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Purpose: The purpose of this work is to develop a fully automated pipeline to compute aorta
morphology and calcification measures in large cohorts of CT scans that can be used to investigate
the potential of these measures as imaging biomarkers of cardiovascular disease.
Methods: The first step of the automated pipeline is aorta segmentation. The algorithm the authors
propose first detects an initial aorta boundary by exploiting cross-sectional circularity of aorta in axial
slices and aortic arch in reformatted oblique slices. This boundary is then refined by a 3D level-set
segmentation that evolves the boundary to the location of nearby edges. The authors then detect the
aortic calcifications with thresholding and filter out the false positive regions due to nearby high
intensity structures based on their anatomical location. The authors extract the centerline and oblique
cross sections of the segmented aortas and compute the aorta morphology and calcification measures
of the first 2500 subjects from COPDGene study. These measures include volume and number of
calcified plaques and measures of vessel morphology such as average cross-sectional area, tortuosity,
and arch width.
Results: The authors computed the agreement between the algorithm and expert segmentations on
45 CT scans and obtained a closest point mean error of 0.62±0.09 mm and a Dice coefficient of
0.92±0.01. The calcification detection algorithm resulted in an improved true positive detection rate
of 0.96 compared to previous work. The measurements of aorta size agreed with the measurements
reported in previous work. The initial results showed associations of aorta morphology with calcifi-
cation and with aging. These results may indicate aorta stiffening and unwrapping with calcification
and aging.
Conclusions: The authors have developed an objective tool to assess aorta morphology and aortic
calcium plaques on CT scans that may be used to provide information about the presence of
cardiovascular disease and its clinical impact in smokers. C 2015 American Association of Physicists
in Medicine. [http://dx.doi.org/10.1118/1.4924500]
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1. INTRODUCTION

Manifestations of cardiovascular disease include mural calci-
fication of atherosclerotic plaques, arterial stiffening, and
aneurysmal dilation of the aorta.1,2 In particular, calcifica-
tion of the thoracic aorta is an important biomarker that is
commonly measured in clinical investigation in CT scans and
has been linked with coronary calcium,3 cardiac risk factors,4

and outcomes such as stroke and myocardial infarction.3 The
relationship between atherosclerosis and vascular geometry
and regional blood flow and wall shear stress5 has been well
documented.6 Recent studies reported the changes in vessel
morphology, and stiffening of vessel with aging and its impli-
cations.7–10 A more extensive evaluation of associations be-

tween vessel morphology and mural calcifications can provide
clinically important data. We therefore sought to develop a
fully automated tool that could be applied to a large number
of volumetric chest CT scans being obtained for therapeutic,
epidemiologic, and genetic investigations of smoking related
diseases.

The first step of the proposed automated pipeline is aorta
segmentation, which, in the noncontrast CT scans, is compli-
cated by the similar CT attenuation values of adjacent struc-
tures in the mediastinum. Therefore, a standard 3D segmenta-
tion technique based solely on edge or intensity information
fails without either a good initialization or integration of a 3D
shape model to limit leakage into neighboring vessels with
similar Hounsfield intensity values. Most previous work11–14
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addressed these difficulties with an approach that relies on a
priori shape models built from manually segmented training
aorta centerlines. However, small training sets cannot repre-
sent the anatomical variabilities of aorta shapes and modeling
anatomical variabilities across subjects requires a complex 3D
shape model. Constructing this model requires a large set of
manually labeled training examples, which is expensive to
obtain. To omit the need for a complex a priori shape model,
we propose a two stage approach that uses a simpler 2.5D
model to construct a good initial surface in the first step and re-
fines this surface in 3D in the second stage with a 3D gradient-
based level-set segmentation algorithm. Since standard 3D
level-set segmentation algorithm is sensitive to initialization,
the first step provides a good initial surface to this algorithm.
We use the information that aorta has a tubular candy cane
shape with circular cross sections and construct the initial
surface by optimizing for the circle parameters using both
within slice and between slice information. One shortcoming
of the circular cross section assumption adapted from previous
work is that it is only an approximation to the true aorta cross
section and aorta cross section might deviate from a circle in
some axial slices. The level-set algorithm in the second stage
solves this problem and refines the initial surface by evolving
it to the nearby edge locations.15 Level-set algorithm operates
fully in 3D and results in a smooth segmentation of aorta.
We first reported this segmentation algorithm in IEEE EMBC
2012 conference paper.16 Herein, we more extensively explain
the improved version of the segmentation algorithm, explain
methods to extract morphology and calcification measures,
and evaluate the performance of these measures on a large
cohort of 2500 smokers.

