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Abstract

At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular 

energy landscapes by many techniques. However, while static, ensemble techniques yield 

thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data 

that describes transition-state energy barriers. Here we present a generalized framework based 

upon dwell-time distributions that can be used to connect such static, ensemble techniques with 

dynamic, single-molecule techniques, and thus characterize energy landscapes to greater 

resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron 

microscopy and single-molecule fluorescence resonance energy transfer studies of the bacterial 

ribosomal pretranslocation complex. Among other benefits, application of this framework to these 

data explains why two transient, intermediate conformations of the pretranslocation complex, 

which are observed in a cryogenic electron microscopy study, may not be observed in several 

single-molecule fluorescence resonance energy transfer studies.
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1 INTRODUCTION

Biomolecular machines operate on energy landscapes with transition-state energy barriers 

which range from ~ kBT to the energy of covalent bonds.1–3 Characterizing the wells and 

barriers which comprise these energy landscapes is important for understanding the 

thermodynamics and kinetics of biomolecular machines, and how these thermodynamics and 

kinetics can be modulated in order to regulate the activities of these machines.4–9 However, 

due to the stochasticity inherent to these processes, as well as the transient and/or rare nature 

of states separated by low transition-state energy barriers, extremely sensitive techniques are 

often required to obtain the level of detail necessary to adequately describe such 

systems.10,11 Sufficiently sensitive ensemble techniques, such as cryo-electron microscopy 

(cryo-EM), can measure static, equilibrium-state populations, and this provides information 

on the relative energy differences between distinct states. However, because of the 

vanishingly small probability of observing a transition state, techniques such as cryo-EM are 

not able to characterize the transition-state energy barriers responsible for much of the 

regulation of biomolecular processes.12 Fortunately, dynamic, time-dependent, single-

molecule techniques, such as single-molecule fluorescence resonance energy transfer 

(smFRET), can directly monitor the kinetics of these processes, and allow the 

characterization of the transition-state energy barriers with theories such as transition-state 

theory or Kramers’ theory.13 smFRET is a particularly powerful technique for connecting 

single-molecule kinetics to ensemble thermodynamics obtained from cryo-EM in that the 

FRET efficiency (EFRET) obtained from the smFRET experiments can be correlated to 

structures obtained from the cryo-EM experiments. Despite this significant advantage over 

many other single-molecule techniques, like all techniques, smFRET approaches often 

suffer from limitations to spatial and temporal resolution, and also often require structural 

information to develop biologically informative signals.14 Therefore, for any particular 

system, static, equilibrium-state, ensemble techniques and dynamic, time-dependent, single-

molecule techniques provide complementary approaches for studying the underlying 

biological processes. Nonetheless, given the current limitations in their application, the 

pictures they provide may not always be congruous.

The bacterial ribosome is one example of a biological system that has been well studied by 

both ensemble and single-molecule techniques, although the associated energy landscape 

remains only coarsely defined.15,16 Responsible for translating messenger RNAs (mRNAs) 

into their encoded proteins, the ribosome is composed of a large and small subunit (50S and 

30S in bacteria, respectively). During the elongation stage of translation, the ribosome 

undergoes consecutive rounds of an elongation cycle in which it successively adds amino 

acids to the nascent polypeptide chain in the order dictated by the sequence of the mRNA. In 

the first step of the elongation cycle, the mRNA-encoded aminoacyl-transfer RNA (aa-

tRNA) is delivered to the aa-tRNA binding (A) site of the ribosome in the form of a ternary 

complex (TC) that is composed of the ribosomal guanosine triphosphatase (GTPase) 

elongation factor (EF) Tu, guanosine triphosphate (GTP), and aa-tRNA.17–20 Upon delivery 

of the mRNA-encoded aa-tRNA into the A site, peptide bond formation results in transfer of 

the nascent polypeptide chain from the peptidyl-tRNA bound at the ribosomal peptidyl-

tRNA binding (P) site to the aa-tRNA at the A site, generating a ribosomal pre-translocation 
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(PRE) complex carrying a newly deacylated tRNA at the P site and a newly formed 

peptidyl-tRNA, extended by one amino acid, at the A site.21–23 Subsequently, the ribosome 

must translocate along the mRNA, moving the newly deacylated tRNA from the P site to the 

ribosomal tRNA exit (E) site and the newly formed peptidyl-tRNA from the A site to the P 

site.15,18,24–30 While translocation can occur spontaneously, albeit slowly, in vitro 31, it is 

accelerated by orders of magnitude in vivo through the action of EF-G, another ribosomal 

GTPase.18,30

Prior to translocation and in the absence of EF-G, at least three individual structural 

elements of the PRE complex undergo thermally driven conformational fluctuations: (i) the 

P- and A-site tRNAs fluctuate between their classical P/P and A/A configurations and their 

hybrid P/E and A/P configurations (where, relative to the classical P/P and A/A 

configurations, the hybrid P/E and A/P configurations are characterized by the movement of 

the acyl acceptor ends of the P- and A-site tRNAs from the P and A sites of the 50S subunit 

into the E and P sites of the 50S subunit, respectively); (ii) the ribosome fluctuates between 

its non-rotated and rotated subunit orientations (where, relative to the non-rotated subunit 

orientation, the rotated subunit orientation is characterized by a counterclockwise rotation of 

the 30S subunit relative to the 50S subunit when viewed from the solvent-accessible side of 

the 30S subunit);32 and (iii) the L1 stalk of the 50S subunit fluctuates between its open and 

closed conformations (where, relative to the open L1 stalk conformation, the closed L1 stalk 

conformation is characterized by movement of the L1 stalk into the intersubunit space such 

that it can make a direct contact with the hybrid P/E-configured tRNA) (Fig. 1).33 Because 

of the stochastic nature of thermally driven processes, the tRNAs, ribosomal subunits, and 

