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Abstract

Studies during the last two decades have revealed the involvement of epigenetic modifications in 

the development of human cancer. It is now recognized that the interplay of DNA methylation, 

post-translational histone modification, and non-coding RNAs can interact with genetic defects to 

drive tumorigenesis. The early onset, reversibility, and dynamic nature of such epigenetic 

modifications enable them to be developed as promising cancer biomarkers and preventive/

therapeutic targets. In addition to the recent approval of several epigenetic therapies in the 

treatment of human cancer, emerging studies have indicated that dietary phytochemicals might 

exert cancer chemopreventive effects by targeting epigenetic mechanisms. In this review, we will 

present the current understanding of the epigenetic alterations in carcinogenesis and highlight the 

potential of targeting these mechanisms to treat/prevent cancer. The latest findings, published in 

the past three years regarding the effects of dietary phytochemicals in modulating epigenetic 

mechanisms will also be discussed.
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1. Introduction

Cancer is a disease involving dynamic changes in the genome. The activation of oncogenes 

and the loss of function of tumor suppressor genes due to genetic mutations have long been 

considered the driving force of neoplasia [1]. However, the important contribution of 

epigenetic events to the malignant phenotype has been recognized with the help of 

significant advancements in the field of cancer epigenetics [2]. The definition of 
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“epigenetic” has evolved over time from the impact of chromatin structure on embryonic 

development to its implication in a wide variety of biological processes [3]. Currently, the 

term “epigenetic” refers to the study of heritable alterations in gene expression without 

changes in the primary DNA sequence [4]. These heritable alterations are primarily 

established and maintained through cell differentiation and division, enabling the cells with 

the same genetic information to have distinct identities. The major epigenetic mechanisms 

for regulating these heritable gene alterations are the methylation of cytosine bases in DNA, 

covalent modifications of histones, and post-transcriptional gene regulation by microRNAs 

(miRNAs) [2]. The disruption of these epigenetic modifications is associated with 

abnormalities of various signaling pathways and can lead to the induction and maintenance 

of many disease states, including cancer [5].

It is now widely accepted that epigenetic abnormalities and genetic alterations in cancer 

cells may interact at all stages to initiate and promote cancer [6, 7]. In contrast to genetic 

mutations, epigenetic modifications are potentially reversible. For example, genes with 

repressed transcriptional activity by epigenetic silencing can be reactivated through 

epigenetic interventions because the genes themselves are still intact, whereas genetic 

mutations are permanent. This fact may explain why increasing attention and effort had been 

focused on the discovery and development of epigenetic-targeted therapeutics to treat cancer 

in recent years. To date, several small-molecule epigenetic therapies targeting chromatin-

modifying enzymes have been developed and approved for cancer treatment by the U.S. 

Food and Drug Administration (FDA). These drugs include DNA methyltransferase 

(DNMT) inhibitors (azacitidine and decitabine) and histone deacetylase (HDAC) inhibitors 

(vorinostat and romidepsin) [8]. A number of clinical trials are also underway with these 

agents and many other newly developed epigenetic agents in a variety of cancer types. 

Moreover, the synergistic effects between epigenetic drugs and conventional antitumor 

therapies are quite promising [9]. Other than these small-molecule agents, accumulating 

evidence suggests that the epigenetic landscape is largely influenced by dietary and 

environmental factors [10]. With their relatively low toxicity, feasible long exposure, and 

promising effects observed in vitro and in vivo [11, 12], dietary phytochemicals may become 

potential chemopreventive agents by targeting epigenetic modifications.

In this review, we will discuss the current understanding of the epigenetic mechanisms that 

occur during carcinogenesis and highlight their potential roles in cancer chemoprevention. 

Studies published in the past three years regarding the impact of dietary chemopreventive 

phytochemicals in modulating epigenetic alterations will also be reviewed and discussed.

2. DNA methylation

DNA methylation, the addition of a methyl group by DNMTs to the cytosine bases located 

5′ to a guanosine in a CpG dinucleotide, is perhaps the most extensively investigated 

epigenetic modification in mammals [13]. CpG dinucleotides are not evenly distributed 

across the entire genome but are clustered in short regions known as CpG islands that are 

0.5–4 kb in length [13]. These CpG islands are known to be preferentially located in the 

proximal promoter end of approximately 60% of genes in the genome and generally remain 

unmethylated in normal cells [14, 15], allowing access to transcription factors and 
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chromatin-associated proteins for active transcription. In cancer, however, CpG islands in 

promoter regions become hypermethylated, and this event is believed to cause inappropriate 

transcriptional silencing of numerous tumor suppressors and other genes with important 

functions in carcinogenesis (Figure 1) [16]. The recruitment of transcriptional proteins to 

DNA is reduced by hypermethylated CpG islands, thus resulting in gene silencing [17]. 

