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Abstract

Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and
recent reports implicate a role for lutein in cognitive function. Lutein is the dominant caroten-
oid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults
correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein
was found to preferentially accumulate in the infant brain in comparison to other carotenoids
that are predominant in diet. While lutein is consistently related to cognitive function, the
mechanisms by which lutein may influence cognition are not clear. In an effort to identify
potential mechanisms through which lutein might influence neurodevelopment, an explor-
atory study relating metabolite signatures and lutein was completed. Post-mortem metabo-
lomic analyses were performed on human infant brain tissues in three regions important for
learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic
profiles were compared to lutein concentration, and correlations were identified and
reported here. A total of 1276 correlations were carried out across all brain regions. Of 427
metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite cor-
relations (510) were excluded. In addition, moderate correlations with xenobiotic relation-
ships (2) or those driven by single outliers (3) were excluded from further study. Lutein
concentrations correlated with lipid pathway metabolites, energy pathway metabolites,
brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These
correlations were often brain region—specific. Revealing relationships between lutein and
metabolic pathways may help identify potential candidates on which to complete further
analyses and may shed light on important roles of lutein in the human brain during
development.
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Introduction

Lutein is a naturally occurring xanthophyll carotenoid found in fruits and vegetables, with
green leafy vegetables such as spinach and kale accounting for the most abundant sources in
nature [1]. Animals cannot synthesize lutein, and therefore, it can only be acquired in the body
through diet. Lutein and zeaxanthin, a closely associated carotenoid, are the only carotenoids
that constitute the yellow pigment characteristic of the macula [2]. These carotenoids are
important for absorbing high energy blue light and protecting the photoreceptor cell layer
from oxidative damage [3-5]. Lutein has also been implicated in protective roles for other tis-
sues in the body. For instance, epidemiological and preclinical studies suggest that lutein intake
may moderate progression of early atherosclerosis [6]. Lutein may also help protect the skin
against the harmful oxidative effects of UV exposure [7, 8]. In addition, a high carotenoid diet,
including lutein, may reduce the risk of some types of cancer [9].

Recently, serum and brain levels of lutein were reported to be positively associated with
improved cognitive function in the elderly [10], and supplementation of older women with
lutein improved cognitive scores after 4 months [11]. Cognition scores in older adults with
mild cognitive impairment correlated with macular pigment optical density, a measure of the
concentration of lutein and zeaxanthin in the macula [12-14]. Lutein is one of the prevalent
carotenoids in mature breast milk [15, 16] and was recently reported to be the predominant
carotenoid in the developing infant brain [17]. A recent clinical trial demonstrated that lutein
supplementation may improve neuroretinal health in preterm newborn infants [18]. Taken
together, these findings suggest that lutein may be important for cognition in the elderly and
for neurodevelopment in the infant. However, the mechanisms by which lutein may influence
these processes are largely not understood.

Metabolomics, the analysis of small molecule products of cellular metabolism (e.g., sugars,
organic acids, amino acids, and nucleotides), is a modern technique often used for studying the
complex impact of nutrients on biological tissues [19-22]. By analyzing the full metabolite
complement of a cell, tissue, or organism, metabolomics can help reveal the interaction of
nutrients with metabolite pathways. The metabolome is context-dependent and can change in
response to external factors, including nutrient intake and availability. Thus, measuring the
changes in the amount and identity of metabolites in relation to tissue concentrations of lutein
can help provide insight into the biochemistry underlying the response to lutein.

Here, we conducted exploratory metabolomic analyses of postmortem infant brain samples
to establish testable hypotheses that might explain the importance of lutein in brain develop-
ment. We found that lutein concentrations correlated with lipid pathway metabolites, energy
pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant
homocarnosine, and these correlations were often in a brain region specific manner.

Methods
Subjects

Brain samples were obtained with permission from the National Institute of Child Health and
Human Development Brain and Tissue Bank for Developmental Disorders at the University of
Maryland. The collection protocol used at the University of Maryland, Baltimore to obtain
decedent tissues was reviewed and approved by the Institutional Review Board of the Univer-
sity of Maryland, Baltimore and by the Institutional Review Board of the Maryland Depart-
ment of Health and Mental Hygiene. Analyses were performed on de-identified brain tissue.
Per federal guidance, this activity does not constitute human subject research. Tissues were
from otherwise healthy infants (without any brain and/or other systemic pathologies) and were
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voluntarily donated and distinguished using a unique numerical identifier which obscured the
identity of the decedent. Information about decedent characteristics is available in Table 1.
Thirty total decedents were studied and included both male (n = 21) and female (n = 9) infants.
A total of 81 tissues were analyzed from three regions of the brain commonly analyzed for
learning and memory, including the frontal cortex, a region involved in executive function

