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Summary

CD4 T-cell responses are functionally complex and regulate many aspects

of innate and adaptive immunity. Follicular helper (Tfh) cells are CD4 T

cells specialized to support B-cell production of isotype-switched, high-

affinity antibody. So far, studies of Tfh cells in humans have focused on

their differentiation requirements, with little research devoted to their

antigen specificity. Here, after separating circulating human memory CD4

T cells based on expression of CXCR5, a signature marker of Tfh, we have

quantified and assayed the influenza protein antigen specificity of blood Tfh

cells and CD4 T cells lacking this marker. Through the use of peptide pools

derived from nucleoprotein (NP) or haemagglutinin (HA) and a panel of

human donors, we have discovered that circulating Tfh cells preferentially

recognize peptide epitopes from HA while cells lacking CXCR5 are

enriched for specificity toward NP. These studies suggest that reactive CD4

T cells specific for distinct viral antigens may have generalized differences in

their functional potential due to their previous stimulation history.
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Introduction

CD4 T cells possess a broad range of functions that con-

tribute to protective immunity against influenza. Some of

these functions segregate with CD4 T-cell lineage; for

example, T helper type 1 and type 17 cells induce pulmo-

nary inflammation, regulatory T cells limit tissue damage,

cytotoxic CD4 T cells kill infected cells and T follicular

helper (Tfh) cells help support antibody production,

(reviewed in refs 1–3). One particular lineage of CD4 T

cells, Tfh cells, is particularly critical for generating pro-

tection from influenza infection. Tfh cells function in an

antigen-specific manner to support B-cell affinity matura-

tion and class switching; both events essential for the gen-

eration of durable neutralizing antibody responses.2,4–7

For influenza, the generation of neutralizing antibodies to

the virion surface protein haemagglutinin (HA) is most

closely associated with vaccine efficacy.

Our recent work has shown that antigen-specific CD4

T-cell help can be a limiting factor in the antibody

response to influenza infection and importantly, the

delivery of CD4 help is linked to the protein specificity of

the B cells, where only HA-specific CD4 T cells help the

B-cell response to HA.8 This linked determination

between CD4 T-cell and B-cell epitopes, a cornerstone of

conjugate-vaccine design, highlights the importance of

CD4 T-cell specificity in directing the antibody response

to influenza. However, study of Tfh cells in humans has

been limited because of the difficulty in sampling lym-

phoid tissues. Recent studies have shown CD4+ CXCR5+

cells in human peripheral blood to have B-cell helper

functions analogous to conventional Tfh cells.9–15 The

ability to easily access lymphoid cells from the blood

makes the evaluation of CD4+ CXCR5+ cells practical for

both acute and longitudinal studies of the immune

response.

In this report, we sought to quantify influenza-reactiv-

ity in Tfh and non-Tfh cells and to examine the relation-

ship between influenza antigen specificity and potential

for helper function. Because of the correlative link

between influenza vaccine efficacy and neutralizing anti-

HA antibodies, we focused on cells reactive to HA and

the internal virion protein, nucleoprotein (NP). Our

studies suggest that cells that do or do not have B-cell

helper function differ in the frequency of reactivity to

alternate influenza proteins.
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Materials and methods

Isolation of memory CD4 T-cell subsets and naive B cells

Peripheral blood mononuclear cells were collected from

15 healthy donors (ages 18–50 years). The University of

Rochester Research Subjects Review Board approved this

study protocol, and human experimentation guidelines of

the US Department of Health and Human Services and

the University of Rochester were followed. Study proce-

dures were in accordance with the ethical standards of

the Declaration of Helsinki and all subjects provided writ-

ten informed consent. CD4+ CD45RA� T cells were puri-

fied using a memory CD4 T-cell isolation kit per the

manufacturer’s directions (Miltenyi Biotec, Auburn, CA).

Single, CD4+ CD45RA� cells were separated into two

populations, based on expression of CXCR5, by flow cy-

tometric sorting. CD19+ cells were enriched from periph-

eral blood mononuclear cells using a CD19+ multisort kit

(Miltenyi Biotec) and further enriched for naive B cells

by first releasing cells from the anti-CD19 microbeads,

and then enriching for naive cells by depletion with

CD27 microbeads (Miltenyi Biotec).

