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Abstract

Measuring intracellular metabolism has increasingly led to important insights in biomedical 

research. 13C tracer analysis, although less information-rich than quantitative 13C flux analysis 

that requires computational data integration, has been established as a time-efficient method to 

unravel relative pathway activities, qualitative changes in pathway contributions, and nutrient 

contributions. Here, we review selected key issues in interpreting 13C metabolite labeling patterns, 

with the goal of drawing accurate conclusions from steady state and dynamic stable isotopic tracer 

experiments.

Keywords
13C tracer analysis; metabolite labeling patterns; metabolic fluxes; metabolite concentrations; 
steady state labeling patterns; dynamic labeling patterns; mammalian cell metabolism; nutrient 
contributions; metabolic pathway activities

Introduction

Investigating cellular metabolism has a long-standing history in various research areas such 

as biochemistry, biotechnology and cellular physiology. A widely applicable toolbox to 

quantitatively measure intracellular metabolism has been developed in the context of 

biochemical engineering [1]. In light of the emerging realization that altered cellular 

metabolism contributes to many diseases including cancer, metabolic syndromes, and 

neurodegenerative disorders, these approaches are being increasingly applied to address 

biomedical research questions [2–9].
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Cellular metabolism can be characterized by many parameters including nutrient uptake and 

metabolite secretion rates, intracellular metabolite levels, intracellular metabolic rates 

(fluxes), nutrient contributions to metabolite and macromolecule synthesis, and pathway 

activities [2,3,9–12].

Metabolomics, which provides absolute or relative intra- or extracellular metabolite levels, 

is a broad and sensitive method to detect differences in metabolic states between conditions 

[13–16]. Changes in intracellular metabolite levels indicate an altered activity of the 

connected consuming or producing reactions (e.g. enzymatic, non-enzymatic, or transport 

reactions) [17–21]. However, concentration changes do not readily allow conclusions on 

metabolic rates (fluxes), or the direction of the flux changes, since an increase in metabolite 

concentration can both be indicative of increased activity of metabolite producing enzymes, 

but also decreased activity of metabolite consuming enzymes.

In combination with growth rates (which provide global information on metabolic fluxes to 

biomass production), metabolite uptake/secretion rates provide a macroscopic picture of 

overall metabolism. For instance, measuring the rate of glucose depletion from the media 

reports the rate of glucose used by cells in a culture system. However, these data alone are 

insufficient to reveal intracellular fluxes throughout the different metabolic pathways.

To examine intracellular fluxes (metabolite amount converted/cell/time), heavy isotope 

(most frequently 13C) labeled nutrients (tracers) are commonly utilized [22–29]. In 

formal 13C flux analysis, labeling patterns in intracellular metabolites resulting from 

metabolizing a 13C labeled nutrient, cellular uptake and secretion rates, and prior knowledge 

of the biochemical reaction network are combined to computationally estimate metabolic 

fluxes [11,30–34]. In practice, resolving metabolic fluxes from measured data can be time 

and data-intensive. In many cases, however, direct interpretation of 13C labeling patterns 

(without formal 13C flux analysis) is sufficient to provide information on relative pathway 

activities, qualitative changes in pathway contributions via alternative metabolic routes, and 

nutrient contribution to the production of different metabolites. We refer to this direct 

interpretation of 13C labeling patterns as 13C tracer analysis. Here, we discuss selected 

important aspects to consider when performing 13C tracer analysis to ensure correct data 

interpretation and to increase the insight obtained by stable isotopic tracer experiments.

Metabolic steady state versus isotopic steady state

Metabolic steady state requires that both, intracellular metabolite levels and intracellular 

metabolic fluxes of a cell or a cell population are constant (Figure 1a) [35]. Controlled 

culture systems that ensure metabolic steady state are continuous cultures (known as 

chemostats), where cell number and nutrient concentrations are maintained constant 

throughout the experiment [36]. More commonly, experiments are performed at pseudo-

steady state, where changes in metabolite concentrations and fluxes are minimal on the 

timescale over which the measurement is being made. In adherent mammalian cell culture, 

perfusion bioreactors and nutrostats [37,38], where nutrient concentrations but not cell 

number are constant over time, are closest to a chemostat. In conventional monolayer 

culture, the exponential growth phase is often assumed to reflect metabolic pseudo-steady 
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state, because cells in the culture steadily divide at their maximal condition specific rate, 

given that nutrient supply does not become limiting [39]. So long as biological changes (e.g. 

differentiation) occur slowly relative to the timescale of metabolic measurement, non-

proliferating cells are generally also in metabolic pseudo-steady state. This can be verified 

by time resolved measurements of metabolic parameters of interest [40]. In case the 

biological system is not in metabolic pseudo-steady state, e.g. following acute signaling 

events or nutrient modulations, tracer experiments can still provide qualitative and 

quantitative information on metabolic pathway fluxes, but interpretation of non-steady state 

data require different approaches [30,41–43] than the here discussed 13C tracer analysis at 

metabolic pseudo-steady state.