The second step of the pipeline is detection of mural
calcifications using an attenuation threshold applied to the
segmented aortas. Previous efforts to quantify aortic calcifi-
cation utilized an atlas based approach for vascular segmen-
tation17 followed by aortic calcification detection. However,
due to variable anatomy of the mediastinum, such an approach
may lead to inaccuracy in segmentation and detection of many
false positive calcified plaques that are due to nearby high
density regions such as vertebra and calcifications in trachea
wall. Instead, we used our more refined aorta segmentation for
calcification detection followed by a filtering approach based
on anatomy to eliminate many of the false positives.

The final step of the automated processing pipeline after
aorta segmentation is the extraction of vessel morphology
features. The complete pipeline is summarized in Fig. 1.

The main contributions of the proposed work to the litera-
ture are the following.

• A fully automated pipeline for aorta segmentation and
calcification detection is introduced. Unlike previous
work8 that operated on manually placed seed points to

initiate segmentation and define its cranial and caudal
limits, our work is fully automated and selects the seed
points automatically based on detected landmarks.

• A two step segmentation approach is proposed. The first
step constructs an initial surface using an approximate
circular shape model of aorta cross sections and an
additional component in the third dimension to impose
smooth parameter transitions from slice-to-slice. The
second step is a 3D level-set segmentation algorithm
that uses the boundary surface from the first step as
a good initialization that helps to converge to a better
local optimum. The second step locally refines the initial
surface while keeping the surface smooth in 3D.

• A set of measures representing the vessel morphology
and calcifications are defined and computed. Unlike most
of the previous work that computes vessel radius or
cross-sectional area in 2D axial planes, our pipeline com-
putes these features more accurately in 3D after auto-
mated extraction of centerline and cross-sectional planes
that are normal to centerline.

• Objective quantitative assessment of vessel morphology
and mural calcification is performed using a large cohort
of 2500 smokers from the multicenter COPDGene study.
The range of the computed measures is compared with
the numbers reported in the recent literature as another
way of validating the algorithm’s performance when
applied on a large cohort. The associations of these
quantitative image biomarkers with each other and with
age are investigated.

The paper is organized as follows. In Secs. 2.A and 2.B,
we describe the automatically extracted landmarks and intro-
duce the automated aorta segmentation algorithm. In Sec. 2.C,
we explain detection and objective quantification of global
and regional measures of mural calcification. In Sec. 2.D,
we describe how we extract aorta centerline and the oblique
cross-sectional planes. We then explain how we compute the
aorta size and morphology measures in Sec. 2.F. In Secs. 3.A
and 3.B, we describe the data and explain how we validate
the segmentation and calcification detection algorithms. In
Sec. 3.D, we explain validations on large cohort and report
the associations between the extracted imaging measures and
clinical and epidemiological measures of COPD. We finally
summarize our findings and the impact of the work in Sec. 4.

2. METHODS
2.A. Localization of anatomical landmarks

As the first step, some anatomical landmarks are located
to initialize the aorta segmentation and to crop the original
volume to reduce the computational cost. These landmarks are

F. 1. Flow chart of the fully automated pipeline.
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F. 2. (a) Red rectangle shows the VOI boundaries in anterior–posterior and left–right directions. (b) Left panel shows the axial slice of trachea bifurcation, the
center of ascending aorta (blue plus), and the coronal slice location (yellow line). Right panel shows the coronal slice and the detected inferior boundary for the
VOI (red line).

the main carina [bifurcation point of trachea into left and right
main bronchi, indicated with a red circle in Fig. 2(a)] and the
bounding box of lungs. We locate lung and trachea using a
standard 3D region growing algorithm.18 The lung bounding
box is then calculated from the segmented lungs and used
to crop the original volume in anterior–posterior and medio-
lateral directions. In medio-lateral direction, the volume is
cropped around the detected trachea carina location with a
window width of half the lung bounding box size. The anterior,
posterior, and superior sides of the volume are cropped at the
positions of the full lung bounding box [Fig. 2(a)]. A smaller
VOI is obtained after cropping.

2.B. Aorta segmentation

We apply a 3D level-set segmentation technique for aorta
segmentation that evolves an initial surface locally to the
nearby edge locations while keeping the surface smooth. We
first explain how we construct a good initial surface combining
ideas adopted from the literature. We then explain how an edge
based 3D level-set evolution is applied to locally refine this
initial surface to the nearby edge locations corresponding to
the aorta boundaries.