Alternatively, methylated CpG islands provide binding sites for various methyl-binding 

proteins (MBDs), such as MBD1-MDB4 and methyl CpG binding protein 2 (MeCP2), 

which can mediate gene repression by interacting with HDACs [18]. Surprisingly, promoter 

CpG island hypermethylation-mediated gene silencing is at least as common as mutational 

alterations in the classic tumor-suppressor genes in human cancer [19]. The list of cancer-

related genes that are inactivated by CpG hypermethylation is ever-growing with advances 

in techniques. Examples of these genes include hMLH1 (human mutL homolog 1), MGMT 

(O6-alkylguanine DNA alkyltransferase) [20, 21], p16INK4a, p15INK4b [22, 23], Bcl-2 (B-

cell lymphoma), and DAPK (death-associated protein kinase 1) [24, 25]. The studies 

conducted in our group demonstrated that Nrf2 [nuclear factor (erythroid-derived 2)-like 2] 

expression is down-regulated in TRAMP C1 cells and JB6 P+ cells due to promoter 

hypermethylation, and the expression of these genes can be restored by reducing the 

promoter methylation status with various phytochemical treatments [26–30]. This effect will 

be further reviewed in Section 5. Other than the hypermethylation of promoter CpG islands, 

global DNA hypomethylation in tumor cells compared with normal cells has been reported 

repeatedly (Figure 1) [31, 32]. Genome-wide hypomethylation is suggested to be associated 

with enhanced genomic instability and can thereby facilitate tumor progression [33]. Thus, 

an imbalance of DNA methylation between genome-wide hypomethylation and regional 

hypermethylation may characterize human neoplasia [34].

The precise DNA methylation patterns in the mammalian genome are known to be regulated 

by DNMTs (Figure 1). DNMT3a and DNMT3b act cooperatively to establish de novo 

methylation independent of replication, whereas DNMT1 maintains methylation patterns 

during DNA replication by preferentially methylating hemimethylated DNA [35]. A fourth 

member, DNMT-3L was first isolated in 2000 and had been shown to facilitate DNA 

methylation by interacting with DNMT3a and 3b [36, 37]. Given that the DNMT enzymes 

are modestly overexpressed in many types of tumor cells and that the inhibition of DNMTs 

has been found to reduce tumor formation in various mouse models [38, 39], the search for 

and studies of DNMT inhibitors has become extremely popular. Successful examples 

include FDA-approved anticancer drugs, potent DNMT inhibitors under clinical trials, and 

numerous dietary chemopreventive phytochemicals that have been identified in pre-clinical 

models. Although the enzymes that regulate DNA methylation have been well characterized, 

those that mediate methyl group removal are still elusive. A novel TET (ten-eleven 

translocation) enzyme family that is capable of modifying 5-methylcytosine to 5-

hydroxymethylcytosine through oxidation has been discovered in recent years (Figure 1) 

[40, 41]. We anticipate many more exciting discoveries regarding the mechanistic roles of 

TET in the dynamic regulation of DNA methylation to enhance our understanding of DNA 

methylation in tumorigenesis.
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3. Histone modification

The covalent modification of histone proteins also plays a critical role in regulating gene 

expression, chromatin structure, cellular identity, and ultimately, carcinogenesis. Histone 

proteins (H3, H4, H2A, H2B and H1) are at the heart of chromatin structure and act as 

scaffolds to wrap ~146 bp of eukaryotic DNA into repeating nucleosomes, which are further 

folded into compact chromatin fibers (~30 nm) [42]. The chromatin structure, which is 

closely involved in gene transcription, replication, and repair, is regulated by the “histone 

code”, known as the language of histone modification [43]. The two distinct chromatin 

structures, namely heterochromatin and euchromatin, represent a tightly packed structure 

with repressed gene transcription or a loosely packed structure with active gene 

transcription, respectively (Figure 1) [44]. While highly conserved, specific residues such as 

lysine, arginine, and serine, on the N-terminal tails of histones can undergo extensive post-

translational modifications, including methylation, acetylation, phosphorylation, 

ubiquitination, sumoylation, and ADP ribosylation [45].

Histone modifications can lead to either gene activation or repression, depending on which 

residues are modified and what types of modifications are involved. Usually, lysine 

acetylation alters nucleosomal conformation by neutralizing the positive charge, thereby 

increasing the accessibility of transcriptional factors to chromatin and resulting in 

transcriptional activation (Figure 1) [46]. Histone acetylation is dynamically catalyzed by 

enzymes that add (HATs, histone acetyltransferases) and remove (HDACs, histone 

deacetyltransferases) acetyl groups (Figure 1). To date, 18 HDACs and 25 HATs enzymes 

have been identified and classified into several families, and these enzymes are capable of 

controlling various physiological functions [47]. The loss of acetyl groups in H4-lysine 16 

and the overexpression of certain HDACs (1, 2, and 6) have been demonstrated in a number 

of cancers [48]. Notably, two HDAC inhibitors have already been approved by the FDA, 

and more novel inhibitors are currently undergoing clinical investigations for the treatment 

of a broad range of cancers [8]. It is exciting to note that some dietary phytochemicals may 

be involved in chromatin remodeling by targeting HDACs and HATs, highlighting their 

potential in cancer chemoprevention [49].