While metabolic steady state addresses the state of metabolism, isotopic steady state 

characterizes the enrichment of a stable isotopic tracer in metabolites. When a 13C labeled 

substrate is added and subsequently metabolized, the metabolites will become with time 

increasingly enriched for 13C until the point where the 13C enrichment is stable over time 

(Figure 1b). From a practical perspective, isotopic steady state is reached when 13C 

enrichment into a given metabolite is stable over time relative to experimental error and/or 

the desired measurement accuracy. These enrichment dynamics differ depending on the 

analyzed metabolite and the tracer employed, since the time required to reach isotopic 

steady state depends on both the fluxes (i.e. rate of conversion) from the nutrient to that 

metabolite, and the pool sizes of that metabolite and all intermediate metabolites. For 

example, upon labeling with 13C-glucose, isotopic steady state in glycolytic intermediates 

typically occurs within minutes, whereas for TCA cycle intermediates it may take several 

hours. For many amino acids that are both produced by the cell and are supplemented in the 

media isotopic steady state may never be achieved in standard monolayer culture, due to 

constant and rapid exchange between the intracellular and the extracellular amino acid 

pools. In such a situation, qualitative tracer analysis can easily be misleading, and 

quantitative, formal approaches are required (e.g. [44]).

Key aspects

• Proper interpretation of labeling data depends on prior assessment of whether the 

system is at metabolic pseudo-steady state. If so, interpretation of tracer data is 

most simple if labeling is allowed to proceed also to isotopic steady-state

• The time to reach isotopic steady state depends both on the tracer being employed 

and the metabolites being analyzed.

• Many amino acids are freely exchanged between intracellular and extracellular 

pools. This can prevent labeling from reaching isotopic steady state and any 

intracellular metabolite pool that is in rapid exchange with a larger extracellular 

pool is subject to this complication.

Labeling patterns

The term ‘labeling pattern’ refers to a mass distribution vector (MDV) (they are also 

frequently called mass isotopomer distribution (MID) vectors) (Figure 1c). The shift in mass 

of a metabolite occurs due to the incorporation of isotopes. Metabolites that only differ in 
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the isotope composition are isotopologues (they are frequently also called mass 

isotopomers). MDVs describe the fractional abundance of each isotopologue normalized to 

the sum of all possible isotopologues. A metabolite with n carbon atoms can have 0 to n of 

its carbon atoms labeled with 13C, resulting in isotopologues that increase in mass (M) from 

M+0 (all carbons unlabeled e.g. 12C) to M+n (all carbons labeled e.g. 13C). Hence, the MDV 

represents the relative abundances of M+0 to M+n isotopologues for one particular 

metabolite (Figure 1c). Consequently, the sum of all fractions from M+0 to M+n is 100% or 

1. Note that in respect to 13C each isotopologue has  isotopomers (same isotope 

composition but different position of the isotope within the metabolite), when n denotes the 

number of carbons in a metabolite and k the number of carbons that are 13C (Figure 1c). 

Isotopomers can only be resolved using a detection method that can assign a specific 

position to a 13C within a molecule (e.g. nuclear magnetic resonance spectroscopy [45], 

mass spectrometry analysis of multiple fragments [46] or in specific cases tandem mass 

spectrometry [47,48]). While information on the position of a the 13C label can increase the 

information content of labeling data, the MDV is typically sufficient to draw conclusions on 

nutrient contributions, and also often regarding pathway activities. Notably, while we will 

discuss 13C tracer analysis, the above-described MDVs can be also applied to other stable 

isotopes including 15N and 2H.