L1 stalk within an ensemble of PRE complexes will asynchronously fluctuate between these 

transiently populated states in the absence of EF-G. While this structural heterogeneity 

impedes ensemble studies of these dynamics, they have been successfully characterized by 

single-molecule methods.29,34–44

Remarkably, smFRET studies performed by Fei and coworkers have observed PRE 

complexes fluctuating between two discrete states: (i) global state 1 (GS1), characterized by 

classically configured tRNAs, non-rotated subunits, and an open L1 stalk, and (ii) global 

state 2 (GS2), characterized by hybrid-configured tRNAs, rotated subunits, and a closed L1 

stalk.34,35 The observation that the PRE complex fluctuates between just two states in the 

smFRET studies of Fei and coworkers is consistent with numerous subsequent smFRET 

studies from several other groups in which the tRNAs, ribosomal subunits, or L1 stalk 

elements of PRE complexes are also observed to fluctuate between just two states 

corresponding to the classical and hybrid tRNA configurations, the non-rotated and rotated 

subunit orientations, or the open and closed L1-stalk conformations, 

respectively.34,35,37,38,40,44,45 Furthermore, the initial observation by Fei and coworkers that 

the PRE complex fluctuates between GS1 and GS2 is consistent with the more recent 

observation that fluctuations of the tRNAs between their classical and hybrid configurations, 

the ribosomal subunits between their non-rotated and rotated orientations, and the L1 stalk 

between its open and closed conformations are physically coupled, and coordinated by the 

ribosome in order to maximize and regulate the efficiency of translocation.44 smFRET 

studies reveal that the thermodynamics and kinetics of the equilibrium between GS1 and 
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GS2 are sensitive to: (i) the presence, identity, and acylation status of the P-site 

tRNA;29,34–42 (ii) the presence and acylation status of the A-site tRNA;29,34–42 (iii) the 

binding of EF-G;34,35,37–40 (iv) Mg2+ concentration;41 (v) temperature;43 (vi) the binding of 

ribosome-targeting antibiotic inhibitors of translocation;41,44,46 and (vii) the perturbation of 

intersubunit rotation via disruption of specific ribosomal intersubunit interactions.42,44 

Collectively, these studies have provided deep insights into the roles that the P- and A-site 

tRNAs, EF-G, antibiotics, cooperative conformational changes, and allostery play in 

regulating translocation.

Cryo-EM studies of PRE complexes performed by Agirrezabala and coworkers have directly 

observed two states that are presumably the structural equivalents of GS1 and GS2, termed 

macrostate 1 (MS I) and macrostate 2 (MS II), respectively.32,47–49 More recent molecular 

dynamics simulations of cryo-EM-derived structural models of MS I and MS II support this 

presumption, and found that, in the studies of Fei and coworkers, the EFRET observed in 

GS1 and GS2 are consistent with the simulations of MS I and MS II, respectively.50 

However, in addition to MS I and MS II, a more recent analysis of the cryo-EM data set of 

Agirrezabala et al. has revealed the presence of two additional states that are presumably 

intermediate between MS I/GS1 and MS II/GS2 along the reaction coordinate.51 Neither of 

these two intermediate states, referred to here as intermediate state 1 (IS1) and intermediate 

state 2 (IS2), nor any others, were detected in the smFRET studies of Fei and 

coworkers34,35,44,45 or several other groups.37,38,40 In contrast, we note that smFRET 

studies of PRE complexes by Munro and coworkers identified and characterized two 

additional states that presumably lie along the reaction coordinate between MS I/GS1 and 

MS II/GS2.29,42 However, these studies relied heavily on the use of smFRET data collected 

using ribosomes in which a substitution mutation disrupts a critical ribosome-tRNA 

interaction, and consequently causes the P-site tRNA in the resulting intermediate states to 

adopt conformations that are very different from those observed in either IS1 or IS2 in PRE 

complexes formed using wild-type ribosomes.51

Since the smFRET experiments of Fei and coworkers and the cryo-EM experiments of 

Agirrezabala and coworkers interrogate PRE complexes composed of wild-type ribosomes 

(i.e., without mutations that disrupt ribosome-tRNA interactions), it is highly likely that IS1 

and IS2 are also present in the smFRET data, but that, given the spatial resolution, time 

resolution, and/or signal-to-background ratio (SBR) of the smFRET experiments, IS1 and 

IS2 do not produce large enough changes in EFRET to be distinguished from GS1 or GS2. 

By connecting the results from static, equilibrium-state, ensemble experiments, such as 

cryo-EM, with the results from dynamic, time-dependent, single-molecule experiments, such 

as smFRET, through a theoretical framework, these hypotheses can be tested, and the energy 

landscape where the PRE complex exists can be characterized more precisely. Here, we 

present such a framework based upon equilibrium-state probabilities and dwell-time 

distributions (see Refs. 52 and 53, and references therein). This framework is general, and 

can be applied to various other ensemble and single-molecule techniques; we use a linear 

kinetic model, but emphasize that the equations can also be derived for other models. As an 

illustrative case study, we apply this generalized framework to analyze the data obtained 

from the cryo-EM and smFRET studies of Agirrezabala et al. and Fei et al., respectively. In 
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doing so, we connect the distribution of the MS I, MS II, IS1, and IS2 states of the PRE 

complex observed by cryo-EM to the transition rates observed between the GS1 and GS2 

states observed by smFRET.

2 METHODS

2.1 Dwell-Time Distribution Framework for N-state Markov chain

Consider two distinct chemical states, 1 and N, of the system connected linearly by a 

number of on-pathway intermediate states, 2 through N-1, with transitions from state i to 

state j occurring at rate αij,

(1)

If Pμ(t) is the probability of finding the system in chemical state μ at time t, then the time 

evolution of these probabilities are governed by a set of coupled master equations. The 

steady-state of this set of equations, corresponding to the the constraints ∂Pμ/∂t = 0, yields 

the equilibrium-state occupation probabilities  of populating each state. The distribution 

of times taken by the system to reach one terminus from the other can be calculated by 

modifying the original kinetic scheme imposing an absorbing boundary at the destination 

state. If the destination state is N, then the corresponding modified kinetic scheme would be,

(2)

By writing master equations for this new scheme, and adopting the method of Laplace 

transform, we analytically calculated the probability, fp(t)dt, that the system, initially at state 

1, reaches state N in the time interval between t and t + dt. By evaluating the first moment of 

this distribution, the mean time for this transition, ⟨tp⟩, can be calculated. An analogous 

process can be performed to calculate the probability, fr(t)dt, that the system, initially in 

state N, reaches state 1 in the time interval between t and t+dt, and hence obtain the mean 

time for this transition, ⟨tr⟩.