Unlike lysine acetylation, methylation at lysine residues appears to activate or repress 

transcription depending upon which residue is methylated and the degree of the methylation. 

For example, methylated H3K4, H3K36, and H3K79 are generally associated with active 

genes in euchromatin, whereas the methylation at H3K9, H3K27, and H4K20 leads to gene 

repression (Figure 1) [50]. Moreover, histone methylation has been suggested to cooperate 

with DNA methylation. For example, DNA methylation is associated with H3K9 

methylation [51]. Histone methyltransferases (HMTs) and histone demethylases (HDMs) 

dynamically regulate histone methylation (Figure 1). In contrast to HATs, HMTs 

specifically target certain lysine residues; for example, EZH2 (enhancer of zeste homolog 2) 

is primarily responsible for H3K27 methylation [52]. Investigations in recent years have 

implicated hyperactive EZH2 in the development of prostate and breast cancer via its 

histone methylation-induced repression of tumor suppressors [53], making this enzyme a 

promising chemotherapeutic target.
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4. microRNAs

MicroRNAs (miRNAs) are small non-coding RNAs approximately 22 nucleotides in length 

that are increasingly recognized as important players in epigenetic gene regulation in 

mammals. By specifically targeting mRNA degradation or translation inhibition, miRNAs 

can bind and interfere with a wide spectrum of transcripts and profoundly influence cancer-

related processes, such as proliferation, apoptosis, differentiation, cell cycle, and migration 

(Figure 1) [54]. Since the deregulation of miRNA in cancer was first documented in 2002 

[55], the network of miRNAs identified in the cancer-related processes, their tissue 

distributions, and their potential targets have rapidly grown, elucidating their extensive roles 

in carcinogenesis and chemotherapy. For example, miR-155 and miR-21 have been found to 

be overexpressed in many cancer types [56, 57], and the attenuated expression of miR-let7 

was observed in human lung cancers [58]. Interestingly, the expression of miRNAs can be 

controlled by epigenetic mechanisms, such as DNA methylation and histone modifications. 

Moreover, miRNAs can target key enzymes, such as DNMTs and EZH2, which mediate 

epigenetic mechanisms, thereby modulating the epigenetic landscape of cells (Figure 1) 

[59]. Progress had been made in utilizing miRNAs in cancer prognosis and therapy. 

Notably, the first miRNA mimic entered the clinic for the treatment of liver cancer patients 

in 2013 [60]. In addition, the interaction between dietary phytochemicals and miRNAs has 

been investigated in cancer cells. Hence, miRNAs might be a promising target for 

chemopreventive dietary phytochemicals.

5. Dietary phytochemicals modulate epigenetic modifications

Environmental and dietary factors can influence the pathological progression of diseases, 

including cancer. Some naturally occurring phytochemicals that are common secondary 

metabolites in fruits and vegetables have been demonstrated to be beneficial for human 

health through various actions, including ameliorating oxidative stress, inducing 

detoxification enzymes, inhibiting nitrosamine formation, binding/diluting carcinogens in 

the digestive tract, altering hormone metabolism, and modulating carcinogenic cellular and 

signaling events [61]. Recently, accumulating research has demonstrated that dietary 

phytochemicals can alter the epigenome and may help to prevent and treat human cancer. 

Here we review the most recent studies regarding the epigenetic role of dietary 

phytochemicals, including polyphenols [quercetin, apigenin, (−)-epigallocatechin-3-gallate 

(EGCG), genistein, resveratrol, and curcumin], organosulfur compounds [sulforaphane 

(SFN), phenethyl isothiocyanate (PEITC), diallyl disulfide (DADS)], and indoles 

[diindolylmethane (DIM)] in cancer chemoprevention and therapy. We also discussed the 

latest progress in the identification of chemopreventive phytochemicals from Chinese herbal 

medicine in modulating epigenetic mechanisms. The epigenetic modifications regulated by 

phytochemicals are summarized in Table 1.

5.1 Polyphenols

Quercetin, a flavonol with yellow color, is widely found in fruits, vegetables and grains. 

Quercetin was shown to inhibit the recombinant prokaryotic SssI DNMT- and human 

DNMT1-mediated DNA methylation [62]. Quercetin suppresses the growth of the human 

colon cancer cell line RKO via demethylation of the p16INK4a gene promoter [63]. 
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Quercetin has been found to block the binding of the transactivators CREB2 (cAMP-

response element-binding protein 2), C-Jun, C/EBPβ (CCAAT-enhancer-binding protein 

beta), and NF-κB to the COX-2 promoter. In addition, quercetin suppresses COX-2 

expression in breast cancer cells by attenuating p300/HAT-mediated signaling [64]. 