To apply MDVs to assess nutrient contributions and pathway activities, it is important to 

first correct for the presence of naturally occurring isotopes, e.g, 13C (1.07% natural 

abundance (na)), 15N (0.368% na), 2H (0.0115% na), 17O (0.038% na), 18O (0.205% 

na), 29Si (4.6832% na), or 30Si (3.0872% na) [49–51]. For example, glutamate and α-

ketoglutarate, which are normally in complete exchange and share the same carbon 

backbone, should accordingly have matching MDVs. Yet, since they differ in their 

molecular formula, uncorrected MDVs of glutamate and α-ketoglutarate will not match 

because of the natural occurring isotopes in N, H, and O. For analytical methods that require 

metabolite derivatization to enable chromatographic separation (e.g. gas chromatography - 

mass spectrometry), the chemical modification adds additional C, H, N, O, and Si atoms to 

the metabolites [22,52]. Hence, the natural labeling of all atoms in the metabolite and the 

derivatization agent needs to be taken into account when performing data correction. For 

analysis of underivatized metabolites (e.g. by liquid chromatography - mass spectrometry), 

naturally occurring 13C has a much greater effect than other natural isotopes, and it is 

minimally imperative to correct for it.

A general applicable correction matrix can be formulated based on equation (1).

Buescher et al. Page 5

Curr Opin Biotechnol. Author manuscript; available in PMC 2015 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1)

Here, the vector I denotes the fractional abundances of the measured metabolite ions. M 

represents the MDV corrected for naturally occurring isotopes. n denotes the number of 

carbon atoms that are present in the analyzed metabolite ion and are subject to isotope 

labeling. u denotes additional measured ion abundances beyond n originating from natural 

isotopes in the metabolite or the derivatization. L denotes the correction matrix and the 

columns LMk denote the theoretical natural MDV when k (0 to n) carbons are 13C. The 

correction matrix L can be calculated based on the sum formula of the metabolite ion under 

consideration of natural isotope abundances [49,53,54]. To solve the linear equation system 

at least n+1 abundances have to be measured. If more than n+1 abundances are considered, 

this results in an overdetermined system and provides a more robust solution. Tools for 

quickly converting raw into corrected MDVs are available [55,56].

When using analytical approaches involving selected ion monitoring (SIM) or selected 

reaction monitoring (SRM) mass spectrometry, it is important to consider upfront the 

potential role of naturally occurring isotopes when setting the selected mass range [50]. In 

cases involving derivatization with Si-containing reagents, inclusion of these higher mass 

ranges may be important and the required mass range can be estimated based on 

multinomial expansion (typically a shift of up to 4 amu beyond the mass of the fully labeled 

metabolite should be considered).

Comparison between labeled and unlabeled samples is sufficient to determine whether an 

observed mass shift truly reflects labeling (as opposed to merely natural isotope abundance). 

It is not appropriate, however, to subtract the MDV of an unlabeled sample from the labeled 

sample. Typically, the main natural abundance peak in the unlabeled sample will be M+1, 

whereas in labeled samples natural abundance results in peaks at higher masses.

The natural occurring isotopes can be also used to validate the applied mass spectrometry 

method for its accuracy to measure isotopologue distributions [22]. Specifically, metabolites 

can be extracted from cells fed with naturally labeled nutrients (commonly referred to as 

unlabeled nutrients) and consequently the measured MDV of these metabolites should 

accurately (< ±1.5%) reflect the theoretical distribution of natural occurring isotopes. With 

this validation the applied mass spectrometry method can be improved or metabolites for 

which the isotopologue distribution is measured with poor accuracy can be excludes. It is 

important to be aware of the extent of error in MDV measurements and to interpret resulting 

labeling data accordingly. Random error in MDV measurement is often significant for 

metabolites that are low abundance (i.e. measurement signal close to noise). Systematic 

error in MDV measurement is more serious and can reflect metabolite misannotations or 

overlaps of the measured metabolite ions with same mass ions from sample matrix 
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compounds. In case the accuracy to measure isotopologue distributions is validated, data 

variability can be a subject of the experimental procedure (e.g. inadequate metabolism 

quenching) or the biological system (e.g. rapid metabolic shifts or a continuous metabolic 

drift).

Key aspects

• Correction for natural abundance facilitates proper interpretation of labeling data.

• Subtracting the measured MDV of an unlabeled metabolite from the measured 

MDV of the labeled metabolite is not a valid method to correct for natural 

abundance.

• Labeling patterns must be interpreted in light of the experimental error in MDV 

measurements of the chosen analytical approach. Measurement error will typically 

be higher for low abundance compounds.

