53, 60). Therefore, in the absence of nickel, SATG8 cells
express only endogenous ATG8, whereas addition of this metal to
the medium resulted in the detection of both endogenous and
PCYC6-driven ATG8 in an Ni2� concentration-dependent manner
(Fig. 2a). Expression of PCYC6-driven ATG8 in SATG8 cells was
confirmed by qPCR (see Fig. S1 in the supplemental material).
The two different ATG8 proteins could be easily and unambigu-

(b)

0 15 25 50 75 100 150

α−ATG8

Ni   concentration 2+ (μM)
(a)

R
el

at
iv

e 
m

R
N

A 

0

10

20

30

40

50
ATG8 

CYC6

0
0 15 25 50 75 100 150

Ni   concentration 2+ (μM)

R
el

at
iv

e 
m

R
N

A 

(c)

100
200
300
400
500
600
700

α−FKBP12

ATG8
ATG8-PE

ATG8 Nomarski

control

50 μM Ni   2+

100 μM Ni   2+

150 μM Ni   2+

16

14.4

14.4

FIG 1 Exposure to high concentrations of nickel triggers autophagy in Chlamydomonas. (a) Immunoblot demonstrating the accumulation and lipidation of
ATG8 in cw15 cells grown to log phase (106 cells/ml) in TAP medium and treated with the indicated concentrations of Ni2� for 8 h. Immunoblot analysis with
an anti-FKBP12 antibody was used as a loading control. Molecular mass markers (in kilodaltons) are indicated on the left. (b) Analysis of ATG8 and CYC6 gene
expression by qPCR in cw15 cells treated as indicated in the legend to panel a. mRNA levels were compared and normalized to those for untreated cells (for which
the level of mRNA expression was given a value of 1). The data are represented as the mean 
 standard deviation from three independent experiments. (c)
Immunolocalization of ATG8 in cw15 cells grown to log phase in TAP medium and treated with 50, 100, or 150 �M Ni2� for 8 h. Control refers to untreated cells.
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ously detected by immunoblotting with an anti-ATG8 antibody
due to the different sizes of the tagged and native proteins
(Fig. 2a). cw15 and SATG8 cells were treated with Ni2� or tunica-
mycin, an inducer of ER stress and autophagy in Chlamydomonas
(19, 20), and the abundance of the ATG8 protein was analyzed by
immunoblotting. As expected, both treatments increased the
abundance of ATG8 in cw15 cells (Fig. 2b). In SATG8 cells, a
similar effect on endogenous ATG8 was observed with Ni2� and
tunicamycin treatment, yet only Ni2� treatment and not tunica-
mycin treatment induced the expression of PCYC6-driven ATG8
(Fig. 2b). These results indicate that despite the ability of Ni2� and
tunicamycin to activate autophagy in Chlamydomonas, these two
stressors likely operate through different mechanisms. Accord-
ingly, we observed that Ni2� had no effect on the abundance of
mRNAs for ERO1 and PDI6 (Fig. 2c), which are upregulated in
ER-stressed cells (20), suggesting that this metal does not induce
autophagy via ER stress activation.

In the course of these studies, we tested the response to dithio-
threitol (DTT), another inducer of ER stress that is often used
interchangeably with tunicamycin. Interestingly, we observed that
DTT increased the abundance of endogenous and PCYC6-driven
ATG8 (Fig. 2b), indicating that DTT is able to activate the expres-
sion of the Ni2�-responsive gene CYC6 in Chlamydomonas. To
confirm the effect of DTT on the CYC6 promoter, we determined
the transcript abundance of this gene by qPCR in cw15 cells treated
with Ni2�, DTT, or tunicamycin. We found that, indeed, Ni2� or

DTT strongly increased the level of accumulation of CYC6 tran-
scripts, whereas no induction was observed with tunicamycin
(Fig. 2d). The effect of Ni2�, DTT, or tunicamycin in these cells
was confirmed by the upregulation of the ATG8 mRNA level (Fig.
2d). The finding that DTT was able to induce the expression of
CYC6 strongly suggests that this reducing agent acts on other cel-
lular compartments, in addition to the ER, and may therefore
cause damage in the cell other than ER stress.