(n =29), hippocampus, a region involved in memory (n = 24), and the occipital cortex, a region
involved in vision (n = 28). Twenty-two of the thirty decedents had tissues from all three
regions of the brain. Because of the limited quantity of tissues available from the brain bank,
frontal cortex was unavailable for one decedent, hippocampus was unavailable for five dece-
dents, occipital cortex was unavailable for one decedent, and both hippocampus and occipital
cortex were unavailable for one decedent. Tissues were stored frozen (-70°C) until analyses.

Lutein Concentrations in Infant Brain

Lutein concentration analysis in these brain tissues was previously described and reported [17].
Carotenoids were extracted from brain tissue from each region by homogenizing in an etha-
nol-saline solution. An internal standard (echinenone) was added and incubated in a 70°C
water bath for 2 minutes. A sodium ascorbate (25%) and sodium hydroxide (5%) solution was
added and incubated in a 60°C water bath for 20 minutes. Distilled water was added and the

Table 1. Decedent Characteristics.

Age, days

Mean (SEM) 137 (21)
Median 100
Range 1-488
Sex distribution

Males, n (%) 21 (70.0%)
Race

African American, n (%) 12 (40.0%)
Caucasian, n (%) 16 (53.3%)
Hispanic, n (%) 2 (6.7%)
Cause of death

SIDS, n (%) 15 (50.0%)
Others, n (%) 15 (50.0%)
Asphyxia 1

Asthma 1
Bronchopneumonia 4

Cardiac Arrhythmia 1
Congenital Heart Defects 2
Complications of prematurity, bronchopulmonary dysplasia 1
Dehydration 1

Drowning 1
Hyperthermia 1
Multiorgan failure 1
Pneumonia associated with meconium aspiration 1

Time interval between death and tissue collection, hours

Mean (SEM) 15.9 (1.1)
Median 17.5
Range 2-23

doi:10.1371/journal.pone.0136904.t001
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solution was cooled for 5 minutes. Hexane was added to the solution and vortexed vigorously
prior to centrifugation at 1000 x g for 10 minutes at 4°C. The upper hexane layer was removed
and evaporated under nitrogen in a 40°C water bath. Extraction was repeated and both hexane
layers combined. Evaporation continued until dryness, and vessel rinsed with hexane and evap-
oration completed again. The dried residue was reconstituted with 100 pl of a 1:1 mixture of
ethanol and methyl tert butyl ester, vortexed, sonicated, and transferred to HPLC inserts and
centrifuged at 2000 x g for 3 minutes to remove precipitate. The clear supernatant was trans-
ferred to a clean insert. Extracts were analyzed using reverse-phase HPLC using a method
described by Yeum et al. with a C30 carotenoid column (3 um, 150 x 4.6 mm, YMC, Wilming-
ton, NC) [23]. Data were expressed per wet weight of tissue.