• In case measurement inaccuracy can be excluded, data variability can result from 

the experimental procedure or the biological system

Cellular compartments

Eukaryotic cells have organelles such as mitochondria and peroxisomes, and these 

organelles result in intracellular compartmentalization of metabolites and metabolic 

reactions. Many metabolites are present in multiple intracellular compartments and even 

spatial distribution within a compartment might occur. This adds a layer of complexity to 

understanding metabolism. Only the average labeling pattern and metabolite levels from all 

compartments within a cell can be measured using most current techniques (Figure 1d) 

[57,58].

Depending on the metabolite of interest, compartment-specific labeling patterns in some 

cases can be inferred from labeling of metabolites that are produced exclusively in one 

compartment (Figure 1d). For example, pyruvate is found both in the cytosol and in the 

mitochondria. Lactate and alanine are both directly produced from pyruvate. Lactate 

dehydrogenase, the enzyme which interconverts pyruvate and lactate, is a strictly cytosolic 

enzyme [59], an assumption in agreement with the observation that the deletion of the 

mitochondrial pyruvate carrier does not affect lactate production [60,61]. The finding that 

mitochondrial pyruvate carrier deletion drastically affects alanine production [60,61] 

supports that alanine is produced extensively from mitochondrial pyruvate [62]. Thus, under 

experimental conditions in which neither exogenous alanine nor lactate is available to cells, 

lactate labeling likely reflects the labeling pattern of cytosolic pyruvate, while alanine 

labeling better reflects the labeling pattern of mitochondrial pyruvate. Additionally, 

engineered compartment-specific production of metabolites in cells can also be used to 

provide compartment specific information. For example, labeling of NADPH in the 

mitochondria and the cytosol was determined by compartmentalized transfer of deuterium to 

the metabolite 2-hydroxyglutarate (2-HG) [63]. Specifically, transient expression of either 

mutant isocitrate dehydrogenase 1 or 2 results in compartment specific production of 2-HG 

that utilizes NADPH available in that location. This approach, and a similar approach but 
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without engineered compartment specific production of 2-HG was used to infer 

compartmentalized serine – glycine interconversion [63,64].

Key aspects

• In most cases cell average labeling patterns are measured. Because many 

metabolites are present in more than one subcellular compartment, this can affect 

the extent and pattern of the metabolite labeling observed.

Steady state labeling

MDVs describe the relative fractions of isotopologues within a metabolite. At isotopic 

steady state, and in the absence of compartment-specific labeling patterns, MDVs are 

independent of metabolite levels. Therefore, metabolites that are in complete exchange such 

as glutamate and α-ketoglutarate have identical MDVs even though their intracellular levels 

are very different [65–67] (Figure 2a). Consequently, any further analysis of relative 

pathway activities, qualitative changes in pathway contributions, or nutrient contributions 

based on isotopic steady state labeling data only requires MDVs and is independent of the 

metabolite levels. Notably, this simplifying assumption breaks down when 

compartmentation is significant and results in compartment-specific labeling patterns (see 

section above).

Nutrient contribution

To determine which fraction of a metabolite’s carbon is produced from a certain nutrient the 

fractional contribution (FC) using the fully 13C-labeled nutrient can be calculated based on 

equation (2). Using positionally labeled nutrients for this analysis is not advised because 

positionally labeled tracers will not only reflect changes in the FC but also differential 

pathway usage. For example, the FCfrom glucose in pyruvate calculated from a 1-13C1-glucose 

tracer can be altered between conditions because of a reduction in the fraction of pyruvate 

produced from glucose or because the forward flux through the oxidative and non-oxidative 

pentose phosphate pathway is increased, leading to the incorporation of the 13C labeled 

carbon into CO2.

(2)

Here n is the number of C atoms in the metabolite, i denotes the isotopologues, and m the 

abundance of an isotopologue. Alternatively, FC can be directly calculated from the MDV 

by equation (3), which takes advantage of the fact that the sum of all fractions from M+0 to 

M+n is already normalized to 1.

(3)

Here s is the relative fraction of the isotopologues.
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If only two carbon sources (e.g. glucose and glutamine) contribute to the formation of a 

metabolite, the sum of FCfrom glutamine and FCfrom glucose will be 100% or 1 for this 

metabolite (Figure 2b). Thus, the relative contributions of carbon sources to a metabolite can 

be determined from FCs. As an example, this approach was applied to reveal a switch from 

glucose to glutamine-derived tricarboxylic acid (TCA) cycle metabolites during metformin 

treatment [68]. For any metabolite that is subject to a carboxylation reaction the FC values 

will be reduced due to incorporation of unlabeled CO2 [69]. Similarly any other 

incorporation of unlabeled carbon sources will also lead to a reduced FC. For example a low 

FC of fatty acids from 13C6-glucose and 13C5-glutamine in hypoxia was recently used to 

reveal a contribution from serum acetate to fatty acid synthesis [70].