2.B.1. Initial Aorta Boundary Surface Construction

We first obtain an initial aorta boundary surface using the
approximate anatomical definition of the aorta shape, which is
composed of a tubular candy cane shape where the arch section
has a half torus shape and descending (DA) and ascending
(AA) aorta sections have tubular shapes. The DA and AA cross
sections also tend to be circular in axial slices and aortic arch
sections tend to be circular in the oblique slices along the half
torus arch shape. We search for circles in axial slices to find
DA and AA and in reformatted oblique slices to find the arch.
We apply this circle detection sequentially starting from the
slice of main carina of the trachea using a similar approach
described in Ref. 14. This is where we locate the initial circles
corresponding to DA and AA as explained in Appendix A.

The sequential circle detection is composed of two steps.

1. We first apply a circular Hough transform (HT) to the
current slice to detect the circles within ∆r radius and
∆d distance to the circle detected in the previous slice.

2. Our goal is to find the circle Ci that maximizes the
posterior probability associated with the maps given the
observed image slice S, the HT map, and the spatial
smoothness prior. We represent a circle by three param-
eters: x and y coordinates of its center and its radius.

The circle Ci maximizing the posterior probability
given the image slice S and the circular HT is calculated
as

Ĉi = argmax
Ci

p(Ci |S,HT)∝ P(S|Ci)P(HT|Ci)P(Ci) (1)

P(S|Ci)P(HT|Ci)P(Ci)
=


x∈Interior(Ci)

P(Sx |Ci)P(HT|Ci)P(Ci−1,Ci). (2)

By taking the logarithm of the posterior probability, the
estimate of Ci can be formulated as

Ĉi = argmax
Ci

R(Ci)

=


x∈Interior(Ci)
Rint(xi)+RHT(Ci)+Rsm(Ci−1,Ci), (3)

where Rint, the intensity term, is the logarithm of the
aorta intensity probability (modeled by a Gaussian
distribution with mean mI and standard deviation σI)
of a voxel within a candidate circle. RHT= log P(HT|Ci)
is the Hough transform value term and is equal to
the value of a circle in the Hough map indicating the
strength of that circle. Rsm(Ci−1,Ci) = log P(Ci−1,Ci),
the smoothness term, is the one norm of the distance
between parameters of the circle in current slice and
previous slice.

The circle maximizing this energy function R(Ci) is
selected.

We apply this sequential circle detection method to axial
slices along the tubular DA and AA sections starting from
the slice of carina and moving caudally. AA circle detection
stops when no AA circle is detected in five consecutive slices
due to AA cross section shape deviating from a circle when it
starts bending toward the heart. We choose that point as the
inferior end point of AA. DA is detected using the similar
sequential detection approach until the inferior end point of
cropped volume.

Medical Physics, Vol. 42, No. 9, September 2015
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F. 3. (a) In the slice of main carina, detected DA and AA circles and their centers are shown in red (circles and crosses), the (vertical) line through these
centers is shown in blue and the second (horizontal) line normal to the first one is shown in yellow. (b) The vertical plane taken from the location of yellow
line is shown together with some example oblique planes obtained by rotating that vertical plane. The circles detected sequentially in these oblique planes are
indicated by red. (c) Circles detected in all consecutive oblique planes are shown.

We detect circles along aortic arch within reformatted
oblique cross sectional planes along the half torus shape of
aortic arch. The method for constructing reformatted oblique
slices along the half torus arch shape adapted from Kovacs
et al.12 is explained in Appendix B (see Fig. 3).

We detect circles in finely sampled consecutive slices (every
other slice) simply because when a circle is not detected in one
slice due to noise or cross section deviating from a circular
shape, we skip that slice and detect the circle in the next slice.
The missing circles are recovered during the following step.

2.B.1.a. 3D surface construction. After detecting circles,
we first apply 3D least squares spline curve fitting to the center
and radius values of the detected circles along the aorta to fill
in the missing circle locations. We then sample points along
the circles and generate a 3D triangulated mesh from this point
cloud. Finally, we convert this triangulated mesh to a boundary
surface by splitting the triangulated faces until the size of each
edge is smaller than half of a voxel. The voxel beneath that
small triangle is set to be a boundary voxel.

2.B.2. Segmentation refinement using 3D level-sets

We finally refine the location of this initial aorta boundary
surface with a 3D level-set segmentation algorithm. This algo-
rithm evolves the initial boundary to the nearby edge locations
while simultaneously maintaining the smoothness of its shape.
The refinement is especially effective when the aorta cross
sections deviate from being circular in some axial or oblique
slices, some of which are often located in slices close to the
arch region. See Fig. 4 for some examples.