Moreover, quercetin induces Fas ligand related apoptosis through the activation of the c-jun/

AP-1 signaling pathway, the induction of HAT, and the inhibition of HADC in HL-60 cells 

[65]. Quercetin was also found to induce senescence in glioma cells via the inhibition of 

HDACs [66]. A quercetin-rich diet has been reported to influence miRNA expression in 

human lung cancer tissues, including the tumor suppressor let-7 family and carcinogenesis-

related miR-146, miR-26, and miR-17 [67]. Quercetin also up-regulates miR-142-3p, a 

negative regulator of heat shock protein 70, which is related to the inhibition of the cell 

proliferation of pancreatic ductal adenocarcinoma cells (MIA PaCa-2, Capan-1, and S2-013) 

[68].

Apigenin is a yellow flavone compound in fruits and vegetables, especially in parsley, celery 

and chamomile tea. In our recent study, we found that apigenin effectively demethylated the 

Nrf2 promoter, resulting in an increase in the mRNA and protein expression of Nrf2 and the 

Nrf2 downstream target gene NQO1 (NAD[P]H:quinine oxidoreductase-1) in skin 

epidermal JB6 P+ cells. This effect was associated with the reduced expression of epigenetic 

proteins, including DNMT1, DNMT3a, DNMT3b, and some HDACs [69]. Apigenin also 

induces growth arrest and apoptosis in human prostate cancer cells through the up-regulation 

of global histone H3 and H4 acetylation and hyperacetylation of histone H3 on the p21/waf1 

promoter in prostate cancer PC-3 and 22Rv1 cells. These effects may be caused by the 

inhibitive effect of apigenin on HDAC enzyme activity and the expression of HDAC1 and 

HDAC3 [70]. The tumor suppressor miR-138 is correlated with telomerase activity in many 

human cancers, and apigenin-induced overexpression of miR-138 has been demonstrated to 

powerfully induce apoptosis of human malignant neuroblastoma in cell culture and animal 

models [71].

(−)-Epigallocatechin-3-gallate (EGCG) is one of the most abundant catechins in tea leaves 

and has been identified as a non-nucleoside DNMT inhibitor. The restoration of WIF-1 (Wnt 

inhibitory factor 1) expression by EGCG treatment, occurring via the demethylation of the 

WIF-1 promoter, has been found in lung cancer H460 and A549 cell lines [72]. A recent 

study reported that EGCG treatment inhibits DNMT transcript levels and the protein 

expression of DNMT1, HDAC1, and MeCP2, effectively reactivating genes silenced by 

promoter methylation, such as ERα (estrogen receptor α), PRB (progesterone receptor B), 

TMS1 (target of methylation induced silencing-1), Cyclin D2 (G1/S-specific cyclin-D2), 

and MGMT in MCF-7 cells [73]. EGCG treatment was found to reactivate the tumor 

suppressor gene p16INK4a and Cip1/p21 by reducing DNA methylation and increasing 

histone acetylation in human epidermoid carcinoma A431 cells [74]. EGCG may delay 

breast cancer progression and invasion via the induction of matrix metalloproteinase-3 

(TIMP-3) expression. The proposed mechanism for this effect is that EGCG decreases 

EZH2 localization and H3K27 trimethylation enrichment at the TIMP-3 promoter, with a 

concomitant increase in histone H3K9/18 acetylation, in breast cancer cells [75]. EGCG also 

induces the expression of miR-210, a major miRNA regulated by hypoxia-induced factor 

(HIF)-1α, in lung cancer cells, resulting in a reduced cell proliferation rate and anchorage-
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independent growth [76]. EGCG can suppress the expression of p53-targeting miRNAs, 

including miR-25, miR-92, miR-141, and miR-200a, which are induced by the 

environmental carcinogen benzo[a]pyrene (BaP) in multiple myeloma, a common and 

deadly cancer of blood plasma cells [77].

Genistein, an isoflavone, is a major phytoestrogen compound in soy beans (Glycine max). 

Genistein has been demonstrated to suppress global DNA methylation, DNMT activity, and 

DNMT1 expression. These effects lead to promoter hypomethylation and increased mRNA 

expression of multiple tumor suppressor genes, including ataxia telangiectasia mutated 

(ATM), adenomatous polyposis coli (APC), phosphatase and tensin homolog (PTEN), and 

mammary serpin peptidase inhibitor (SERPINB5), in human breast cancer MCF-7 and 

MDA-MB-231 cells [78]. Genistein induces the expression of two tumor suppressor genes, 

sFRP1 (secreted frizzled-related protein 1) and Smad4 (mothers against decapentaplegic 

homolog 4), via the demethylation of their promoter regions and histone modifications, such 

as H3K9-me2, H3K9-me3, and H3K27-me3, in prostate cancer cells [79]. Genistein also 

down-regulates onco-miRNA-1260b in prostate cancer cells, resulting in the up-regulation 

of sFRP1 and Smad4 and the inhibition of cell proliferation and invasion [79]. miR-27a 

down-regulation by genistein leads to enhanced apoptosis and reduced cell growth and 

invasion in pancreatic cancer cells [80].