Also isotope impurity of the tracer will reduce FC values. Yet, for standard quality of tracers 

(e.g. 1% for 13C6-glucose), the reduction of FC values based on isotope impurity is 

marginal. For example, although in 13C6-glucose with 1% isotope impurity only 94% of the 

glucose molecules carry at each carbon position a 13C, the FC for this 13C6-glucose is 0.99. 

Thus, normalizing to the FC of the tracer has in this case little effect. However, for tracers 

with higher isotope impurity a normalization to the FC of the tracer can be useful.

Nutrient contribution indirectly provides some information on flux: it reveals the fraction of 

the metabolite being formed by the sum of all pathways leading from the labeled nutrient to 

the metabolite. It does not reveal the activity of specific pathways, nor absolute fluxes. For 

example, two metabolites can have identical FC although the net flux (Figure 2c) of the 

labeled nutrient to one of the metabolites is much smaller than to the other, but between both 

metabolites exists a rapid exchange flux. Thus, rapid exchange fluxes (Figure 2c) can readily 

label metabolites although the net flux to the metabolite might be marginal.

Key aspects

• If the sum of the labeled nutrient contributions to a metabolite do not sum up to 

100% or 1, and the labeling in the metabolite is in isotopic steady state, there are 

additional sources that contribute to the production of that metabolite.

• In general, nutrient contributions alone do not reveal specific or absolute fluxes.

• Exchange fluxes can lead to labeled metabolites although the net flux to the 

metabolites is marginal.

Pathway activity

Specific isotopologues do not provide perse information on absolute fluxes, rather they 

allow conclusions on relative pathway activities and qualitative changes in pathway 

contributions to the production of a certain metabolite. Thereby, isotopologue patterns can 

indicate the activity of alternative metabolic routes.

Relative pathway activity—Relative pathway activities can be inferred from a ratio 

between two alternative and converging pathways. A 13C labeled tracer can be fed to the 

cells, which is designed to result in different labeling patterns when converted through either 

of the two alternative metabolic pathways. Calculating a split ratio of the activity between 
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two alternative and converging pathways requires that the labeling patterns of the 

metabolites are valid surrogates of the two pathways, and that a converged pathway 

metabolite can be measured [50]. Consequently, the sum of the relative activity of both 

alternative and converging pathways is 100% or 1. In those cases where additional 

information can provide the forward flux for one of the pathways, then the forward flux of 

the other pathway can be calculated based on the split ratio. For example, the pentose 

phosphate pathway has both oxidative and non-oxidative branches that connect to glycolysis 

at different locations [71]. Under some conditions, pentoses produced via the oxidative 

pathway can re-enter glycolysis via the non-oxidative pathway, providing two routes from 

glucose-6-phosphate to trioses. When 1,2-13C2-glucose is converted through glycolysis, M

+0 and M+2 pyruvate will be formed, while conversion of glucose to pyruvate through the 

oxidative pentose phosphate pathway will lead to M+0, M+1, and M+2 pyruvate. The split 

ratio (relative pathway activity) between glycolysis and the pentose phosphate pathway can 

be estimated based on the above-described different labeling patterns [72,73]. Notably, the 

difference in pyruvate labeling is not informative as to relative pentose phosphate pathway 

and glycolysis flux if the non-oxidative pentose phosphate pathway flux is directed toward 

pentose production, as is the case in many cancer cells [74,75]. A more direct measurement 

of oxidative pentose phosphate pathway flux can be obtained from quantifying 14CO2 

production from 1-14C1-glucose versus 6-14C1-glucose [76]. Alternatively, formal 13C flux 

analysis or isotopomer analysis based on nuclear magnetic resonance can be applied to 

determine the oxidative pentose phosphate pathway activity from 13C-labeling data (e.g. 

[77,78]).

Importantly, if a single nutrient contributes to a pathway, then steady state labeling data are 

not informative as to relative or qualitative pathway activity or flux. For instance, in most 

cases glycolytic intermediates are labeled primarily from glucose and the fact that glycolytic 

intermediates are labeled from glucose at steady state does not provide any information on 

the magnitude of the glycolytic flux.

Qualitative changes in pathway contribution—Qualitative changes in pathway 

contribution are indicative of whether a certain pathway is used to produce a metabolite. 