Copper and cobalt but not cadmium or mercury activates
autophagy in Chlamydomonas. In addition to nickel, the effects
of other metals, including copper, cobalt, cadmium, and mercury,
on autophagy were investigated. We analyzed the ATG8 abun-
dance in Chlamydomonas cells treated with different concentra-
tions of CoCl2, CuSO4, CdCl2, or HgCl2. Our results revealed that
both Co2� and Cu2� induce the accumulation and lipidation of
ATG8 to a level similar to the one observed in cells treated with
Ni2� (Fig. 3a and b). Immunofluorescence assays confirmed that
the activation of ATG8 in cells treated with Co2� or Cu2� was like
that in cells treated with Ni2� (see Fig. S2 in the supplemental
material). These results indicate that the presence of high concen-
trations of Co2� and Cu2� in the medium triggers autophagy in
Chlamydomonas. In contrast to the effects of treatment with Co2�

and Cu2�, treatment of Chlamydomonas cells with Cd2� or Hg2�

had no significant effect on ATG8 protein abundance (Fig. 3c and
d) or the cellular distribution (see Fig. S2 in the supplemental
material). Consonant with these data, ATG8 mRNA abundance
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was upregulated by Co2� or Cu2� but not by Cd2� or Hg2� (Fig.
3e). Together these results indicate that the presence of high con-
centrations of Cd2� or Hg2� in the medium does not result in
autophagy activation in Chlamydomonas like the presence of
Ni2�, Co2�, or Cu2� does.

Induction of autophagy by nickel is independent of CRR1.
The transcription factor CRR1 is required for the Ni2�-responsive
expression of CYC6 and the Cu-responsive expression of many
additional genes in Chlamydomonas (35, 53). Since our results
indicated that nickel activates the expression of the ATG8 gene in
Chlamydomonas, we investigated whether CRR1 may participate
in the upregulation of autophagy mediated by this metal. We an-
alyzed ATG8 in wild-type and crr1 mutant cells treated with Ni2�,
and a similar accumulation of this protein was detected in both
strains (Fig. 4a). However, the increase in ATG8 abundance ap-
peared to take place slightly earlier in the crr1 mutant (Fig. 4b),
possibly due to a higher sensitivity of this mutant to Ni2�. In
agreement with the immunoblotting data, we observed that ATG8
transcript accumulation was upregulated by Ni2� in crr1 mutant
cells (Fig. 4c). As previously reported (53), CYC6 expression was
abolished in the crr1 mutant (Fig. 4c). Analysis of ATG8 expres-
sion also revealed that the basal level of mRNA for this gene is
higher in the crr1 mutant cells than wild-type cells, even though no
significant difference in ATG8 abundance in untreated cells was
observed (Fig. 4a), suggesting that the posttranscriptional regula-
tion of ATG8 prevents the accumulation of this protein under
conditions that do not require an active autophagy pathway. From

these results, we concluded that there must be a CRR1-indepen-
dent pathway that signals to autophagy in response to nickel tox-
icity.

RNA-Seq analysis of nickel-treated cells reveals an increase
in the abundance of the protein degradation machinery and a
substantial overlap with the H2O2 response. To understand the
global effect of Ni2� on autophagy, we undertook a genome-wide
transcriptome analysis of Chlamydomonas cells treated with this
metal. In these experiments, cells were treated with 50 �M NiCl2
for 6 h with the objective of identifying the primary responses to a
high concentration of Ni2�. As mentioned above, Ni2� induces
the expression of several copper deficiency response genes in a
CRR1-dependent manner (35, 53), although this transcription
factor is dispensable for Ni2�-induced autophagy. Therefore, we
sought to identify those transcripts whose change in abundance is
specific to Ni2� addition versus those transcripts whose change in
abundance is due to direct and indirect consequences of an Ni2�-
CRR1 interaction. To accomplish this goal, we determined the
genome-wide response of Chlamydomonas to the addition of Ni2�

in the crr1 mutant with either wild-type CRR1 (strain CRR1) or a
mutant version of CRR1 (strain CRR1-�Cys) added back. In the
CRR1-�Cys strain, the protein carries a deletion in the cysteine-
rich domain near the C terminus of CRR1. This mutation abol-
ishes the ability of Ni2� to induce CYC6 expression, but the strain
CRR1-mediated Cu response is preserved (35).