Resveratrol is a stilbenoid, a type of natural polyphenol, and is found in blueberries, 

cranberries, and grapes. DNA methylation of the tumor suppressor gene RASSF1A (Ras 

association domain-containing protein 1) was reported to be reduced by resveratrol intake 

(twice daily for 12 weeks) in the breasts of women at high breast cancer risk [81]. 

Resveratrol suppressed the increase in DNMT3b expression in estradiol-induced mammary 

tumor tissue in female ACI rats, an effect that may increase the expression of miRNA-129, 

-204, and -489 [82]. The role of resveratrol as a HDAC inhibitor has also been demonstrated 

in glioma cells and human-derived hepatoblastoma cells [83]. Recent studies suggested that 

resveratrol inhibits prostate cancer growth and metastasis and promotes the apoptosis of 

pancreatic cancer cells by inhibiting a miRNA-21-mediated pathway [84, 85].

Curcumin, a curcuminoid, is the primary component in the most popular Indian spice, 

turmeric (Curcuma longa). Growing evidence shows that curcumin harbors DNA 

demethylation potential in various cancer cell lines and might be a DNMT inhibitor [86–89]. 

For example, studies conducted in our laboratory suggested that curcumin restored the 

expression of Nrf2 and Neurog1 (Neurogenin-1) in murine prostate cancer Tramp C1 cells 

and human prostate cancer LnCap cells, respectively, by suppressing DNA methylation in 

the promoter region [86, 87]. The hypomethylation effect of some novel synthetic curcumin 

analogs, such as EF31 and UBS109, has also been described to activate silenced genes, 

including p16, SPARC (secreted protein acidic and rich in cysteine), and E-cadherin 

(epithelial cadherin), in pancreatic cancer MiaPaCa-2 and PANC-1 cells [90]. Curcumin has 

also been reported to modulate the activities of HDAC and HAT. Curcumin restored the 

expression of SOCS1 and SOCS3, suppressors of cytokine signaling, via the inhibition of 

HDAC activity (especially HDAC8), resulting in increased histone acetylation in the SOCS1 

and SOCS3 promoter regions of the myeloproliferative neoplasm cell lines K562 and HEL 

[91]. In breast tumor MCF-7 cells, the inhibitory effects of curcumin in the activities of 
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HAT have also been demonstrated, with increased global levels of acetylated H3K18 and 

H4K16, potentially leading to the arrest of cell proliferation [92]. Curcumin may also induce 

apoptosis of ovarian cancer SKOV3 cells through inducing the miRNA-9-mediated Akt/

FOXO1 (forkhead box protein O1) pathway [93]. The up-regulation of miRNA-181b by 

curcumin was found to suppress the expression of the pro-inflammatory cytokines CXCL1 

(chemokine [C-X-C motif] ligand 1) and CXCL2, leading to the diminished proliferation 

and invasion of breast cancer cells [94].

5.2 Organosulfur compounds

Sulforaphane (SFN) is a bioactive isothiocyanate, a group of organosulfur compounds, 

which are abundant in cruciferous vegetables, such as broccoli, cabbage, and brussels 

sprouts. According to our recent studies, SFN suppresses DNA methylation of the Nrf2 

promoter in mouse skin JB6 and prostate Tramp C1 cells by down-regulating DNMTs and 

HDACs. These effects may contribute to its preventive potentials against TPA-induced skin 

transformation and prostate carcinogenesis, respectively [95, 30]. SFN has also been 

demonstrated to exhibit anti-proliferative effects on LnCaP prostate cancer cells by 

epigenetically restoring the expression of cyclin D2 [96]. The restoration of miR-140 by 

SFN, accompanied by the reduced expression of SOX9 and ALDH1 (aldehyde 

dehydrogenases 1), has been reported to result in decreased breast tumor growth in vivo 

[97]. SFN also inhibits the epithelial-to-mesenchymal transition (EMT) process in human 

bladder cancer T24 cells, and the up-regulation of miRNA-200c by SFN may be one of the 

mechanisms underlying this effect [98].