Thereby, only the labeling pattern that is indicative for the pathway of interest is analyzed. 

Consequently, no quantitative split ratio is calculated between the pathway of interest and 

the alternative conversion routes, and only qualitative information is obtained. Examples are 

changes in the fractional abundance of M+5 citrate from 13C5-glutamine to suggest 

reductive glutamine metabolism [79–84], or M+3 malate from 13C6-glucose to suggest 

contribution of pyruvate via pyruvate carboxylase. The example of pyruvate carboxylase is 

discussed in full detail in Box 1. Recognizing the limitations of the specific isotopologues to 

be indicative for relative pathway activities or qualitative changes in pathway contribution is 

important, and use of more than one tracer as well as investigation of more than one 

metabolite labeling can increase confidence in conclusions (Box 1).
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Box 1

Qualitative changes in pathway contribution: 13C tracer analysis to identify 
changes in pyruvate anaplerosis

Pyruvate anaplerosis is the counterpart to glutamine anaplerosis and allows the TCA 

cycle to continuously oxidize acetyl-CoA simultaneously to providing carbon backbones 

for biomass production. During pyruvate anaplerosis, pyruvate is converted via pyruvate 

carboxylase to oxaloacetate to compensate for metabolite loss from TCA cycle due to 

biomass production.

Pyruvate anaplerosis can be identified by measuring M+3 malate, oxaloacetate, or 

fumarate under conditions when 13C6-glucose is consumed (a). Notably, oxaloacetate is 

not measurable by many metabolomics protocols because it requires a direct 

derivatization during quenching due to its chemical instability [96]. However, the 

labeling pattern of aspartate can serve as a surrogate of oxaloacetate labeling in aspartate-

free medium, because if the medium does not contain this amino acid, oxaloacetate is the 

sole source of aspartate carbon. Notably, if oxaloacetate from pyruvate anaplerosis is 

further used in the TCA cycle, also a fraction of M+5 citrate from 13C6-glucose will 

appear, because M+3 oxaloacetate will be combined with M+2 acetyl-CoA.

Under 13C6-glucose labeling conditions M+3 malate, aspartate, and fumarate can also be 

formed by multiple oxidation rounds in the TCA cycle (b). Hence, to ensure that the M+3 

malate, aspartate, and fumarate from 13C6-glucose are indicative of pyruvate anaplerosis, 

this isotopologue should be compared to the M+3 succinate (b). Comparison between 

malate, aspartate, and fumarate with succinate is thereby directly possible because they 

all consist of the same four-carbon backbone. Thus, differences between the M+3 in 

malate, aspartate, and fumarate and the M+3 succinate represents the pyruvate 

anaplerosis contribution to the TCA cycle, given that fumarate reductase activity is 

absent.

Fumarate reductase activity of the succinate dehydrogenase complex converts fumarate 

to succinate and thereby constitutes anaerobic electron transport. This activity is found in 

many bacteria and fungi, but it has been also shown to occur in some mammalian cells 

during starvation, ischemic, or hypoxic conditions [97–99]. When fumarate reductase 

activity is observed under 13C6-glucose labeling conditions, the M+3 malate, aspartate, 
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and fumarate can match the M+3 succinate although pyruvate anaplerosis is active (c). 

Therefore, the M+3 malate, aspartate, and fumarate should also be compared to the M+3 

and M+4 α-ketoglutarate, because the α-ketoglutarate to succinate reaction can be 

considered to operate only in forward direction (c). Notably, α-ketoglutarate consists of a 

five carbon backbone and in the reaction to succinate CO2 is lost. Thus, this difference in 

the carbon backbone has to be taken into account when the MDVs of malate, aspartate, 

and fumarate are compared to α-ketoglutarate.

To assess the contribution of pyruvate to TCA cycle via pyruvate carboxylase with an 

additional tracer, 1-13C1-pyruvate (or 3,4-13C2-glucose, which is converted to 1-13C1-

pyruvate) can be used (d) [100,101]. Using these tracers, the 13C labeled carbon is lost in 

the pyruvate dehydrogenase reaction but is retained when pyruvate enters via pyruvate 

anaplerosis into the TCA cycle (d). Any further TCA cycle metabolization of 

oxaloacetate from pyruvate anaplerosis, however, will lead to loss of the the labeled 

carbon (d). Notably, when using a pyruvate tracer in the presence of glucose as a carbon 

source, the enrichment of 13C-pyruvate needs to be taken into account when estimating 

relative pyruvate anaplerosis.