We found 336 genes whose transcripts were upregulated in
both the CRR1 and CRR1-�Cys strains (overlap between A and B
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in Fig. 5a and b). Of these genes, the mRNA abundance of 275
transcripts was not significantly different between the two strains
(comparison C in Fig. 5a and b). We consider this core set of 275
genes to be the CRR1-independent Ni2�-responsive transcrip-
tome. Among this core set there is a substantial enrichment of the
protein degradation machinery, including the autophagy genes
ATG3 and ATG8, genes for proteasome subunits and several

classes of proteases, and genes involved in ubiquitin-dependent
degradation of ER-associated protein degradation substrates,
such as Cdc48, Ufd1, or Otu1 homologs (see Table S1 in the sup-
plemental material). This subset of genes related to degradative
pathways accounts for 25% of the upregulated transcripts (Fig. 5c;
see also Table S1 in the supplemental material).

Remarkably, we found a substantial enrichment of genes
whose transcripts were also upregulated by the presence of exog-
enous H2O2 (45) (Fig. 5d): 80% of the 275 nickel-responsive genes
were also upregulated by H2O2 (the overlap has a P value of
1.5e�227 on the basis of the hypergeometric distribution). Cellu-
lar damage caused by Ni2� or H2O2 may lead to the activation of
common cellular processes in Chlamydomonas, including au-
tophagy. Indeed, the transcript abundance of some of the most
highly H2O2-responsive genes is similarly affected by Ni2� addi-
tion (see Fig. S3 in the supplemental material); the response of two
sentinel oxidative stress-related genes, GSTS1 and GPXH (43, 61,
62), was confirmed by qPCR (see Fig. S3 in the supplemental
material). To further investigate a role of oxidative damage in
Ni2�-induced autophagy, ATG8 protein abundance and lipida-
tion were examined in cells treated with Ni2� in the presence of
the antioxidant N-acetyl cysteine (NAC). The effect of Ni2� on
ATG8 was largely reduced in cells grown in NAC-containing me-
dium (Fig. 6a). Moreover, the levels of mRNA for the ATG8 and
GSTS1 genes remained low when cells were treated with Ni2� in
the presence of NAC (Fig. 6b). Taken together our results strongly
suggest that treatment of Chlamydomonas cells with Ni2� may
cause oxidative damage, which in turn activates degradative path-
ways, including autophagy, as a defense mechanism to clear im-
paired components.