The two expressions for the mean transition times between the termini, ⟨tp⟩ and ⟨tr⟩, form a 

system of equations with all 2N-2 αij as variables. Ratios of the  define relationships 

between the rate constants αij; so, if the equilibrium-state probabilities are known, 

substitution of these ratios into the expressions for ⟨tp⟩ and ⟨tr⟩ reduces the number of 

degrees of freedom in the system of equations. With an experimental measure of the mean 

transition time between the terminal states, the system of equations can be solved for the αij 

rate constants. The four-state model (two intermediate states) is solved in Appendix A, as is 

the derivation of the expression for the variances of tp and tr. Equivalent expressions for the 

three-state model (one intermediate state) are in Appendix B.

Thompson et al. Page 5

J Phys Chem B. Author manuscript; available in PMC 2016 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2 smFRET Simulations

We simulated 100 EFRET versus time trajectories with a linear, three-state kinetic scheme. 

Dwell-times prior to transitions to other states were exponentially distributed according to 

the appropriate rate constants. In each EFRET versus time trajectory, the value of EFRET 

corresponding to each state was randomized by choosing r from a normal distribution, and 

calculating EFRET = (1 + (r/R0)6)−1, where R0 is the Förster radius. For each EFRET versus 

time trajectory, R0 was also randomly chosen from a normal distribution. Noise reflecting a 

reasonable SBR for the total-internal reflection fluorescence (TIRF) microscope used in the 

smFRET experiments (i.e., σ = 0.05) was also added to each EFRET versus time trajectory. 

More details can be found in Appendix C.

3 RESULTS AND DISCUSSION

3.1 General Framework

Because of their complexity, biomolecular systems are often investigated with multiple 

techniques – each with their individual strengths and weaknesses. However, different 

techniques occasionally yield disparate mechanistic pictures that must ultimately be 

resolved. One situation in which this problem manifests itself is when a static, equilibrium-

state technique such as cryo-EM detects on-pathway intermediates, but a dynamic, time-

dependent technique such as smFRET does not. This situation could arise if the dynamic 

technique is not sensitive enough to distinguish the intermediate state from other states of 

the biomolecular system. In order to reconcile such contrasting measurements, we need to 

estimate the lifetime of the transient intermediates if these, indeed, exist. In an effort to get 

these estimates we consider a linear kinetic pathway with on-pathway intermediates, such as 

in equation 1, though the framework presented here can easily be extended to include off-

pathway intermediates. Note that for an N-state linear kinetic scheme there are 2N-2 rate 

constants αij. Therefore, in principle, the numerical values of all the individual αij could be 

obtained if 2N-2 independent algebraic equations satisfied by these rate constants were 

available. As we argue now, except for some small values of N, the rate constants αij are 

usually underdetermined by the available experimental information.

Time-dependent smFRET experiments are typically analyzed with a hidden Markov model 

(HMM).14,54–57 Among other things, such an analysis yields HMM-idealized state versus 

time trajectories from which a distribution of lifetimes in a particular state can be calculated. 

If sufficiently transient, on-pathway intermediates between the initial and final state exist, 

the distribution of idealized lifetimes will not appear significantly different from what it 

would be in the absence of the intermediate states (e.g., an exponential distribution for a 

random transition with a time-independent probability of occurrence). In such a case, the 

simplest model that the smFRET data supports is that of a transition with no intermediate 

states; so, assuming Markovian transitions, the mean lifetimes obtained from the HMM-

idealized trajectories would be taken to be the inverses of the effective rate constants for the 

transitions between the initial and final states. In contrast, the analytical expressions for the 

mean lifetimes spent traveling between the terminal states, via intermediate states, of a N-

state kinetic scheme contain the rate constants αij that describe the direct transitions between 

the intermediate states (see Appendices A and B). Therefore, equating the mean lifetimes for 
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the forward and reverse transitions between the terminal states that were inferred from 

dynamic, single-molecule experiments with the corresponding theoretically calculated mean 

lifetimes yields two algebraic equations that involve 2N-2 rate constants αij.

Thus, in practice, except for the trivial case of N=2, the information available in the form of 

the effective rates of forward and reverse transitions between the two terminal states would 

be inadequate to determine all the 2N-2 rate constants αij that describe the full kinetic 

mechanism. Obviously, for larger values of N, the number of degrees of freedom must be 

reduced further by acquiring additional experimental information. This extra information 

comes from the equilibrium-state experiments. Including information about the equilibrium-

state probabilities for the N states provides N-1 additional independent equations (the 

constraint of normalization of the probabilities, i.e., their sum must be equal to unity, 

reduces the number from N to N-1). So, for N=3 one would have just enough information to 

write down four independent equations satisfied by the four rate constants in the three-state 

model. However, for N=4, we have fewer equations than the number of unkowns and, 

therefore, in the absence of any other information, one of the rate constants would remain a 

free parameter. Any one of the six rate constants can be selected as the free parameter. Then, 

as we will show later in this section, varying the selected free parameter allows one to 

enumerate all the solutions which are consistent with the data, and thereby impose lower 

and/or upper bounds on the magnitudes of the rates. In case of higher values of N, the 

analytical expressions for the variance of tp and tr, reported in the Appendix, can be utilized 

for further reduction of the number of degrees of freedom if the corresponding experimental 

data becomes available in the future.