Metabolomic Analysis

All brain tissue samples were processed by Metabolon, Inc. (Research Triangle Park, NC) using
their standard extraction protocol [24]. Starting with 100 mg of tissue, small molecules were
extracted in an 80% methanol solution containing four standards (tridecanoic acid, 4-Cl-phe-
nylalanine, 2-flurophenylglycine, and d6-cholesterol) used to monitor extraction efficiency.
After metabolite extraction from each sample, clarified supernatants were split into three equal
parts and dried under nitrogen gas for analyses on gas chromatography/mass spectrometry
(GC/MS) and liquid chromatography/mass spectrometry (LC/MS) platforms. For one aliquot,
analytes were derivatized using bistrimethyl-silyl-trifluoroacetamide and analyzed on a Trace
DSQ fast-scanning single-quadruple mass spectrometer (Thermo-Finnigan). For the remain-
ing two aliquots, one specimen was resuspended in 50 pl of 6.5 mM ammonium bicarbonate,
pH 8, for liquid chromatography mass spectrometry (LC/MS) analysis in negative ion mode;
and the other was resuspended in 50 pl of 0.1% formic acid in 10% methanol for LC/MS analy-
sis in positive ion mode. Both resuspension buffers contained instrument internal isotopic
standards used to monitor performance and serve as retention index markers. Standards for
negative ion mode analyses included d7-glucose, d3-methionine, d3-leucine, d8-phenylalanine,
d5-tryptophan, Cl-phenylalanine, Br-phenylalanine, d15-octanoic acid, d19-decanoic acid,
d27-tetradecanoic acid, and d35-octadecanoic acid. Standards for positive ion mode analyses
included d7-glucose, fluorophenylglycine, d3-methionine, d4-tyrosine, d3-leucine, d8-phenyl-
alanine, d5-tryptophan, d5-hippuric acid, Cl-phenylalanine, Br-phenylalanine, d5-indole ace-
tate, d9-progesterone, and d4-dioctylpthalate. Internal standards were chosen based on their
broad chemical structures, biological variety and their elution spectrum on each of the arms of
the platform. Chromatographic separation was completed using an ACQUITY UPLC (Waters)
equipped with a Waters BEH C18 column followed by analysis with an LTQ mass spectrometer
(Thermo-Finnigan) [24]. Following chromatographic separation, full-scan mass spectroscopy
was applied to record and quantify all detectable ions present in samples. Metabolites with
known chemical structures were identified by matching the chromatographic retention index
for each ion and mass spectral fragmentation signatures with reference library entries. For ions
not covered by these standards, additional library entries were established from their unique
ion signatures. To monitor process variability, the median relative standard deviation (RSD)
was calculated for all spiked standards (listed above) using median scaled values. Overall,
spiked extraction standards and instrument internal standards detected a median process vari-
ability of <5%. Metabolite intensities were median-scaled for each biochemical, and qualitative
levels in intensity were reported. These scaled intensity values were then compared to lutein
concentrations independently determined by HPLC (previously reported, [17]) for the same
subject samples.
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Statistical Analysis

To test for correlations between lutein concentrations and age, data were analyzed using Pear-
son’s correlation procedures of GraphPad Prism version 5.04 for Windows, GraphPad Soft-
ware, La Jolla California USA, www.graphpad.com. To test for correlations between lutein
concentrations and metabolites, data were analyzed using Pearson’s correlation procedures of
Array Studio Software, OmicSoft Corporation, Cary, NC, USA http://www.omicsoft.com/
array-studio/. All metabolites with values producing a moderate (r > |0.45| and P < 0.05) or
strong (r > |0.6| and P < 0.05) correlation with lutein concentration were reported. A complete
listing of all metabolite to lutein correlations can be found in the S1 Dataset. Because this proj-
ect was exploratory in nature, Bonferroni corrections were not applied. Metabolites with single
outliers driving correlation values were excluded from this report.

A total of 1276 correlations were carried out across all brain regions. Five metabolites fell
below the detection limit in the frontal cortex, and therefore, correlations were not carried out
for these. Of 427 metabolites analyzed, 257 were metabolites of known identity. Thus, 510 cor-
relations from unidentified metabolites (170 unknown in 3 brain regions) were excluded from
further analysis. In addition, 5 correlations with an r > |0.45| and P < 0.05 were excluded from
this report, including 3 correlations where a single outlier drove the correlation value and 2
chemical xenobiotic correlations. Using P < 0.05, it is estimated that approximately 5% of cor-
relations were by random chance, which equates to approximately 64 comparisons out of the
original 1276 correlations.

Results

Lutein accretion in infant brain did not correlate with age, sex, or post-
mortem interval

The infant brain samples in this study were previously analyzed for carotenoid content, and
lutein concentrations were similar across the frontal cortex, hippocampus, and occipital cortex
[17]. Analyses conducted here revealed that lutein concentrations did not correlate with age in
any of the three brain regions analyzed (Fig 1A-1C). In addition, lutein concentrations did not
correlate with sex (S1 Fig), nor did lutein correlate with post-mortem interval, which is the
time between death and tissue collection (S2 Fig). Furthermore, all metabolites were analyzed
against post-mortem interval. Out of the 257 known-identity metabolites analyzed, only one
produced a moderate correlation (r > |0.45|) with post-mortem interval (allo-threonine, r =
-0.45, P < 0.0001) (S2 Dataset).