B-cell helper assay

Fifty thousand naive B cells (CD19+ CD27�) were cul-

tured with 50 000 CD4+ CD45RA� CXCR5+ or

CD4+ CD45RA� CXCR5� T cells in the presence or

absence of 500 ng/ml staphylococcal enterotoxin B (SEB).

Culture supernatants, harvested at day 10, were assayed

for IgG and IgM by ELISA. Purified anti-IgG (MT145),

anti-IgG-alkaline phosphatase (MT78), and human IgM

ELISA Kit (alkaline phosphatase) reagents were obtained

from MabTech (Cincinnati, OH).

Peptides

Seventeen-mer peptides overlapping by 11 amino acids

spanning the entire Influenza H1 [NR-2602: HA, A/New

Caledonia/20/99 (H1N1)] and NP [NR-2611: NP, A/New

York/348/03 (H1N1)] sequences were used, provided by

the NIH Biodefense and Emerging Infections Research

Resources Repository (Bethesda, MD). Peptide sequence

data can be obtained at http://www.beiresources.org refer-

encing the NR numbers. All peptides from the HA library

were pooled together and used for stimulation ‘HA’ with

each peptide at a final concentration of 2 lM. The same

was done for NP.

T-cell EliSpot assays

EliSpot assays were performed as previously

described:16,17 150 000 CD4+ CD45RA� CXCR5+ or

CD4+ CD45RA� CXCR5� cells were cultured with

100 000 autologous antigen-presenting cells (APC;

peripheral blood mononculear cells depleted of CD4+ and

CD8+ cells) and pools of peptides containing either the

entire HA or NP sequence (2 lM of each peptide) for

36 hr at 37°. Plates were washed and processed as previ-

ously described for the detection of cytokine-producing

cells.16,17 Quantification of cytokine-secretion spot counts

was performed with an Immunospot reader series 2A,

using IMMUNOSPOT software, version 5.0.9.19.

CD137/CD69 assay

Sorted CD4+ CD45RA� T cells were cultured with autol-

ogous APC at a 1 : 3 ratio in the presence of peptides for

26–30 hr at 37°, washed and stained with Live/Dead

Fixable Aqua Dead Cell Stain Kit (Life Technologies,

Carlsbad, CA), washed again and resuspended in Fc

Blocking Reagent (Miltenyi Biotec). The staining cocktail

was as follows anti-CD8-phycoerythrin (PE)-Cy7 (RPA-

T8), anti-HLA-DR-PE-Cy7 (G46-6), anti-CD19-PE-Cy7

(SJ25C1), anti-CD14-PE-Cy7 (M5E2), anti-CD4-FITC

(RPA-T4), and anti-CD45RA-allophycocyanin (HI100)

antibodies obtained from BD Biosciences (San Jose, CA);

anti-CXCR5-PE (MU5UBEE) antibody obtained from

eBioscience (San Diego, CA); anti-CD69-allophycocyanin-

Cy7 (FN50) and anti-CD137-BV421 (4B4-1) antibodies

obtained from BioLegend (San Diego, CA). Data were

collected with a FACSCanto flow cytometer (BD Bio-

sciences), and analysed with FLOWJO 8.6 software (Tree

Star Inc., Ashland, OR).

Statistical analysis

GRAPHPAD PRISM V5 software (GraphPad Software, La

Jolla, CA) was used for all statistical tests. Statistical sig-

nificance was evaluated using Wilcoxon signed-rank test

with a 95% confidence interval.

Results and discussion

Purification strategy and B-cell helper function of
peripheral blood CD4+ CD45RA� CXCR5+ and
CXCR5� cells

Recent investigations have shown that most CD4 T-cell

help for B cells in human peripheral blood is contained

within the CD4+ CXCR5+ population.9–15 We sought to

measure the influenza antigen-specificity of these circulat-

ing CD4 T cells and compare it with the specificity of cir-

culating CD4 T cells that lacked B-cell helper function.

Accordingly, we separated populations of highly enriched,

antigen-experienced CD4 cells from the blood of healthy

human donors into two populations: CD4+ CD45RA�
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CXCR5+ (CXCR5+) and CD4+ CD45RA� CXCR5�

(CXCR5�) T cells with purities generally > 98% (Fig. 1a).