3.2 Model System: The Bacterial Pretranslocational Complex

Agirrezabala and coworkers collected cryo-EM data on PRE complexes containing 

tRNAfMet in the P site, and fMet-Trp-tRNATrp in the A site.49 Using ML3D, a maximum-

likelihood based classification method, particles from this data set were more recently 

classified into six classes.51 The conclusions of this study strongly suggest that three of the 

classes represent MS I and MS II–MS II being comprised of two structurally similar classes. 

Additionally, the authors propose that two of the other classes represent on-pathway 

intermediate states (IS1 and IS2, respectively) between MS I and MS II. As the remaining 

class represents PRE complexes that are missing a tRNA in the A site, it is therefore 

ignored. Thus, the model of PRE dynamics proposed by this study is,

(3)

where states 1, 2, 3, and 4 represent MS I, IS1, IS2, and MS II, respectively, and are 

distributed as shown in table 1.

Similarly, smFRET experiments performed by Fei and coworkers monitored PRE 

complexes as they transitioned, driven by thermal energy, between two global 

conformational states, GS1 and GS2, which correspond structurally to MS I and MS II, 

respectively.34,35 By monitoring the relative change in the distance between the P-site tRNA 

and the ribosomal protein L1 within the L1 stalk of the 50S subunit, the smFRET signal 
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developed by Fei and coworkers probably reports upon the tRNA motions along the 

pathway proposed by Agirrezabala and coworkers. However, these smFRET measurements 

were performed for several PRE complexes of variable composition. Of these complexes, 

perhaps the most relevant complex to the work performed by Agirrezabala and coworkers is 

the PREfM/F complex carrying a tRNAfMet in the P site and a fMet-Phe-tRNAPhe, rather 

than a fMet-Trp-tRNATrp, in the A site. Since the identity of the A-site dipeptidyl-tRNA in 

the two experiments differs, this could potentially lead to tRNA-dependent differences in the 

populations and lifetimes of the various states and, consequently, the rates of transitions 

between these states. Indeed, smFRET studies have shown that the lifetimes of GS1 and 

GS2 do depend on the presence34,35 and acylation status (i.e., deacylated tRNAPhe versus 

Phe-tRNAPhe versus fMet-Phe-tRNAPhe) of the A-site dipeptdyl-tRNA.36,41 It should be 

noted, however, that the effect of the identity of the A-site dipeptidyl-tRNA itself (i.e., 

tRNAs other than tRNAPhe) has not yet been tested by smFRET. In addition to the 

difference in the identity of the A-site dipeptidyl-tRNA in the cryo-EM and smFRET 

studies, the Mg2+ concentrations employed in the two studies differ. The cryo-EM studies 

were performed at [Mg2+] = 3.5 mM and the smFRET studies were performed at [Mg2+] = 

15 mM. Previously, smFRET studies have demonstrated that changes to the Mg2+ 

concentration over this range affects the populations and lifetimes of the GS1 and GS2 

states.41 With this in mind, it is likely that the equilibrium-state populations observed in the 

cryo-EM experiments and the corresponding state occupancies in the smFRET experiments 

are disparate. Nonetheless, despite their experimental differences, these cryo-EM and 

smFRET studies are the most experimentally similar cryo-EM and smFRET studies of wild-

type bacterial PRE complexes that have been reported in the literature. Therefore, as a case 

study, we have chosen to quantitatively compare these two particular studies in order to 

demonstrate the application of the general framework developed in Section 3.1.

The transition rates between GS1 and GS2 reported using the PREfM/F complex for the L1-

tRNA donor-acceptor labeling scheme were kGS1→GS2 = 2.8±0.2s−1 and kGS2→GS1 = 

3.0±0.4s−1.35 Given that no evidence of intermediate states was observed, this suggests that 

any intermediates states, if they exist, might be very transient relative to the time resolution 

with which the smFRET data was acquired. Indeed, there is a limitation to the time 

resolution with which smFRET data can be acquired with the electron-multiplying charge-

coupled device (EMCCD) cameras that are typically used as detectors in TIRF microscopy-

based smFRET experiments. Transitions that are faster than the EMCCD camera’s 

acquisition rate (20 s−1 in Fei, et al.)35 result in time averaging of the EFRET and the 

recording of a single, artifactual data point that appears at the time-averaged value of the 

EFRET between the states involved in the rapid fluctuations. This is a well-documented 

feature of smFRET data analysis, which we term “blurring”.54 This effect is further 

compounded by the fact that current state-of-the-art computational methods used to analyze 

the smFRET data cannot distinguish between artificial, short-lived (i.e., one data point) 

“states” resulting from blurring and actual, short-lived (i.e., one data point) states resulting 

from the sampling of true intermediate states.54 With such an analysis, the true molecular 

states become hidden among the “blurred” states.
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Reanalysis of the original PREfM/F data using the software-package ebFRET–a state-of-the-

art, HMM-based analysis method for smFRET data56,57–yields a better estimate of the 

transition rates. This is because ebFRET uniquely enables analysis of the entire ensemble of 

individual EFRET versus time trajectories, instead of analyzing them in the traditional, 

isolated, one-by-one manner. The two-state rates inferred by means of ebFRET are similar 

to, though perhaps more accurate than, those reported originally by Fei and coworkers: 

kGS1→GS2 = 2.0 ± 0.2 s−1, and kGS2→GS1 = 2.8 ± 0.1 s−1 (see Table 2). Interestingly, 

application of ebFRET reveals that the smFRET PREfM/F data are best described by a five-

state model. However, further analysis indicates that the three additional states are probably 

artifacts of blurring, because they are negligibly populated, have extremely transient 

lifetimes, and occur at an EFRET that is in between the EFRET of the two well-defined states.