For level-set segmentation, the aorta boundary is repre-
sented implicitly as the zero level surface of some embedding
level-set function (Φ). This embedding function is calculated
as the signed distance of each voxel in the image domain
(Ω) to the boundary surface. We compute this function using
the fast marching algorithm.19 The initial function is evolved
to minimize an energy function. We use a level-set energy
function (E(Φ)) including standard energy terms which are
edge matching Eedge, level set regularization (Ereg,20) and

F. 4. The initial aorta boundaries (blue: Before Level Set) and the boundaries after level-set refinement (red: After Level Set), and the expert boundary
(green: Expert) are shown. For slices where the cross section is not perfectly circular, the refinement step moves the boundaries to the nearby edge locations.
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smoothness (Esm) terms,21

E(Φ) = Eedge(Φ)+λEreg(Φ)+ νEsm(Φ)
=


Ω

g(I)δϵ(Φ)|∇Φ|dΩ+λ

Ω

1
2
(|∇Φ|−1)2dΩ

+ ν


Ω

δϵ(Φ)|∇Φ|dΩ. (4)

Here, δ(.) is the Dirac function of Φ and g(.) is the edge
indicator function in Ref. 20, and I is the CT volume. The
initial level-set function representing the aorta boundary is
updated at each step t to minimize E according to following
update equation that is derived using calculus of variations:

d
dt
Φ = δϵ(Φ) div

(
g(I) ∇Φ|∇Φ|

)
+λ


∆Φ− div

(
∇Φ
|∇Φ|

)
+ νδϵ(Φ) div

(
∇Φ
|∇Φ|

)
. (5)

Zero level-set of the finalΦ gives us the aorta boundary surface
in 3D and Φ ≤ 0 gives us the segmented aorta volume.

After segmentation, we locate a common caudal boundary
for the segmented aortas. We use the inferior heart bound-
ary landmark for this purpose. We detect this landmark in a
selected coronal slice [Fig. 2(b)]. To find this coronal slice,
we use the segmented AA at the axial slice location of the
trachea carina. We locate the center of the circular AA cross
section and select the coronal slice that passes through this
center point. We then detect the inferior heart boundary in
this coronal slice using the segmentation of the left lung.
The inferior rightmost corner of the left lung at the location
of diaphragm and heart boundary is detected. We use this
landmark to crop the portion of the aorta below this detected
inferior boundary after the segmentation step.

2.C. Aortic calcification detection and extraction
of calcification measures

2.C.1. Aortic calcification detection

We detect the calcifications within the segmented aorta
volume after we dilate the segmented aorta surface by two

voxels to make sure that the calcified plaques located on the
aorta wall are included in the segmented aorta region. We
then detect the aortic calcifications by applying a threshold
value of 130 HU as in Ref. 17 to the segmented aorta volume.
Each isolated plaque within the calcified region is extracted
with a 3D connected component labeling. However, some of
these detected plaques are false positives due to nearby high
density regions. These regions are commonly located in two
locations: (1) the regions of aortic arch that are close to trachea,
where the tracheal calcifications can be misclassified as aortic
calcification [Figs. 5(a) and 5(b)] and (2) the regions of DA
that are very close to the vertebra, where the vertebral regions
can be misclassified as aortic calcification [Figs. 5(c) and
5(d)].

We use the following rules to eliminate false positives: for
the plaques close to the trachea boundary, we eliminate the
plaque if all of its voxels are located on the trachea wall. For the
calcified plaques that are in the posterior part of DA, we apply
region growing starting from the detected plaque and check
if the plaque is connected to the nearby vertebra region. We
eliminate the plaques whose areas grow toward vertebra direc-
tion (right posterior direction). See Fig. 6(d) for an example
segmented aorta (in red) and detected calcifications (blue).

2.D. Calcification measures

We calculate quantitative measures from the detected calci-
fied plaques, which are the number of calcified plaques, the
total volume of the plaques, and the 3D Agatston score.22 The
original Agatston score23 was calculated in 2D by multiply-
ing the area of a plaque in a slice with a weighting factor
determined by the highest attenuating voxel. The weight was
determined from the density value of the maximum density
pixel within the detected calcified lesion in a slice. The density
values are in Hounsfield units and the weight is set according
to that maximum HU value of a plaque. The weight is 1 for
130–199 HU, 2 for 200–299 HU, 3 for 300–399 HU, and
4 for 400 HU and greater. Here, we adapt this 2D measure
to 3D. We isolate each plaque in 3D with a 3D connected
component labeling algorithm. We calculate plaque volume