Hence, pyruvate anaplerosis is a good example that it can be helpful to depict not only 

the isotopologue of interest, but the MDVs of multiple connected metabolites.

Key aspects

• Steady state labeling patterns are independent of metabolite levels. Consequently, 

multiplying MDVs with metabolite levels at isotopic steady- state (or simply 

reporting the absolute magnitudes of different labeled species) does not reliably 

provide information on any metabolic changes. More reliable information is 

obtained by examining the steady-state labeling fractions themselves to infer 

relative or qualitative pathway activities and nutrient contributions.

• Relative pathway activities and qualitative changes in pathway contribution to the 

production of a metabolite do not allow conclusions on absolute flux magnitudes.

• Steady state labeling patterns are information-rich for metabolites in pathways with 

more than one source of nutrient contribution or alternative metabolic routes for 

nutrient contribution.

• Steady state labeling patterns for linear pathways without alternative nutrient 

contributions are not informative for pathway activity.

• If no formal split ratio of pathway contribution can be calculated, any pathway 

activity inferred from steady state labeling patterns is qualitative.

• It is important to remember that relative contributions may change due to the 

increased activity of one pathway, or the decreased activity of another pathway.

• Analysis of labeling patterns from more than one 13C tracer can increase 

confidence in data interpretation.
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• Analysis of labeling patterns in more than one metabolite can increase confidence 

in data interpretation.

Dynamic labeling

Dynamic labeling is a powerful method to infer flux from metabolite labeling data and 

metabolite levels (Figure 2d) [30,41,51,85]. During dynamic labeling, how fast a metabolite 

pool becomes labeled is measured. The underlying principle is that the greater a flux the 

faster a metabolite pool becomes labeled; however, considering the size of the metabolite 

pool is critical as larger metabolite pools will take longer to be labeled than smaller 

metabolite pools (Figure 2d). Thus, dynamic labeling patterns are inherently metabolite level 

dependent, and will also depend on the pool size and labeling rates of upstream metabolites 

if the labeled intermediate is not directly produced from the 13C tracer.

Integrating dynamic labeling data into metabolic models has mainly been applied to 

microbial systems, although other systems have been recently investigated as well 

[34,39,86–89]. For a meaningful direct interpretation of dynamic labeling patterns a suitable 

time resolution (i.e. multiple time points that cover the labeling dynamics) and measurement 

of the metabolites that are upstream of the metabolite of interest are essential. This is 

required to a) obtain reliable curve fits and b) determine when the dynamic profile 

transitions to steady state labeling. Notably, dynamic labeling is limited by the feasible time 

resolution. Therefore, low flux pathways such as glutamine anaplerosis to the TCA cycle 

(conversion of glutamine to α-ketoglutarate) are easier to correctly infer with dynamic 

labeling data than high flux pathways such as glycolysis. Additionally, the direct 

interpretation of dynamic labeling patterns (without sophisticated methods such as non-

stationary 13C flux analysis) requires that the metabolite levels are constant over time. In 

practice, this is often achieved by exchanging the medium for a period of time with 

unlabeled medium prior to adding 13C-labeled media. This allows the intracellular 

metabolite levels that are in rapid exchange with the medium (e.g. lactate) to equilibrate to a 

medium without high levels of these metabolites present extracellularly. Importantly, 13C 

tracer analysis as discussed here is only valid if the media change does not affect the 

metabolic steady state.

For calculating fluxes from dynamic labeling data two cases have to be considered. Either 

the direct substrate metabolite of the reaction of interest is 100% labeled and the metabolite 

of interest is not a product from a condensation reaction, or this is not the case. In the first 

case flux can be calculated based on equation (4) [51].

(4)

Here, XU is the unlabeled metabolite level, fX is the sum of fluxes producing the metabolite 

X from the tracer substrate and XT is the total metabolite level (sum of all labeling states). 

Hence, XU/XT is the fraction of M+0 in the metabolite of interest. In the second case 

isotopically non-stationary 13C flux analysis [30,40,85] or kinetic flux profiling [51,90,91] 

can be performed. These methods require the same additional data and information as steady 
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state 13C flux analysis and/or measurements of metabolite levels along the pathway of 

interest. Moreover, to measure biosynthesis and turnover of polymers mass isotopomer 

distribution analysis (MIDA) [92] or isotopomer spectral analysis (ISA) [93] can be applied.