Fatty acids and lysophospholipids correlated with lutein concentrations
in infant brain

Metabolomic profiling was compared to lutein concentrations in infant frontal cortex, hippo-
campus, and occipital cortex. Various fatty acids correlated with lutein concentrations in these
regions. Fig 2 shows that margarate positively correlated with lutein concentrations in the fron-
tal cortex (Fig 2A, r = 0.59, P < 0.001) and the hippocampus (Fig 2B, r = 0.55, P < 0.01). Sev-
eral other fatty acids also increased with lutein concentrations in the hippocampus, including
10-nonadecenoate (Fig 2C, r = 0.73, P < 0.0001), cis-vaccenate (Fig 2D, r = 0.62, P < 0.01),
and 10-heptadecenoate (Fig 2E, r = 0.70, P < 0.001). A complete list of fatty acids that exhib-
ited moderate to strong correlations to lutein in infant brain is provided in Table 2.

A wide range of lysophospholipids, intermediates of lipid metabolic pathways such as phos-
pholipid synthesis, positively correlated with lutein concentrations in the frontal cortex, hippo-
campus, and occipital cortex (Table 3). Of the three brain regions studied, the frontal cortex
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Fig 1. Lutein accretion in infant brain did not correlate with age. Post-mortem infant brain tissues (age 1 to 488 days) were analyzed for lutein by HPLC.
Increasing lutein concentration (pmol/g) did not correlate with age in the (A) frontal cortex (n = 29), (B) hippocampus (n = 24), or (C) occipital cortex (n = 28).
FC: frontal cortex; HPC: hippocampus; OC: occipital cortex; n.s.: not-significant.

doi:10.1371/journal.pone.0136904.g001

had the strongest and greatest number of correlations between lysophospholipids and lutein.
Together, these data demonstrate that numerous fatty acids and lysophosopholipids correlated
with lutein concentrations in human infant brain.

1-Octadecanol, Phosphate, and NADH concentrations are related to
lutein concentrations in pediatric occipital cortex

Correlations between lutein concentrations and three metabolites were observed in the occipi-
tal cortex, but not the frontal cortex or hippocampus. 1-Octadecanol, a fatty alcohol, increased
with higher concentrations of lutein in the occipital cortex (Fig 3A, r = 0.47, P < 0.05). Simi-
larly, two energy pathway metabolites, phosphate (Fig 3B, r = 0.49, P < 0.01) and NADH (Fig
3C, r=0.50, P < 0.01), were positively correlated with lutein concentrations only in the occipi-
tal cortex.

Taurine negatively correlated with lutein concentrations in pediatric
hippocampus

A negative correlation was observed between lutein concentrations and taurine, a metabolite
thought to be an important brain osmolyte [25] that may also act as a neurotransmitter [26-
28]. This correlation was observed in the hippocampus (Fig 4, r = -0.47, P < 0.05), but not the
frontal or occipital cortices.
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Fig 2. Fatty acids correlated with lutein concentrations in infant brain. Post-mortem infant brain tissues (age 1 to 488 days) from the frontal cortex,
hippocampus, and occipital cortex were analyzed for both lutein and lipid pathway metabolites. Results are shown as metabolite (scaled intensity) by lutein
concentration (pmol/g). In the frontal cortex (n = 29), (A) margarate had a strong, positive correlation with lutein. In the hippocampus (n = 24), (B) margarate,
(C) 10-nonadecenoate, (D) cis-vaccenate, and (E) 10-heptadecenoate all had strong, positive correlations with lutein. No strong correlations were observed
in the occipital cortex. Lipid pathway metabolite:lutein correlations with r values > |0.6| and P < 0.05 are shown. FC: frontal cortex; HPC: hippocampus.

doi:10.1371/journal.pone.0136904.g002
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Table 2. Fatty acid correlations with lutein in human infant brain.?

Fatty acid Correlations (r) by brain regionb

FC HPC oC
caproate (6:0) -0.46
pelargonate (9:0) - 0.46
laurate (12:0) 0.45
palmitate (16:0) 0.49 - -
margarate (17:0) 0.59 0.55 0.46
10-heptadecenoate (17:1n7) 0.49 0.70
cis-vaccenate (18:1n7) 0.46 0.62
10-nonadecenoate (19:1n9) 0.45 0.73

8Subject ages ranged from 1 to 488 days old, and the median age was 100.5 days. 30 total decedents
were studied and included both male (n = 21) and female (n = 9) infants. A total of 81 tissues were
analyzed from three brain regions, including the frontal cortex (FC, n = 29), hippocampus (HPC, n = 24),
and the occipital cortex (OC, n = 28).