3.3 Four-State Model of PRE Complex Dynamics

The dynamics of PRE complexes were analyzed using the general framework presented in 

section 3.1 where the experimental data summarized in Tables 1 and 2 were used as 

constraints for the linear, four-state kinetic scheme shown in Equation 3. For this kinetic 

scheme, the mean time needed for the forward transition from the terminal state 1 to the 

terminal state 4, < tp >, is given by (see Appendix A for the full derivation)

(4)

The corresponding mean time for the reverse transition from the state 4 to the state 1, < tr >, 

is given by (see Appendix A for the full derivation)

(5)

The probabilities for the occupation of the four states at equilibrium are given by (see 

Appendix A for the full derivation)

(6)

(7)

(8)

(9)
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with the normalization condition . Using the equations for < tp > and < tr > 

(Equations 4 and 5, respectively), and the equations for  (Equations 6-9), a plot was 

generated of all the rate constants αij as functions of an independent α43 (Fig. 2).

Notably, for some values of the independent rate constant, solutions for the dependent rate 

constants are negative. While this is a consistent solution of the model, only the values 

where all rate constants are positive are physically-relevant solutions. The boundaries to this 

region where all rate constants are positive therefore represent the upper or lower bounds on 

the rate constants for the four-state model that are consistent with both the cryo-EM and the 

smFRET studies.

Interestingly, Fig. 2 depicts the upper and lower bounds for α34 and α43, but only lower-

bound cutoffs for the other α’s. These other rate constants all asymptotically converge to 

positive infinity; α12 and α21 increase with increasing α43, while α23 and α32 compensate by 

decreasing to their lower-bound. Plotting these results as a function of an independent α12 or 

α23 yields the same bounds–there is only a narrow window where all α’s are consistent with 

the cryo-EM and smFRET data. With such boundaries on the individual rate constants, one 

can estimate the EMCCD camera acquisition rate that would be needed to distinctly observe 

the transient states of interest.

3.4 Three-State Pretranslocation Model

Since the number of equations available in our four-state model is five whereas the number 

of unknown rate constants is six, we could only express five rate constants in terms of the 

sixth one. In contrast, because we can reduce the number of states from four to three (vide 

infra), in this subsection we use the four corresponding independent equations to extract the 

absolute values of the four rate constants associated with the three-state model,

(10)

As explained in Appendix C, structural analysis strongly suggests that the L1-tRNA distance 

in IS1 is insufficiently different from that of MS I so as to result in an EFRET that is 

significantly different than that of MS I. Thus, MS I and IS1 can be combined into a single 

state, state 1, thereby reducing the four-state model into a three-state kinetic scheme of Eqn. 

10, where the states 2 and 3 correspond to IS2 and MS II, respectively.

The expressions for < tp >, < tr >, and Pμ (μ = 1, 2, 3) are given by (see Appendix B for 

detailed derivations),

(11)

(12)
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(13)

(14)

(15)

where the normalization condition is ⟨ Pμ = 1. These expressions, together with the 

corresponding experimental data, are utilized to write down four independent equations. The 

rate constants computed by solving those four equations are shown in Table 3.

Interestingly, this calculation suggests that the rate limiting steps for the foward and reverse 

reactions are IS2 → MS II and MS II → IS2, respectively, while interconversion between 

MS I/IS1 and IS2 occur relatively rapidly. These rates for MS I/IS1 to IS2 interconversion 

are approximately the same or faster than the 20 s−1 EMMCD camera acquisition rate of the 

original smFRET data from Fei et al., and, additionally, the change in the L1-tRNA distance 

between the MS I/IS1 and IS2 states is relatively small (~ 80 Å to 64 Å), resulting in a 

correspondingly small difference in EFRET (~ 0.15 to 0.40); so, any separation of MS I/IS1 

and IS2 that might have been observed in the smFRET data would likely have been 

obscured in the HMM analysis process by camera blurring arising from interconversion 

rates that are similar to the acquisition rate. The fast interconversion and small expected 

changes in EFRET suggest that MS I, IS1, and IS2 might have originally been interpreted as a 

‘single’, averaged state in the analysis of the smFRET data.

3.5 Synthetic smFRET Time Series

To investigate how ebFRET would treat this ‘single’, averaged smFRET state, synthetic 

time series simulating a three-state PREfM/F complex were constructed guided by the 

analysis above. Estimates for EFRET were based upon the cryo-EM structures of 

Agirrezabala and coworkers (see Appendix C), and the kinetic scheme and associated rate 

constants employed are those in Section 3.4. Since the rate constants for the transition 

between states MS I/IS1 and IS2 are of the same order of magnitude as the frame rate of this 

simulation, traditional smFRET data analysis of this synthetic data provides insight into 

whether blurring could have obscured any transient, intermediate states in the data of Fei 

and coworkers. Typically, such obfuscation begins to manifest when dwell-times in a state 

of interest approach the same order of magnitude as the EMCCD camera acquisition time, 

because of errors in estimating the lengths of the dwell-times.54

The synthetic smFRET dataset was constructed by carrying out simulations of EFRET versus 

time trajectories where each ‘single-ribosome’ had randomized simulation parameters as 

described in Appendix C. This probabilistic approach accounts for experimental variation 

(e.g., uneven illumination in the field-of-view), as well as ensemble variations (e.g. static 

disorder from a small sub-population of ribosomes lacking an A-site dipeptidyl-tRNA). An 

example of a synthetic EFRET vs. time trajectory is shown in Fig. 3, where the ensemble 
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mean values of EFRET were ~ 0.16, 0.40, and 0.74 for states MS I/IS1, IS2, and MS II, 

respectively.

With regard to the distribution of EFRET values observed from any ensemble of EFRET 

versus time trajectories, blurring would result in a shift of some of the density of the 

equilibrium-state occupancy probability distribution to an intermediate, averaged value 

between the blurred states. Deviation of a histogram of the observed, simulated EFRET in the 

synthetic data set from the distribution predicted by the equilibrium-state occupancies of the 

linear, three-state model therefore can be used to characterize the amount of blurring present 

in the synthetic data. We modeled the normalized histogram of the synthetic ensemble with 

normal distributions weighted by their respective equilibrium-state probability,  (Fig. 