In some experimental setups, pragmatic simplifications to compare flux between two 

conditions have been applied [66,94,95]. For example, a pulse of a fully labeled carbon 

source is added to the medium in a reference and in a perturbed condition (e.g. mutant, or 

drug treatment). Under the precondition that all metabolite levels along the pathway of 

interest are lower in the perturbed condition than in the reference condition, a slower or 

equal decrease in M+0 of the metabolite of interest in the perturbed condition signifies a 

lower pathway flux in the perturbed condition (Figure 2e). To allow assessment of 

metabolite levels and labeling dynamics, both parameters should be depicted separately. 

Notably, such a qualitative analysis of dynamic labeling data and metabolite levels are 

subject to the assumption that the non-compartment specific metabolite level measurement 

does not impact the data interpretation and that the metabolites of the pathway of interest are 

not in rapid exchange with other metabolites outside the pathway. If doubts about these 

assumptions exist, then conclusions based on the assumptions should be verified with formal 

non-stationary 13C flux analysis.

Key aspects

• Multiple time points are essential to interpret directly dynamic 13C labeling 

patterns. Interpretations of single time points of dynamic 13C labeling patterns are 

not reliable.

• Dynamic labeling is limited by the feasible time resolution (e.g. glycolytic 

intermediates are labeled in the second to minute range).

• Qualitative and quantitative assessment of dynamic labeling patterns (without 

formal non-stationary 13C flux analysis) must take metabolite levels into account.

• Interpretation of labeling dynamics in a pathway with metabolites that are in rapid 

exchange with other metabolites outside a pathway require other approaches than 

the here discussed direct 13C tracer analysis.

• Compartment-dependent metabolite production can impact the interpretation of 

dynamic labeling data.

Concluding remarks
13C- and other isotope-labeled tracers can be powerful tools to interrogate the metabolism of 

cells. They can determine relative pathway activities, qualitative changes in pathway 

contribution, nutrient contributions, and help infer metabolic fluxes. Analysis using more 

than one tracer and examination of multiple metabolites can help to increase the confidence 

in conclusions from direct 13C tracer analysis. Moreover, integration of labeling data with 

additional information such as uptake and secretion rates will increase the resulting 

understanding of cellular metabolism and confidence in the biological conclusions. 

Importantly, the biological question of interest dictates which metabolic parameters (uptake 

rates, relative pathway activities, pathway/nutrient contributions, or fluxes) are most 
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important to determine. Taking into account the considerations discussed here will hopefully 

be useful to the growing set of scientists engaged in metabolic tracer studies.
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Highlights

• 13C tracer analysis can be used to probe intracellular metabolism in cells

• Steady state labeling patterns can quantify nutrient contributions

• Steady state labeling patterns can inform about pathway activities

• Dynamic labeling patterns combined with metabolite levels can quantify some 

fluxes

• Analysis of multiple metabolites and various tracers enhances information 

output
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Figure 1. 
Labeling basics. a) Time dependent metabolic changes: metabolism reaches a metabolic 

steady state when the parameters of interest (e.g. glucose uptake rate) are constant over time. 

b) Time dependent labeling changes: upon addition of an isotopically labeled carbon source, 

the isotopic enrichment will increase in the metabolites until the steady state enrichment is 

reached. c) Mass distribution vector (MDV) (also known as mass distribution (MID) vector): 

Labeling patterns are MDVs that consist of the fractional abundance of each isotopologue 

(mass isotopomer). M denotes mass of the unlabeled metabolite. d) Cellular 

compartmentalization: Most labeling pattern detection methods cannot resolve different 

cellular compartments, thus the whole cell average labeling pattern is measured.
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Figure 2. 
Interpretation of labeling data. a) Steady state labeling data are independent from the 

metabolite levels. b) Fractional contribution quantifies the contribution of a labeled nutrient 

to the metabolite of interest. c) Exchange fluxes can lead to rapidly labeled metabolites 

although the net flux of the nutrient to the metabolites is small. d) Dynamic labeling patterns 

are metabolite level dependent: The flux from glutamine to glutamate is the same in 

condition A and B, but in condition A the glutamate levels are greater than in condition B. 

Consequently, the labeling dynamics of glutamate in condition A are slower than in 

condition B although the flux from glutamine to glutamate is the same in both conditions. e) 

Relative flux activity between two conditions can be evaluated without kinetic flux 
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calculations if both the labeling dynamics and all metabolite levels of the pathway of interest 

are altered in the same direction.
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