To further qualify the observed overlap between the Ni2� and
H2O2 data sets, we also compared those transcripts that increased
in abundance in the CRR1 strain to those transcripts that in-
creased in abundance following treatment of cells under condi-
tions that are known to induce autophagy (ClpP1 depletion and
rapamycin treatment [19, 23]) and conditions that have yet to be
linked to autophagy induction in Chlamydomonas: singlet oxygen
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FIG 4 Activation of autophagy by nickel is independent of CRR1. (a) Immunoblots showing the accumulation and lipidation of ATG8 in cw15 cells compared
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FIG 5 Transcriptomic analysis of 50 �M Ni2�-treated cultures reveals a global
impact on protein metabolism and overlap with the H2O2-induced stress re-
sponse. (a) Schematic of the data sets used for the comparison shown in panel
b. Ni refers to Ni2� ions. (b) Venn diagram showing the overlap between the
different sets of genes indicated in panel a. A, transcripts with a higher abun-
dance in the presence of Ni2� in the complemented (CRR1) strain; B, tran-
scripts with a higher abundance in the presence of Ni2� in the CRR1-�Cys
strain; C, transcripts in the overlap of A and B whose abundance in the pres-
ence of Ni2� was not significantly different between the two strains. (c) Func-
tional classification of the CRR1-independent Ni2�-responsive transcriptome.
The 275 transcripts with similar transcript abundances identified in the CRR1
and CRR1-�Cys strains were clustered on the basis of their predicted function.
(d) Venn diagram showing the overlap between transcripts with increased
abundance in the presence of Ni2� and H2O2.
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(46), acclimation to dark anoxia (47), poor Fe nutrition (48), poor
Cu nutrition (49), and poor Zn nutrition (50). In addition to the
H2O2 data set, we found that the most significant overlaps with
Ni2� induction in the CRR1 strain were with 8 h of rapamycin
addition and 48 h of ClpP1 depletion (Fig. 7). There was a mod-
erate overlap with singlet oxygen and Zn limitation, whereas the
two Fe nutrition data sets had relatively little overlap with the data
set for the Ni2� response. Given the previous observation that
Ni2�, anoxia, and Cu deficiency all lead to the induced expression
of a core set of CRR1 targets, we found that subtraction of CRR1
targets (49) affected only the overlap between Ni2� and either
anoxia or Cu deficiency.

DISCUSSION

In this study, we showed that exposure of Chlamydomonas cells to
a high concentration of Ni2� results in the upregulation of ATG8
expression, an increased ATG8 protein abundance, and the detec-
tion of lipidated ATG8 forms (Fig. 1), all of which are landmarks
of autophagy activation (9, 19). These results suggest that excess
Ni2� may trigger autophagy to mitigate the toxic effect of this
metal in Chlamydomonas. Accordingly, it has been reported that
similar concentrations of Ni2� have a negative effect on Chlamy-
domonas cell growth (55). Immunofluorescence microscopy as-
says also revealed that the cellular localization of ATG8 drastically
changed when cells were exposed to excess Ni2�, which resulted in
the detection of this protein as intense spots (Fig. 1). A similar
ATG8 localization pattern has been reported in Chlamydomonas
cells subjected to different stress conditions, including oxidative

stress, photooxidative damage, or ER stress (19–21). Whether
these ATG8-containing spots label autophagosome-like struc-
tures or vacuoles remains to be explored.

In addition to Ni2�, we found that copper and cobalt also trig-
ger autophagy in Chlamydomonas, although Ni2� appeared to be
more effective at similar metal concentrations (Fig. 3; see also Fig.
S2 in the supplemental material). Activation of autophagy by
Ni2�, Cu2�, or Co2� has not been previously reported in photo-
synthetic organisms, although in mammalian cancer cells, copper
complexes appear to induce oxidative stress, which in turn triggers
autophagy (63, 64). Unlike the effect of Ni2�, copper, or cobalt, no
significant effect of Cd2� or Hg2� ions, even at high concentra-
tions (150 �M and 2 �M, respectively), on ATG8 was observed
(Fig. 3; see also Fig. S2 in the supplemental material). Similar
amounts of these two metals have previously been shown to alter
gene expression in Chlamydomonas (29, 65–67), although to our
knowledge no effect on autophagy genes in algae or plants has
been reported. However, cadmium toxicity has been linked to the
activation of autophagy in human cells on the basis of the tumor-
igenic and cell death-inducing properties of this metal (68). The
molecular mechanism by which Cd2� activates autophagic pro-
grams in human cells is unclear, although it may involve ROS
formation (69–71). Cadmium has also been shown to induce au-
tophagy in sea urchin embryos, but the underlying signaling path-
way remains to be identified (72). In photosynthetic systems, it
has been reported that Cd2� exposure appears to promote the
formation of vacuole-like structures in the unicellular green alga
Micrasterias denticulata, although no specific autophagy marker
was analyzed in that study (73).