PAll values are significant (P < 0.05). Fatty acid metabolites:lutein correlations with r values > |0.45| and
P < 0.05 are reported.

doi:10.1371/journal.pone.0136904.t002

scyllo-Inositol is positively correlated with lutein concentrations in infant
frontal cortex, hippocampus, and occipital cortex

scyllo-Inositol, an inositol isomer that may function as an osmolyte in brain [29], positively
correlated with lutein in the frontal cortex (Fig 5A, r = 0.51, P < 0.01), hippocampus (Fig 5B,
r=0.66, P < 0.001), and occipital cortex (Fig 5C, r = 0.54, P < 0.01). Correlations were not
observed between lutein and myo-inositol, the predominant inositol stereoisomer in brain.

Amino acid neurotransmitters are positively correlated with lutein
concentrations in infant hippocampus and occipital cortex

Hippocampal lutein concentrations positively correlated with two amino acid neurotransmit-
ters: aspartate (Fig 6A, r = 0.50, P < 0.05) and y-aminobutyrate (GABA) (Fig 6B, r = 0.47,

P < 0.05). Occipital cortex lutein concentrations positively correlated with GABA (Fig 6C,
r=0.51, P < 0.01) and N-acetylglutamate (Fig 6D, r = 0.54, P < 0.01).

Homocarnosine is positively correlated with lutein concentrations in
infant frontal cortex and hippocampus

Lutein concentrations were analyzed for its relation to homocarnosine, an antioxidant exclu-
sive to the central nervous system [30-32]. Analyses revealed that lutein concentrations posi-
tively correlated with increasing levels of homocarnosine in the frontal cortex (Fig 7A, r = 0.45,
P < 0.05) and the hippocampus (Fig 7B, r = 0.47, P < 0.05).

Discussion

Recently, lutein concentrations in serum, brain, and macular pigment were correlated with
cognitive ability of older adults [10-14]. In addition, a recent study established that lutein is the
predominant carotenoid in infant brain despite its limited presence in the diets of most infants
[17]. Furthermore, this study also showed that lutein and its isomer zeaxanthin were the only
carotenoids present in all infant brain regions studied. However, the mechanisms of action
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Table 3. Lysophospholipid correlations with lutein in human infant brain.

Lysophospholipid

1-stearoylglycerophosphoethanolamine
1-oleoylglycerophosphoethanolamine
2-oleoylglycerophosphoethanolamine
1-oleoylglycerophosphocholine
2-oleoylglycerophosphocholine
1-palmitoylglycerophosphoinositol
1-stearoylglycerophosphoinositol
1-oleoylglycerophosphoinositol
1-arachidonoylglycerophosphoinositol
1-oleoylglycerophosphoserine
2-oleoylglycerophosphoserine

Correlations (r) by brain region®

FC HPC oC
- 0.52 -

= s 0.49
0.48 0.46 =

= s 0.50

0.45 = 0.46
0.58 s =

0.50 = 0.48
0.51 - =
0.61 - =

0.53 s 0.46
0.56 > =

aSubject ages ranged from 1 to 488 days old, and the median age was 100.5 days. 30 total decedents were studied and included both male (n = 21) and
female (n = 9) infants. A total of 81 tissues were analyzed from three brain regions, including the frontal cortex (FC, n = 29), hippocampus (HPC, n = 24),

and the occipital cortex (OC, n = 28).

PAll values are significant (P < 0.05). Lysophospholipid metabolites:lutein correlations with r values > |0.45| and P < 0.05 are reported.

doi:10.1371/journal.pone.0136904.1003

underlying a possible role for lutein in neurodevelopment have not yet been described. There-
fore, we were interested in identifying candidate metabolite pathways through which lutein
might influence neurodevelopment in the rapidly developing infant brain in the hopes of stim-
ulating future mechanistic research. Toward this end, we coupled metabolomic analyses with
known lutein concentrations in human infant brain samples from the frontal cortex, hippo-
campus, and occipital cortex. Our results indicate that lutein concentrations in these brain
regions are correlated with a number of metabolites in a brain region specific manner.

Lutein was previously reported to be the dominant carotenoid in these brain tissues [17].
We report here that lutein concentrations did not change with age across these three brain
regions. Therefore, as brain volume increased, lutein accretion did not exceed tissue expansion.
These data support the hypothesis that lutein accretes at a steady rate to maintain a constant
level of lutein in the brain during development despite brain volume growth or changes in lipid
composition. An alternative explanation is that variation in dietary intake is the predominant
determinate of brain lutein concentrations. In either case, a positive correlation between
metabolites and lutein is unlikely to be a reflection of an increase in both with age. In addition,
neither lutein nor any of the biochemical relationships described in this report correlated with
post-mortem interval, supporting that these lutein relationships were not an artifact of bio-
chemical degradation associated with time until tissue collection after death.