4A). The mean of each state was distributed according to the distribution of static EFRET for 

that state in each of the synthetic time series (Fig. 4C). This approach accurately reflects a 

non-blurred histogram of EFRET (Fig. 5). Deviations that occur are therefore due to blurring, 

or, if they had been simulated in this synthetic dataset, could have been due to the presence 

of unaccounted-for states. Notably, a large portion of the MS I/IS1 density in Fig. 4A is 

relocated into the region between MS I/IS1 and IS2. This is a direct manifestation of 

blurring. By collapsing MS I/IS1 and IS2 into one averaged state (Fig. 4B and 4C), we find 

that the data are much better described by only two states (Fig. 4D). In this case, the 

artifactual, blurred, averaged state overwhelms any distinction between the MS I/IS1 and 

IS2 states, whereas when the simulation is performed with an acquisition rate that is 

significantly faster than the transitions of interest (2000 s−1), these states are well-resolved 

(Fig. 5).

This blurred, synthetic, three-state ensemble of EFRET versus time trajectories was then 

analyzed with ebFRET. Interestingly, ebFRET overestimated the true number of kinetic 

states. Most likely this is due to the fact that the dwell-times in states MS I/IS1 and IS2 are 

too transient relative to the simulation’s ‘acquisition rate’, because ebFRET is able to 

accurately infer the model parameters from the same data with a more appropriate 

acquisition rate of 2000 s−1 (Fig. 5). As a result, the blurred, synthetic data points are 

modeled by ebFRET as distinct ‘states’ – even though these states do not actually exist on 

the ‘energy landscape’ of the simulated PREfM/F complex.

4 Conclusion

We have established a general, theoretical framework that integrates equilibrium-state cryo-

EM observations with dynamic, time-dependent smFRET observations. This framework is 

not limited exclusively to cryo-EM and smFRET; any technique that provides static, 

equilibrium-state populations can be integrated with any other technique that provides 

dynamic, time-dependent transition rates. The analysis reported here suggests that states IS1 

and IS2, previously identified by cryo-EM, are not detected by smFRET because their short 

lifetimes result in transitions that are too fast to be characterized, given the acquisition rate 

of the EMCCD camera and the limitations of the manner in which hidden Markov models 

are implemented. Moreover, structural analyses indicate that the L1-tRNA smFRET signal is 

unable to yield distinguishable signals for MS I and IS1, given the typical SBR of TIRF 

microscope-based smFRET measurements. The quantitative analysis of the experimental 
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data, based on the analytical theory presented here, provides a possible explanation for why 

the PRE complex intermediates observed by cryo-EM (i.e., IS1 and IS2) escaped detection 

by the smFRET studies of Fei et al.,34,35 and, possibly, other groups.37,38,40 Conversely, 

application of this framework to smFRET data in which intermediate states have been 

detected, but have been difficult to assign to specific PRE complex structures29,42, should 

allow researchers to determine whether and how such intermediates correspond to IS1 

and/or IS2. Perhaps more importantly, we can now predict the lifetimes and corresponding 

rates of transitions into and out of IS1 and IS2 that are crucial for designing future kinetic 

experiments. This work therefore resolves a discrepancy in the field and opens a path for 

performing and analyzing future experiments. Furthermore, we hope to use this theoretical 

framework to make predictions regarding future experiments in which the cryo-EM and 

smFRET data would be collected under more comparable conditions. This theoretical 

framework will also be useful in guiding future experimental explorations which include, for 

example, stabilization of IS1 or IS2 (or any other intermediates that may be ultimately 

identified) using different tRNAs or mutant ribosomes.
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Appendices

A Four-State Model

The theoretical results reported here are based on similar approaches followed in Refs. 52 

and 53 for analytical calculations of the distribution of the dwell-times of a ribosome.

We use the kinetic scheme

(16)

where integer indices 1, 2, 3 and 4 represent a discrete chemical state and αij denotes the 

transition probability per unit time (i.e., rate constant) for the i → j transition. If Pμ(t) is the 

probability of finding the system in chemical state μ at time t, then the time evolution of 

these probabilities are governed by the following master equations:

(17)

(18)
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(19)

(20)

Now we calculate the time-independent occupation probability, , of each of these states 

by finding the equilibrium-state solutions of equation 17-20,

(21)

(22)

(23)

(24)

We also calculate the distribution of the time spent transitioning from chemical states 1 to 4 

for the first time by modifying the original kinetic scheme into:

and writing the master equations according to this new scheme:

(25)

(26)

(27)

(28)

These equations can be re-written in terms of the following matrix notations:
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(29)

where P(t) is a column matrix whose elements are P1(t), P2(t) and P3(t), and

(30)

Now, by introducing the Laplace transform of the probability of kinetic states,

(31)

the solution of equation (29) in Laplace space is

(32)

The determinant of matrix (sI – M) is the third-order polynomial

(33)

where

(34)

(35)

(36)

(37)

We can solve equation 32 by using the initial condition

(38)

Suppose that the probability of transitioning from chemical state 1 to 4 in the time interval 

of t and t + Δt is fp(t)Δt. Then,

(39)

Therefore, we find
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(40)

Taking the Laplace transform of equation 40 gives

(41)

Now we can calculate an analytical expression for  by solving Equation 32. Inserting 

this expression into equation 41 yields,

(42)

where ω1, ω2 and ω3 are the solution of the equation

(43)

Taking inverse Laplace transform of Equation 42 gives

(44)

Now, solving for the first moment of this distribution,

(45)

gives

(46)

Similarly, the second moment is

(47)

Analogously, one can also obtain the exact formula for the distribution of the time spent 

transitioning from chemical states 4 to 1:

(48)

Here, Ω1, Ω2 and Ω3 are the solution of the equation

Thompson et al. Page 16

J Phys Chem B. Author manuscript; available in PMC 2016 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(49)

where

(50)

(51)

(52)