Phenethyl isothiocyanate (PEITC), another isothiocyanate, exists in some cruciferous 

vegetables. PEITC has been reported to be able to demethylate and reactivate GSTP1 (pi-

class glutathione S-transferase). This protein is a frequently silenced detoxifying enzyme 

that is highly associated with prostate carcinogenesis through its regulation of the cross-talk 

between DNA and chromatin in LNCaP cells [99]. PEITC was also observed to modify the 

acetylation and methylation of histone 3 in human colon cancer SW480 cells, leading to the 

down-regulation of some inflammation-related genes, such as CCL2 (chemokine ligand 2), 

CD40, CXCL10 (C-X-C motif chemokine 10), CSF2 (colony stimulating factor 2), IL-8 

(interleukin 8), NF-kB, and TNFaip3 (tumor necrosis factor, alpha-induced protein 3) [100]. 

PEITC treatment significantly increased the expression of miRNA-17 and decreased the 

expression of PCAF (p300/CBP-associated factor) in dihydrotestosterone-stimulated LNCaP 

cells, which might contribute to the inhibitory effect of PEITC against AR (androgen 

receptor) transcriptional activity and cell growth in prostate cancer [101]

Diallyl disulfide (DADS) is one of the principal sulfur compounds in Allium vegetables, 

such as garlic (Allium sativum). DADS has been found to exhibit an inhibitory effect on 

HDAC, resulting in hyperacetylation of histone 4 in the breast cancer MCF-7 cell line [102]. 

In addition, DADS treatment has been demonstrated to impair proliferation and enhance 

apoptosis in both human gastric cell lines and xenograft models. This effect occurred 

through the Wnt-1 signaling pathway and was mediated by the up-regulation of 

miRNA-200b and miRNA-22 [103].
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5.3 Indoles

3, 3′-Diindolylmethane (DIM), an indole compound, is derived from glucosinolate indole-3-

carbinol (I3C) in cruciferous vegetables, including broccoli, cabbage, cauliflower, and 

brussels sprouts. In addition to SFN, DIM can alter the DNA methylation status of many 

cancer-associated gene promoters in normal PrECs as well as in the prostate cancer cell lines 

LnCap and PC3 [104]. Similarly, DIM exerts its chemopreventive effects in prostate 

tumorigenesis by epigenetically demethylating the Nrf2 promoter and up-regulating the 

expression of Nrf2 and its downstream gene NQO1 [29]. The proteasome-mediated 

degradation of class I HDACs (HDAC1, HDAC2, HDAC3, and HDAC8) induced by DIM 

triggers cell cycle arrest and apoptosis in human colon cancer HT-29 cells and in tumor 

xenografts [105]. DIM also inhibits cell proliferation in human breast cancer MCF-7 

(estrogen-dependent) and MDA-MB-468 (estrogen receptor-negative, p53 mutant) cells via 

miRNA-21-mediated Cdc25A (cell division cycle 25 homolog A) degradation [106]. A 

phase II clinical study in patients prior to radical prostatectomy suggested that formulated 

DIM intervention could attenuate prostate cancer aggressiveness via the up-regulation of 

miRNA let-7 and down-regulation of EZH2 expression in tissue specimens [107].

5.4 Phytochemicals from Traditional Chinese Herbal Medicine

During the last few decades, great progress had been made in the identification of 

chemopreventive agents and anticancer drugs in traditional Chinese herbal medicine. 

Recently, the potential of the components from Chinese herbs to influence epigenetic 

mechanisms in cancer prevention have been recognized. Ginseng is one of the most 

commonly used herbs in East Asia. Compound K (20-O-β-(D-glucopyranosyl)-20(S)-

protopanaxadiol), the main metabolite of ginseng saponin, was found to inhibit the 

proliferation of human HT29 human colon cancer cells by demethylating and reactivating 

RUNX 3 (runt-related transcription factor 3), which is associated with reduced DNMT1 

activity [108]. Ginsenoside Rh2 is another biologically active triterpene saponin extracted 

from ginseng. The chemopreventive effect of Rh2 in inhibiting the proliferation of human 

glioma cells had been demonstrated to involve epigenetic modifications, such as the 

regulation of miRNAs. Specifically, the up-regulation of miR-128 by the treatment with Rh2 

had been shown to trigger apoptosis-related signaling [109]. Similarly, using miRNA 

microarray analysis, An et al. identified a network of miRNAs regulated by treatment with 

Rh2 in non-small cell lung cancer A549 cells, which may contribute to the anti-proliferative 

effect of Rh2 [110]. A research study from our group demonstrated that the Chinese herb 

Radix Angelicae Sinensis (RAS; Danggui) and its bioactive component Z-Ligustilide (Lig) 

are able to hypomethylate the Nrf2 promoter, resulting in the restoration of Nrf2 and 

downstream targets such as NQO1, HO-1 (heme oxygenase 1), and UGT1A1 (UDP-

glucuronosyltransferase 1 family, polypeptide A1) in murine prostate cancer TRAMP C1 

cells [28]. Another Chinese herb with great promise in altering epigenetic mechanisms is 