To confirm that these methods separated functionally

distinct populations of memory CD4 T cells, the ability

of the sorted CXCR5+ and CXCR5� cells to support anti-

body production and class switching by naive B cells was

assayed, using SEB to facilitate cognate interactions

between CD4 T cells and B cells as described.11,15,18 After

a 10-day co-culture, IgG (Fig. 1b top panel) and IgM

(Fig. 1b bottom panel) in the supernatants was quantified

by ELISA. These results indicate that the CXCR5+

population was selectively competent to support produc-

tion of antibody production and class switching of naive

B cells.

Distribution of influenza antigen-specificity between
circulating memory CD4 T-cell subsets

After enriching for blood Tfh and non-Tfh cells, single

cell assays were used to measure influenza antigen reactiv-

ity and specificity. Both populations were cultured with

overlapping pools of peptides corresponding to the full

coding sequence of the HA and NP in the presence of

autologous APC. Reactive cells were quantified by cyto-

kine EliSpots. Use of peptide pools allows each potential

CD4 T-cell epitope to be accessible to bind to host MHC

and stimulate epitope-specific CD4 T cells. The HA and

NP responses were selected for this study because our

previous studies have shown that most human subjects
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Figure 1. (a) Purification of CXCR5+ and

CXCR5– memory CD4 T cells from human

peripheral blood mononuclear cells (PBMC).

PBMC from healthy human donors were

enriched for CD4+ CD45RA– cells with nega-

tive paramagnetic bead selection. Pools of

enriched cells were then stained for CD4,

CD45RA and CXCR5. Stained cells were sepa-

rated into CD4+ CD45RA� CXCR5+ and

CD4+ CD45RA� CXCR5� cells. After sorting,

the separated cells were typically > 98% pure.

(b) B-cell help is concentrated within the

CXCR5+ population of CD4+ CD45RA�

human blood cells. Fifty thousand isolated

CXCR5+ (open bars) or CXCR5– CD4+

CD45RA� T cells (filled bars) were cultured

with 50 000 autologous naive B cells in the

presence or absence of 500 ng/ml of staphylo-

coccal enterotoxin B (SEB). Day 10 culture su-

pernatants were tested for total IgG and IgM

by ELISA. The average levels of IgG (a) and

IgM (b) in supernatant are shown from SEB-

stimulated or unstimulated cultures, with the

error bars representing the SEM. Data were

analysed using the Wilcoxon signed-rank test

and * indicates a P-value < 0�05.
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have readily detectable CD4 T-cell responses to epitopes

contained in these influenza proteins.16,17,19 Additionally,

HA-reactive Tfh cells are particularly important to moni-

tor, as these are likely to be the most crucial for neutral-

izing antibody production.17,20

Figure 2 shows the results of these experiments, where

the summed frequency of influenza NP-specific and HA-

specific CD4 T cells in blood Tfh and non-Tfh cells are

presented in Fig. 2(a), with each donor indicated by a

unique symbol. Strikingly, there were some individuals

noted with low frequencies of antigen-reactive Tfh cells,

despite abundant influenza-specific CXCR5� cells (e.g.

Fig. 2b, subjects 2, 3, 4). The individuals with few influ-

enza-specific Tfh cells had similar numbers of total circu-

lating Tfh cells, identified by staining, as those subjects

showing high influenza reactivity [indicated in Fig. 2(b)

below the subject number]. This result indicates that

some humans are selectively deficient in influenza-specific

blood circulating Tfh cells.

When we analysed the distribution of influenza-reac-

tive circulating memory Tfh and non-Tfh cells toward

HA and NP (Fig. 2b), an intriguing pattern emerged.

NP reactivity was highly enriched within the memory

non-Tfh population in most of the subjects (Fig. 2b,

top panel). In the circulating Tfh population (Fig. 2b

bottom panel) the opposite trend was observed, with

Tfh from most subjects displaying enhanced reactivity to

HA. To compare the distribution of HA and NP-specific

cells within the CXCR5+ and CXCR5� populations, the

ratio of NP : HA-specific cells was determined (Fig. 3a).

This representation, shown as a ratio of NP : HA for

each donor, allows for normalization of reactivity among

individuals who differ in their abundance of influenza-

reactive CD4 T cells. This representation shows that the

relative reactivity to NP is enriched in the non-Tfh

whereas most Tfh have equal or greater reactivity to

HA.