Now, solving for the first moment of this distribution gives:

(53)

and solving for the second moment gives:

(54)

Assuming that the experimentally observed, fractional population of chemical state i, χi, 

represents the equilibrium-state solutions, , ratios of χ can be used to write relationships 

between several α,

(55)

The expectation values for the time spent transitioning from chemical states 1 to 4 (⟨tp⟩), and 

transitioning from chemical states 4 to 1 (⟨tr⟩) are assumed to be equivalent to the inverses of 

the experimentally observed transition rates between the two states of a two-state model 

(k12, and k21). Using these expressions and the experimentally observed two-state rates, 

making substitutions with equations (55) and rearranging yields the following system of 

equations,

(56)

(57)

which has fewer constraints than degrees of freedom. To proceed, we solve the system of 

equations keeping one degree of freedom independent, moving that term to the left-hand 

side of the equation, and treating it as part of the constraints.
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Independent α12

We solve the system of equations for an independent α12 by matrix inversion:

(58)

which yields the following rate constants,

Independent α23

Similarly, for an independent α23,

Independent α43

Finally, for an independent α43,

B Three-State Model

Given the following linear, three-state model,
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the time evolution of the probability, Pμ(t), will be governed by

(59)

(60)

(61)

We calculate the equilibrium-state probabilities

(62)

(63)

(64)

Then, we also calculate the distribution of the time spent by a molecule transitioning from 

chemical states 1 to 3. For this purpose, we modify the scheme into

and write the master equations according to this new scheme

(65)

(66)

(67)
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As in the four-state result, we can solve these equations with the Laplace transform method 

to yield,

(68)

where ω1 and ω2 are the solution of equation

(69)

Now, solving for the first moment,

(70)

and the second moment,

(71)

where

(72)

(73)

Similarly, we can also calculate the distribution of the time spent transitioning from 

chemical states 3 to 1,

(74)

where Ω1 and Ω2 are the solution of the equation

(75)

In this case, we calculate the first moment,

(76)

and the second moment,

(77)

where
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(78)

(79)

Assuming that the experimentally observed, fractional population of state i, χi, represents the 

equilibrium-state solutions, , ratios of χ can be used to write relationships between 

several α,

(80)

The expectation values for the time spent transitioning from chemical states 1 to 3 (⟨tp⟩), and 

transitioning from chemical states 3 to 1 (⟨tr⟩) are assumed to be equivalent to the inverses of 

the experimentally observed transition rates between the two final states of a two-state 

model (k12, and k21). Using these expressions and experimentally observed rates, 

substituting Eqn. (80), and then rearranging yields the following system of equations,

(81)

(82)

which can be solved as for the four-state model,

(83)

to yield the three-state model rate constants,

C smFRET Simulations

In order to simulate PRE complex dynamics with transient intermediates, we estimated the 

values of EFRET for each PRE complex conformational state. We estimated EFRET for the 

L1-tRNA labeling scheme by measuring the distances between the β-carbon of the threonine 

at position 202 of the L1 protein of the 50S ribosomal subunit and the sulfur of the 

thiouridine at position 8 of tRNAfMet from the atomic-resolution, molecular dynamics 

flexible fitting of the classes of PRE complexes deposited in the Protein Data Bank by 
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Agirrezabala and coworkers (Table 4).51 While the absolute accuracy of these estimates is 

likely imprecise, it is reasonable to interpret the relative distances as an informative measure 

of the relative EFRET values. As the distances measured ignore any foreshortening due to the 

space occupied by the fluorophore and its hydrocarbon linker, subsequent analysis 

compensated by overestimating R0 = 60 Å. Notably, all the classes measured yielded 

distinct values of EFRET except for classes 2 and 4A (MS I and IS1, respectively). Since the 

distances between the labeling sites on the L1 protein and the P-site tRNA are 78 Å (EFRET 

≈ 0.17) and 81 Å (EFRET ≈ 0.14) for classes 2 and 4A, respectively, MS I and IS1 are most 

likely indistinguishable given the SBR of the TIRF-based smFRET measurements used by 

Fei and coworkers.34,35 As such, we chose to group MS I and IS1 together into state 1, while 

IS2 corresponded to state 2, and MS II corresponded to state 3.

From these EFRET estimates, Markovian transitions along a linear, three-state kinetic scheme 

were then simulated for 100 state versus time trajectories. Each state versus time trajectory 

was 50 sec in length, and they were eventually transformed into discrete, EFRET versus time 

trajectories, where each data point is the mean EFRET value during a 50 msec time period. 

For each state versus time trajectory, the distances between the donor- and acceptor 

fluorophores in the ith state, ri, were randomized for each time series with a normal 

distribution,  (μ = ri, σ = 2Å). The EFRET of each state was then calculated as EFRET = (1 

+ (r/R0)6)−1, where R0 is the Förster radius (a parameter dependent upon the identity of 

donor- and acceptor fluorophores, as well their local environments). R0 was randomized for 

each time series within a reasonable range for the Cy3-Cy5 FRET donor-acceptor pair with 

a normal distribution,  (μ = 60Å, σ = 2Å). The EFRET versus time trajectory was then 

discretized by calculating the average value of EFRET during sequential 50 msec long time 

periods. Noise was added to the EFRET versus time trajectories that was normally distributed 

at each data point with a standard deviation of 0.05 – a reasonable SBR for data collected on 

the TIRF microscope used in the smFRET experiments.

In order to model the histogram of the simulated EFRET versus time trajectories, we used a 

Gaussian mixture model where each state is modeled to contribute as a normal distribution 

centered at the respective mean EFRET value for that state, and is weighted by the 

equilibrium-state probability for that state (see Appendix B). To account for the simulated 

heterogeneity in the ensemble of synthetic EFRET versus time trajectories, the mean EFRET 

value of each state was marginalized out by integrating over the joint-probability 

distribution of the normal distribution of EFRET and a beta distribution of the mean EFRET 

observed in that state (Fig. 4C) with parameters determined by a maximum likelihood 

estimate from the exact simulated EFRET means. For the “Avg. State” distribution (c.f., Fig. 