Salvia miltiorrhiza, also known as Danshen. We found that tanshinone IIA, one of the main 

active components from Danshen, blocks TPA (12-O-tetradecanoylphorbol-13-acetate)-

mediated JB6 transformation through epigenetic regulation of the Nrf2 signaling pathway 

[111]. Treatment with tanshinone IIA reduced the methylation of the Nrf2 promoter, 

elevated the expression of Nrf2 and downstream targets, suppressed the protein levels of 
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DNMT1, DNMT3a, DNMT3b, and HDAC3, and inhibited HDAC activity [111]. Another 

study showed that tanshinone IIA decreases inflammatory responses in LPS-induced 

macrophages and inhibits the proliferation of inflammation-stimulated colon cancer cells by 

inhibiting the over-expressed miR-155 in macrophages [112]. Tanshinone I, another main 

component derived from Danshen, has been shown to trigger cell cycle arrest in several 

breast cancer cells by down-regulating Aurora A gene expression via the reduction of H3 

acetylation levels in the Aurora A promoter [113]. In addition to tanshinones, the primary 

components, minor components, including tanshindiols, are currently under investigation for 

their potential antitumor ability by targeting epigenetic modifications. Using molecular 

docking and an enzyme kinetics approach, Woo et al. proposed that tanshindiols B and C are 

potential EZH2 inhibitors, resulting in the inhibition of the growth of several cancer cell 

lines [114].

5.5 Other dietary phytochemicals

In addition to above-mentioned dietary phytochemicals, various other natural compounds 

are currently under investigation regarding their cancer chemopreventive potential through 

epigenetic modifications. Boswellic acids, a pentacyclic terpenoid derived from the plant 

Boswellia serrata, have long been used as anti-inflammatory and cancer chemopreventive 

agents. Recently, Shen et al. demonstrated that boswellic acids inhibit DNMT activity and 

induce genome-wide demethylation, permitting the restoration of tumor suppressor genes, 

such as SAMD14 (sterile α motif domain containing 14) and SMPD3 (sphingomyelin 

phosphodiesterase 3) in colorectal cancer cells [115]. In addition to modulating DNA 

methylation, boswellic acids were found to significantly up-regulate tumor-suppressive 

miRNAs, such as let-7 and miR-200, and to modulate the expression of downstream targets 

in several colon cancer cells and tumor xenografts in nude mice [116]. Experimental 

evidence demonstrated that ursolic acid, another naturally occurring pentacyclic triterpene, 

suppresses proliferation and induces apoptosis in the human glioma cell line U251 by 

mediating the miR-21 pathway [117]. A recent study proposed that the antitumor activity of 

rosemary extracts with high contents of phenolic diterpene carnosic acid and carnosol might 

involve the up-regulation of GCNT3 (glycosyltransferase 3) and down-regulation of 

miR-15b in colon and pancreatic cancer cells [118].

6 Conclusions and perspectives

Great accomplishments have been made in recent years in advancing our understanding of 

epigenetic alterations in the development of cancer. These epigenetic abnormalities are now 

believed to exist in all cancer types and drive tumor progression along with genetic defects. 

The reversible and dynamic nature of epigenetic modifications strongly encouraged 

clinicians and pharmaceutical industries to develop epigenetic biomarkers and therapeutic 

targets in cancer diagnosis and treatment. However, the complexity of epigenetic pathways, 

including the interplay of the different epigenetic mechanisms in regulating gene 

transcription and the genetic mutations in epigenetic regulators, need to be addressed before 

we can fully apply our current understanding to the clinical field. For example, histone 

modification enzymes such as HDACs might be abnormally regulated by genetic or DNA 
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methylation changes in cancer cells. Thus, further systematic studies may facilitate the 

development of epigenetic research in preventing and treating cancer.

The approval of several DNMT and HDAC inhibitors for clinical use has opened up a new 

avenue in cancer therapy. However, it could be reasonably argued that epigenetic 

interventions may be more effective in hematopoietic malignancies than solid malignancies. 

Factors such as the microenvironment, epigenetic landscape, drug exposure, and drug 

metabolism appear to be largely different in solid tumors than in hematopoietic malignances. 

However, more intensive studies regarding these cellular or epigenetic differences are 

urgently needed to successfully apply the concept of epigenetic therapy across a broader 

spectrum. Furthermore, adverse effects and a lack of selectivity have hindered the road 

towards effective epigenetic therapies. Investigations should be conducted regarding 

whether a selective subset or large numbers of genes will be influenced by the drugs or 

phytochemicals that target epigenetic modifications. Additionally, based on the crosstalk 

between genetic and epigenetic mechanisms, combining conventional antitumor drugs with 

epigenetic therapies or dietary phytochemicals that target epigenetic mechanisms might be a 

promising strategy for reducing toxicity and resistance.