An important finding was that lutein concentrations were correlated with a number of fatty
acids and lysophospholipids. These results are broadly consistent with previous reports that
demonstrate lutein accumulates within areas of cell membranes rich in unsaturated phospho-
lipids [33, 34]. In addition, previous reports established that carotenoids can modify the chemi-
cal and physical properties of cell membrane interactions with lipids thus resulting in altered
membrane permeability and stability [35-38]. Our finding that lutein positively correlated
with a number of lysophospholipids is consistent with these observations as these metabolites
are intermediates of the lipid synthesis and remodeling pathways. Of perhaps even greater
interest is the role of lysophospholipids as signaling molecules [39, 40]. Growing evidence sup-
ports that lysophospholipids are important bioactive compounds for intracellular and cell-cell
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@'PLOS ‘ ONE

Metabolites Correlate to Lutein Concentration in Infant Brain

A. B.
1.6 1.6-
32 14 ° 2 °
- 2212 R
S £ 1.2 22 o
8o 85 08
T i 0T .07
£ 1.0
g% ocC i % 0O 0 ocC
~ 5 082 9 r=0.47 3 0.4k r=0.50
0.6 P <0.05 ' P <0.01
0 50 100 150 200 250 0 50 100 150 200 250
Lutein (pmol/g) Lutein (pmol/g)
C.
4-
2 o)
g 3
g E g
<5 21°
F o ©
5 oc
a ] r=0.49
P <0.01

50

0
<|>o% 6%0
0+
0

100 150 200 250

Lutein (pmol/g)

Fig 3. 1-Octadecanol, Phosphate, and NADH concentrations are related to lutein concentrations in pediatric occipital cortex. Post-mortem infant
brain tissues (age 1 to 488 days) from the frontal cortex, hippocampus, and occipital cortex were analyzed for lutein, fatty alcohol metabolites, and energy
pathway metabolites. Moderate, positive correlations between lutein and (A) 1-octadecanol, (B) phosphate, and (C) NADH were unique to the occipital cortex
(n =28). Results are shown as metabolite (scaled intensity) by lutein concentration (pmol/g). Metabolite:lutein correlations with r values > |0.45| and P < 0.05

are reported.

doi:10.1371/journal.pone.0136904.9003

signaling in the central nervous system. In particular, lysophosphatidic acid (LPA) induces cor-
tical development and folding [41] and supports the later stages of oligodendrocyte maturation
[42]. While the literature is growing for both LPA and sphingosine 1-phosphate, another well-
studied lysophospholipid, relatively few lysophospholipid metabolites have been extensively
explored to date. Therefore, the data from this report may reveal new research targets for future
cell signaling studies.

Several findings from the present study suggest that lutein concentrations may be related to
brain volume regulation during growth and development. The developing human brain experi-
ences a period of rapid growth, beginning approximately midgestation and continuing through
the first few years after birth, leading to a large increase in brain volume including a large
expansion in lipid content [43]. In addition, generation of myelin, the lipid-dominant insula-
tion of axons to increase the efficiency of signal transduction between neurons, begins after
birth and continues for several years afterwards in humans [44, 45]. We found that lutein
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Fig 4. Taurine negatively correlated with lutein concentrations in pediatric hippocampus. Post-mortem
infant brain tissues (age 1 to 488 days) from the frontal cortex, hippocampus, and occipital cortex were
analyzed for lutein, fatty alcohol metabolites, and energy pathway metabolites. A negative correlation
between taurine and lutein concentrations was unique to the hippocampus (n = 24). Results are shown as
taurine (scaled intensity) by lutein concentration (pmol/g). Taurine:lutein correlations with r values > |0.45|
and P < 0.05 are reported.

doi:10.1371/journal.pone.0136904.g004

concentrations positively correlated with 1-octadecanol, a fatty alcohol. Long-chain fatty alco-
hols can act as substrates to support the production of myelin through the synthesis of plasmo-
gens [46]. In addition to 1-octadecanol, both phosphate and NADH, metabolites associated
with energy pathways, correlated with increased levels of lutein in the occipital cortex. This is
consistent with the notion that lutein supports myelination during development as oligoden-
drocytes require extremely high metabolic rates during peak myelination [47]. Taken together,
these results support the hypothesis that increased concentrations of these metabolites in com-
bination with lutein may reveal an importance for this carotenoid in regulation of brain volume
or brain structural growth, including myelin formation.