4B), the distribution of EFRET means that was employed was beta distributed with a linear 

combination of the parameters of the mean EFRET distributions from states 1 and 2 (Fig. 

4C). The standard deviation used for the normal distribution of EFRET values for each state 

was taken exactly as the standard deviation used to add noise to the synthetic EFRET versus 

time trajectories.

As described in Section 3.5, this model of the observed EFRET value histograms is for a 

temporally-resolved histogram without any blurring present. Performing the same 

simulation described above, but with a 0.5 msec acquisition time period yields an accurately 
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modeled set of EFRET versus time trajectories (Fig. 5). Furthermore, analyzing this data with 

ebFRET yields an accurately estimated number of states, rate constants, distribution of 

EFRET means, and noise parameter.

Analysis of the 50 msec time resolution data with ebFRET found the most evidence for a 

five-state kinetic model–all of which were significantly populated. Since the synthetic data 

was simulated with a three-state kinetic model, the ebFRET analysis is not consistent with 

the original simulation. Additionally, the rate constants inferred by ebFRET for a three-state 

model from the simulated data do not match the original simulation parameters. The rate 

constants inferred by ebFRET for the two-state model were kGS1→GS2 = 1.41 ± 0.05s−1, and 

kGS2→GS1 = 1.41 ± 0.05s−1, but these differ from those learned from the data of Fei and 

coworkers (c.f., Section 3.2). This suggests that the original simulation parameters are not 

consistent with the experimental data from the smFRET study of Fei and coworkers.34,35 

Most likely, the discrepancy is due to experimental differences between the smFRET and 

cryo-EM studies that were compared using the general framework presented here.
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Figure 1. 
Cartoon schematic mechanism of PRE complex fluctuations. After peptide-bond formation, 

the PRE complex fluctuates between MS I/GS1 and MS II/GS2, passing through IS1 and 

IS2, until EF-G catalyzed translocation occurs.
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Figure 2. 
Rate constants for the four-state model as a function of α43. The gray region contains the 

solutions where all rate constants are positive. Both axes are log scaled; so, any 

incompatible rates (negative valued) are not shown. The points where rate constants switch 

from being negative to positive valued are denoted with a black, vertical line. Horizontal, 

dashed lines denote upper or lower bounds for particular rate constants
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Figure 3. 
Example synthetic EFRET versus time trajectory. The gray, yellow, and blue horizontal lines 

denote the EFRET means used to simulate MS I/IS1, IS2, and MS II for this time series, 

respectively. The red horizontal line is the equilibrium-state-weighted average of the means 

of the MS I/IS1 and IS2 states.
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Figure 4. 
(A) Histogram of synthetic PRE complex data (gray) modeled with three, non-blurred states. 

(B) Histogram of synthetic PRE complex data (gray) modeled with two, non-blurred states. 

The “Avg. State” is a weighted combination of MS I/IS1 and IS2. (C) Histograms and 

probability distributions of the static EFRET value means generated for the synthetic PRE 

complex dataset. (D) Plots of the model probability densities minus the normalized 

histograms from panels A and B. The sum of the squares of these residuals are 10.03, and 

4.02 for the three-state and two-state models, respectively, suggesting that the blurred, 

synthetic, PRE complex data are better represented by a two-state model.
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Figure 5. 
Histograms of the same ensemble of synthetic EFRET vs. time trajectories rendered with 

different time resolutions. The left-most peak in the grey histogram, which was used in Fig. 

4, is well-resolved into two separate peaks when the synthetic data is rendered with a 100x 

faster acquisition rate (green histogram). The three-state model distribution (black curve) is 

that from Fig. 4, which was modeled using only the initial simulation parameters. Analysis 

of the faster time resolution time series (green histogram) using ebFRET accurately 

estimated all four transition rates (k12 = 17.8 ± 0.6 s−1, k21 = 47.2 ± 1.6 s−1, k23 = 6.4 ± 0.6 

s−1, k32 = 1.82 ± 0.17 s−1), as well as accurately estimated the distribution of EFRET means 

(μ1 = 0.16, σ1 = 0.035, μ2 = 0.41, σ2 = 0.067, μ3 = 0.74, σ3 = 0.058) and the noise parameter 

(σnoise = 0.050).
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Table 1

A summary of the ribosomal PRE complexes observed by Agirrezabala and coworkers.51

State Index (μ) State Class Pμ
eq

1 MS I 2 0.231

2 IS1 4A 0.131

3 IS2 4B 0.140

4 MS II 5/6 0.498
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Table 2

A summary of the rates of transition between GS1 and GS2 observed by Fei and coworkers.35

kGS1→GS2 (s−1) kGS2→GS1 (s−1) Reference

2.8 ± 0.2 3.0 ± 0.4 35

2.0 ± 0.2 2.8 ± 0.1 This work

J Phys Chem B. Author manuscript; available in PMC 2016 August 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thompson et al. Page 33

Table 3

Rate constants for PREfM/F using a linear, three-state kinetic scheme where MS I and IS1 have been combined 

into the first state. Error from the ebFRET-estimated smFRET-determined rate constants, and the counting 

error from the cryo-EM study were propagated into distributions of the α. These distributions are strictly not 

normal distributions, although α23 and α32 are approximately normal.

α Max kL1-tRNA (s−1) Mean kL1-tRNA ± 1σ (s−1)

α 12 18.1 23.3 ± 22.7

α 21 46.8 52.5 ± 33.6

α 23 5.90 5.89 ± 0.42

α 32 1.66 1.66 ± 0.12
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Table 4

Distances and approximate FRET efficiencies of PREfM/F ribosomes from cryo-EM structures.

Class r(L1 → tRNA)(Å) EFRET, R0 = 60 Å

2 78 0.17

4A 81 0.14

4B 64 0.41

5 43 0.89

6 55 0.62
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