Accumulating evidence indicates that some dietary phytochemicals can modulate epigenetic 

mechanisms. Here, we summarized and discussed the latest findings in the past three years. 

Together with numerous reports published more than three years ago, it is now clear that 

these natural compounds hold great promise in cancer prevention via acting on a variety of 

epigenetic targets. However, we should also notice that the success of epigenetic 

interventions elicited by phytochemicals was mostly limited in pre-clinical models. Thus, 

future studies should be carefully designed on the translation of these natural agents’ effects 

to prevent human malignancies in clinical settings. Moreover, most phytochemicals have 

been reported to influence a wide range of epigenetic regulators. Therefore, understanding 

the global patterns of epigenetic modifications that are induced by phytochemicals will help 

to optimize strategies to prevent and treat cancer.

In summary, aberrant epigenetic modifications, such as DNA methylation, histone 

modifications, and miRNA, add another layer of complexity to the development of human 

cancer. The identification of dietary phytochemicals that modulate epigenetic modifications 

offers promising benefits in the management of human cancer.
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Abbreviation

ALDH1 aldehyde dehydrogenases 1

APC adenomatous polyposis coli
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AR androgen receptor

ATM ataxia telangiectasia mutated

BaP benzo[a]pyrene

Bcl-2 B-cell lymphoma 2

C/EBPβ CCAAT-enhancer-binding protein beta

CCL2 chemokine ligand 2

Cdc25A cell division cycle 25 homolog A

CREB2 cAMP-response element-binding protein 2

CSF2 colony stimulating factor 2

CXCL1 chemokine (C-X-C motif) ligand 1

CXCL10 C-X-C motif chemokine 10

Cyclin D2 G1/S-specific cyclin-D2

DADS diallyl disulfide

DAPK death-associated protein kinase 1

DIM diindolylmethane

DNMT DNA methyltransferase

E-cadherin epithelial cadherin

EGCG (−)-epigallocatechin-3-gallate

EMT epithelial-to-mesenchymal transition

ERα estrogen receptor α

EZH2 enhancer of zeste homolog 2

FOXO1 forkhead box protein O1

GCNT3 glycosyltransferase 3

GSTP1 pi-class glutathione S-transferase

HATs histone acetyltransferases

HDAC histone deacetylase

HDMs histone demethylases

HIF-1α hypoxia-induced factor

hMLH1 human mutL homolog 1

HMTs histone methyltransferases

HO-1 heme oxygenase 1

IL-8 interleukin 8
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MBDs methyl-binding proteins

MeCP2 methyl CpG binding protein 2

MGMT O6-alkylguanine DNA alkyltransferase

miRNAs microRNAs

Neurog1 Neurogenin-1

NQO1, NAD[P]H quinine oxidoreductase-1

Nrf2 nuclear factor (erythroid-derived 2)-like 2

PCAF p300/CBP-associated factor

PEITC phenethyl isothiocyanate

PRB progesterone receptor B

PTEN phosphatase and tensin homolog

RASSF1A Ras association domain-containing protein 1

RUNX 3 runt-related transcription factor 3

SAMD14 sterile α motif domain containing 14

SERPINB5 serpin peptidase inhibitor

SFN sulforaphane

sFRP1 secreted frizzled-related protein 1

Smad4 mothers against decapentaplegic homolog 4

SMPD3 sphingomyelin phosphodiesterase 3

SPARC secreted protein acidic and rich in cysteine

TET ten-eleven translocation

TIMP-3 matrix metalloproteinase-3

TMS1 target of methylation induced silencing-1

TNFaip3 tumor necrosis factor, alpha-induced protein 3

TPA 12-O-tetradecanoylphorbol-13-acetate

UGT1A1 UDP-glucuronosyltransferase 1 family, polypeptide A1

WIF-1 Wnt inhibitory factor 1
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Figure 1. 
Schematic representation showing epigenetic modifications of tumor suppressor genes in 

normal cell and in cancer cell. CpG island of promoter region remains hypomethylated to 

facilitate active transcription of tumor suppressor genes in normal cells. In cancer cells, 

however, promoter hypermethylation of tumor suppressor genes is frequently detected. In 

addition, genome-wide hypomethylation in cancer cells has been reported. The enzymes 

such as DNMT and TET dynamically regulate the DNA methylation. Acetylation and 

methylation on the histone tails influence the chromatin structure. For example, lysine 

acetylation and H3K4 methylation are associated with active transcription in euchromatin in 

normal cells. In cancer cells, loss of lysine acetylation and methylation at H3K9 and H3K27 

leads to the repression of some tumor suppressor genes. The enzymes such as HDAC, HAT, 

HDM, and HMT catalyze histone acetylation and methylation. miRNAs bind and interfere 

with mRNAs and specifically target mRNA degradation or translation inhibition of tumor 

suppressor genes in cancer cells. The interplay of epigenetic pathways is shown in the center 

of the figure.
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