Lutein concentrations also positively correlated with scyllo-inositiol throughout the pediat-
ric brain. This is noteworthy as inositols are sugar alcohols that can function as osmolytes and
may be important for brain volume homeostasis in conjunction with other neuronal osmolytes
[29]. Interestingly, analyses revealed that lutein concentrations negatively correlated with tau-
rine in the hippocampus. Because taurine is also thought to be an important osmolyte in brain
cells [25], this metabolite may be regulated to balance increases in other osmolytes such as
scyllo-inositol. Alternatively, taurine is important during development for the visual cortex
[48-50] and acts as a neurotransmitter through GABA and glycine receptors in brain [26-28].
Therefore, regulation of this metabolite in the hippocampus during development may be
related to neurotransmission activity. In other studies, taurine was implicated as an antioxidant
involved in membrane stabilization [51, 52]. Given that lutein is localized in membranes, it is
possible that the inverse relationship is a reflection of protection of oxidizable lutein at the
expense of taurine. Another hypothesis is that lutein and taurine could play coordinated roles
in membrane stability or configuration. Certainly, the relationship between lutein and taurine
in hippocampus warrants further investigation in the future.

A novel finding was that lutein concentration positively correlated with the amino acid neu-
rotransmitters GABA (hippocampus and occipital cortex) and aspartate (hippocampus).
GABA is thought to modulate neuronal proliferation and maturation, neurite outgrowth, and
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Fig 5. scyllo-Inositol is positively correlated with lutein concentrations in infant frontal cortex,
hippocampus, and occipital cortex. Post-mortem infant brain tissues (age 1 to 488 days) from the frontal
cortex, hippocampus, and occipital cortex were analyzed for both lutein and scyllo-inositol. Results are
shown as scyllo-inositol (scaled intensity) by lutein concentration (pmol/g). Positive correlations between
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scyllo-inositol and lutein were observed in the (A) frontal cortex (n = 29), (B) hippocampus (n = 24), or (C)
occipital cortex (n = 28). scyllo-Inositol:lutein correlations with r values > |0.45| and P < 0.05 are reported. FC:
frontal cortex; HPC: hippocampus; OC: occipital cortex.

doi:10.1371/journal.pone.0136904.g005

synapse formation [53-55], and aspartate is one of the major excitatory neurotransmitters in
the brain [56]. Our results are consistent with recent findings showing that lutein intake was
associated with improved cognitive function in the elderly [10, 11], and supplementation with
lutein increased temporal processing speed in young, healthy adults [57]. These observations
support the hypothesis that lutein may play a biochemical role in the development or remodel-
ing of neurons. Lutein was also previously shown to protect neurons against oxidative stress
[58, 59] indicating that lutein may aid neuronal activity through its antioxidant activity. How-
ever, it is also possible that lutein acts in a direct capacity to support neurotransmission. Of
note, lutein concentration in the occipital cortex was positively correlated with N-acetylgluta-
mate, but not glutamate. N-acetylglutamate is enzymatically generated from glutamate, an
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Fig 6. Amino acid neurotransmitters are positively correlated with lutein concentrations in infant hippocampus and occipital cortex. Post-mortem
infant brain tissues (age 1 to 488 days) from the frontal cortex, hippocampus, and occipital cortex were analyzed for both lutein and amino acid
neurotransmitters. Results are shown as metabolite (scaled intensity) by lutein concentration (pmol/g). In the hippocampus (n = 24), (A) aspartate and (B)
gamma-aminobutyrate had moderate, positive correlations with lutein. In the occipital cortex (n = 28), (C) gamma-aminobutyrate, and (D) N-acetylglutamate
had moderate, positive correlations with lutein. No moderate correlations were observed in the frontal cortex. Neurotransmitter:lutein correlations with r
values > |0.45| and P < 0.05 are reported. HPC: hippocampus; OC: occipital cortex.