Because there might be T-cell lineage-biased production

of cytokines, we also used a cytokine-independent method

of measuring influenza specificity. Additional subjects were

recruited and a flow cytometry panel was developed to

quantify the surface expression of CD137 and CD69,

markers known to be rapidly upregulated upon T-cell

receptor stimulation.21–25 The results using the cytokine-

independent assay were in agreement with the cytokine

EliSpot data (Fig. 3b). Both assays indicated that the

CXCR5� population contains a higher frequency of NP-

specific to HA-specific cells than did the CXCR5+ popula-

tion. Most individuals (> 65%) displayed this pattern and

some subjects showed dramatic disparities in these ratios.

Collectively, these findings highlight a pattern for the Tfh

cells in circulating influenza specific memory CD4 T cells

among many healthy human subjects to be most enriched

for HA-specific cells, while NP-specific cells were generally

more abundant within the CXCR5� population.

We find it intriguing that among our individual donors,

each of which is presumed to have distinct infection and

exposure history, many displayed the pattern of high NP
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Figure 2. (a) Quantification of influenza-reactive circulating follicular helper T (Tfh) and non-Tfh cells. CXCR5+ and CXCR5– CD4+ CD45RA�

T cells were cultured with 2 lM pools of peptide for haemagglutinin (HA) or nucleoprotein (NP) influenza proteins in the presence of autolo-

gous antigen-presenting cells (APC). Antigen-specific CD4 T cells were measured by interferon-c (IFN-c) EliSpot at 36–40 hr of stimulation and

the abundance was summed. (b) Influenza protein-specific reactivity in circulating Tfh and non-Tfh. Frequency of HA-specific (grey bars) or

NP-specific (black bars) IFN-c secreting cells per 1 000 000 sorted CXCR5– (top row) or CXCR5+ (bottom row) for individual donors. The per-

centage of CXCR5+ circulating Tfh found in each subject is indicated below the subject number at the top of each panel.
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reactivity in non-Tfh cells and preferential reactivity toward

HA in Tfh populations. This finding was unexpected

because most adults have multiple but distinct exposures to

influenza though both clinical vaccination and overt and

subclinical infections that occur but are not formally docu-

mented. We can put forward at least four mechanisms to

account for these patterns of specificity. The first is that the

glycosylated HA that can bind to cell surface sialic acid

could allow a unique pathway of uptake by APC or allow

HA to bind to other soluble scavengers after vaccination/

infection. Second, as an RNA-binding protein, NP may

intrinsically activate signalling through RNA-sensing recep-

tors. Also, the impact of circulating antibody during

vaccination or infection may differ between these proteins.

Pre-existing circulating NP-specific antibody to highly con-

served NP may block B-cell receptor uptake whereas novel

B-cell receptor epitopes within HA created by antigenic

drift may allow uptake of HA by HA-specific B cells. This

would allow enhanced presentation of HA epitopes on B

cells, driving more HA-specific CD4 T cells into the Tfh

lineage. Finally, intramuscular vaccines are enriched for

HA proteins26,27 and CD4 T cells specific for HA may more

frequently be boosted by vaccination, perhaps enriching for

Tfh cells. Further analyses of CD4 T-cell reactivity to other

membrane-associated influenza proteins such M1 and H3,

as well as the other internal genetically conserved proteins,

should help to distinguish among these possibilities.

It is interesting to consider the implications of these

studies. First, variability between donors demonstrates

that substantial heterogeneity exists in both the magni-

tude and pattern of influenza-specific CD4 T cells within

the circulating memory compartment. In some subjects,

this memory contained fewer than 200 influenza-specific

cells per million Tfh cells, but most subjects possessed

thousands of HA-reactive and NP-reactive cells per mil-

lion non-Tfh cells. We do not know the infection or

vaccination history of the healthy individuals surveyed

here, but all our healthy donors tested display evidence of

previous encounter with influenza, based on serum reac-

tivity to H1, H3 and NP (data not shown). It is interest-

ing to speculate that those individuals with scarce

influenza-specific Tfh cells, particularly those specific for

HA, may exhibit selective deficiencies in their neutralizing

antibody responses to vaccination. In contrast to memory

circulating Tfh cells, the non-Tfh cells may supply distinct

but also crucial effector functions, such as the recruitment

of innate and adaptive effector cells to infected or com-

promised tissues, the support of expansion of CD8 T

cells, and the mediation of direct killing of antigen-bear-

ing cells during influenza infection (reviewed in ref. 1,3).

Understanding how and why antigen-specificity partitions

the different functional subsets of CD4 T cells will be par-

amount to developing vaccine approaches that enhance

the characteristics of immunity in the host that provide

the needed protection.
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