Our results demonstrate that Ni2�-induced autophagy is inde-
pendent of the transcription factor CRR1 in Chlamydomonas (Fig.
4). CRR1 is a key regulator of the acclimation of Chlamydomonas
cells to copper deficiency (35, 74, 75) and is required for the Ni2�-
induced expression of genes within the Cu-responsive regulon,
likely because Ni2� interferes with Cu sensing by CRR1 (35, 53).
The finding that Ni2� activates autophagy in CRR1-deficient cells
indicates that this transcription factor is fully dispensable for

FIG 7 Overlap between the Ni2� response in strain CRR1 and published stress
transcriptomes. P values for enrichment of transcripts that were more abun-
dant in the presence of Ni2� than in the absence of Ni2� in the CRR1 strain and
in several published transcriptomes were calculated (using the hypergeometric
distribution) after rose bengal (O2*) addition, ClpP depletion, rapamycin ad-
dition, growth under anoxic conditions, Fe2� limitation (Fe-lim.), Fe2� defi-
ciency (Fe-def.), Zn2� limitation (Zn-lim.), and Cu2� deficiency (Cu-def.).
The analysis was performed with and without including CRR1 target tran-
scripts in the data sets.

FIG 6 Effect of the antioxidant NAC on Ni2�-induced autophagy. The pro-
tein abundance and lipidation of ATG8 (a) and the accumulation of ATG8 and
GSTS1 gene transcripts (b) in Chlamydomonas cells treated with 100 �M Ni2�

for 8 h in the presence or absence of 10 mM NAC were determined. (a) Im-
munoblot analysis with an anti-FKBP12 antibody was used as loading control.
(b) mRNA levels were determined by qPCR and normalized to those for con-
trol cells (for which the level of mRNA expression was given a value of 1). The
data are represented as the mean 
 standard deviation from three independent
experiments.
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Ni2�-induced autophagy and that the misregulation of the CRR1
regulon by Ni2� does not play a significant role in autophagy
induction. Genome-wide transcript abundance analysis of Chla-
mydomonas cells with impaired CRR1 function (CRR1-�Cys
cells) revealed that there is a core set of 275 genes whose transcripts
are similarly upregulated by Ni2� in both CRR1 and CRR1-�Cys
cells (Fig. 5; see also Table S1 in the supplemental material). The
autophagy genes ATG3 and ATG8 are included in this set of
CRR1-independent Ni2�-responsive genes, in close agreement
with the finding that this transcription factor is dispensable for
Ni2�-induced autophagy.

The upregulation of genes coding for proteasome subunits,
ubiquitin-related proteins, and several proteases in Ni2�-treated
cells supports the conclusion that metal stress must lead to mas-
sive damage in the cell that needs to be repaired to recover cell
homeostasis. The considerable overlap between H2O2-responsive
genes and the 275 Ni2�-induced, CRR1-independent genes (Fig.
5; see also Table S1 in the supplemental material), together with
the upregulation of two sentinel oxidative stress-regulated genes
(see Fig. S3 in the supplemental material) and the decreased acti-
vation of autophagy observed in the presence of an antioxidant
(Fig. 6), strongly suggests that this metal may lead to oxidative
stress in Chlamydomonas, which in turn triggers autophagy. Ac-
cordingly, the ROS inducers H2O2 and methyl viologen have been
shown to activate autophagy in Chlamydomonas (19, 21). A sim-
ilar response may occur in cells exposed to Co2� or Cu2�, since
high concentrations of these metals cause oxidative stress in plants
and algae (30, 76–78).

A link between exposure to metals and oxidative stress has been
shown in plants and algae (28–32, 76, 79), although we cannot rule
out the possibility that the activation of autophagy by Ni2�, Co2�,
or Cu2� might be due to the effect of these metals on some met-
alloproteins by displacing cognate metals, such as Fe2� or Mn2�,
from the active site and thus interfering with the activity of these
enzymes, which may ultimately lead to an autophagy response.
Moreover, this interpretation is compatible with the activation of
autophagy by oxidative damage, since Ni2� and other metals may
indirectly cause oxidative stress by mismetallating and inactivat-
ing ROS-detoxifying enzymes (80).
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