doi:10.1371/journal.pone.0136904.g006
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Fig 7. Homocarnosine is positively correlated with lutein concentrations in infant frontal cortex and hippocampus. Post-mortem infant brain tissues
(age 1 to 488 days) from the frontal cortex, hippocampus, and occipital cortex were analyzed for both lutein and homocarnosine. Results are shown as
homocarnosine (scaled intensity) by lutein concentration (pmol/g). Positive correlations between homocarnosine and lutein were observed in the (A) frontal
cortex (n =29) and (B) hippocampus (n = 24), but not the occipital cortex. Homocarnosine:lutein correlations with r values > |0.45| and P < 0.05 are reported.
FC: frontal cortex; HPC: hippocampus.

doi:10.1371/journal.pone.0136904.g007

excitatory neurotransmitter. It is not surprising that the substrate and product for N-acetylglu-
tamate synthase do not both correlate with lutein as regulation of enzyme activity is complex
and these compounds exhibit different roles. Taken together, our data suggest that lutein may
be important for neuronal activity during development.

Lutein is best known for its roles as an antioxidant and a UV filter to protect the macula.
The most widely recognized activity of lutein is its role as an antioxidant particularly in the
protection of the photoreceptor cell layer from oxidative damage [3-5]. The brain is especially
vulnerable to oxidative stress during development [60]. Therefore, it is of interest to note that
lutein may support antioxidant activity in the infant brain. Lutein concentrations positively
correlated with homocarnosine in the frontal cortex and hippocampus. Homocarnosine is
found in high concentrations in the brain and is implicated as a neuroprotective antioxidant
[30, 61].

This study is the first known metabolic report on the infant brain metabolome, and certainly
the first to relate the metabolome to lutein. Here, we report that lutein in the human infant
brain correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes,
amino acid neurotransmitters, and the antioxidant homocarnosine. These data reveal a num-
ber of metabolites that are candidates in describing the functional importance for lutein on
brain development and cognition. It should be noted that there could be an interaction between
general nutrition and these correlations and that the concentrations of lutein in brain tissue
may be serving as a marker of overall nutritional status. However, in our previous publications
we observed that among the carotenoids, lutein is preferentially taken up into human brain tis-
sue [17, 62] and is the most consistently related to cognitive function [10], supporting a possi-
ble unique role in cognition. While we are aware that metabolomic correlations do not provide
definitive proof for how lutein could impact neurodevelopment, these exploratory analyses
provide clues to how lutein may influence learning and memory. Identifying potential path-
ways for lutein activity will hopefully aid future biochemical studies in illuminating the mecha-
nisms by which lutein supports cognition in infants as well as adults. In addition, future studies
may reveal the importance of optimal lutein intake during development as inadequate accre-
tion of lutein in infant brains may impact brain maturation.
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Supporting Information

S1 Dataset. All Metabolite:Lutein Correlations. An exploratory study relating metabolite sig-
natures and lutein was completed on post-mortem infant brain tissues (age 1 to 488 days) from
the frontal cortex, hippocampus, and occipital cortex. A total of 1276 correlations were carried
out across all brain regions. Five metabolites fell below the detection limit in the frontal cortex,
and therefore, correlations were not carried out for these (“not detected”). Of 427 metabolites
analyzed, 257 were metabolites of known identity. Correlations from all known 257 metabolites
are reported.

(XLSX)

S2 Dataset. Post-Mortem Interval Correlations. An exploratory study relating metabolite sig-
natures and lutein was completed on post-mortem infant brain tissues (age 1 to 488 days) from
the frontal cortex, hippocampus, and occipital cortex. Samples were then analyzed for correla-
tions between on all 257 known metabolites and post-mortem interval, or the time between
death and tissue collection.

(XLSX)

S1 Fig. Lutein:Sex Correlations. Post-mortem infant brain tissues (age 1 to 488 days) were
analyzed for lutein by HPLC. Increasing lutein concentration (pmol/g) did not correlate with
sex in the (A) frontal cortex (n = 29), (B) hippocampus (n = 24), or (C) occipital cortex

(n =28). FC: frontal cortex; HPC: hippocampus; OC: occipital cortex; n.s.: not-significant.
(PDF)

S2 Fig. Lutein:Post-Mortem Interval Correlations. Post-mortem infant brain tissues (age 1 to
488 days) were analyzed for lutein by HPLC. Increasing lutein concentration (pmol/g) did not
correlate with the post-mortem interval, the time between death and tissue collection, in the
(A) frontal cortex (n = 29), (B) hippocampus (n = 24), or (C) occipital cortex (n = 28). FC:
frontal cortex; HPC: hippocampus; OC: occipital cortex; n.s.: not-significant.

(PDF)
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