F. 5. Examples of regions that are true calcifications [(b) and (d)] and false positives [(a) and (c)] after thresholding step. The algorithm further processes
these regions and rejects the false positives.
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F. 6. (a) Segmented aorta and extracted centerline (blue). At the location of trachea carina, aorta arch width is measured (black arrow between two yellow
circles). (b) Oblique aorta cross sections normal to centerline (green). (c) Axial planes (red) are added for reference. (d) Detected calcifications (blue).

instead of area, weighted by the highest density voxel of each
plaque isolated in 3D. The weight is determined using the
same method. This weight is then multiplied by the volume to
obtain the 3D Agatston score. In addition to calculating these
scores over the entire aorta, we calculated regional measures
over descending, arch, and ascending sections of the aorta.

2.E. Extraction of aorta centerline
and cross-sectional planes

In order to compute the quantitative measures representing
aorta morphology, we first extract the aorta centerline and
oblique cross sectional planes normal to the centerline.

2.E.1. Centerline extraction

We extract the centerline of the segmented aorta with a dis-
tance transform based skeletonization algorithm.24 This algo-
rithm has a thinness control parameter (th), where a high th
value results in a thinner skeleton. We start with a high value
(1.0) for a thin centerline but if the complete range of the
centerline is not extracted, we iteratively lower the value (by
0.1) until the aorta centerline is completely extracted.

The extracted candidate points need to be ordered before
fitting them to a spline to obtain a smooth and continuous
centerline curve. We start ordering the candidate points from
the most inferior end point (z= 0) and move in superior direc-
tion. At each step, from the candidate neighboring points with
a larger (smaller for the ascending aorta section) z than current
point, we select the one that is closest to the current point. After
we reach the top of the arch, we move in inferior direction
for the ascending aorta. Finally, a 3D spline curve is fitted to
the ordered centerline points and a smooth centerline curve is
obtained. An extracted centerline is shown in Fig. 6(a).

2.E.2. Oblique cross-sectional planes’ extraction

After the initial centerline curve c(s) is extracted, the
tangent vector at each point along the centerline is calculated
and the coordinates of the cross-sectional plane normal to this
tangent vector are computed as described in Appendix C [see
Figs. 6(b) and 6(c)]. We interpolate the binary segmentation
volume at these oblique plane coordinates to obtain the oblique
cross section of aorta.

The aorta cross sections in oblique planes are approxi-
mately circular. We fit a circle to the aorta boundary points
(x,y) in each cross sectional plane and compute the center

and the radius of these circles. For circle fitting, we use the
following circle equation:

x2+ y2+a(1)x+a(2)y+a(3)= 0. (6)

We solve the following system of linear equations for a:

Ka=b,

where

K=
(
x y 1

)
, b=−(x2+y2). (7)

Here, x and y are vectors of x and y coordinates of boundary
points. After calculating a, we compute the circle parameters
radius r and center (xc,yc),

xc = −a(1)/2,
yc = −a(2)/2,

and

r =

(a(1)2+a(2)2)/4−a(3). (8)

The centers of the circles obtained from all the oblique planes
are then smoothed by fitting them to a 3D cubic spline func-
tion. Similarly, a 3D cubic spline is fitted to the radius values
of the obtained circles as well.

2.F. Extraction of aorta morphology features

We extract several quantitative features representing aorta
morphology as listed in Table I.

T I. Aorta morphology features.

Morphology feature Feature description

Arch width Distance between DA and AA centers measured at
the level of trachea carina

Max arch width Max distance between DA and AA centers
measured around the level of trachea carina

Mean radius Mean of the oblique aorta cross section radii
computed along the aorta, DA, Arch, AA regions

SD radius Standard deviation of the oblique aorta cross section
radii computed along the aorta

Centerline tortuosity Measure of how much aorta centerline bends
computed along the aorta, DA, Arch, AA regions

Centerline curvature Mean curvature (directional change of the tangent
vector) of the centerline curve computed along the
aorta, Arch, AA regions

Medical Physics, Vol. 42, No. 9, September 2015
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To calculate these features, we use the refined centerline,
and the cross-sectional planes extracted normal to this center-
line using the approach explained above. We compute the area
and radius of aorta cross sections extracted at regular intervals
along the centerline curve. The mean and standard deviation
of area and radius measures are then calculated over the entire
aorta as well as over the regions of aorta which are DA, arch,
and AA.

The second set of morphology features are calculated from
the aorta centerline. These features include mean curvature
and tortuosity of the centerline curve and the width of aortic
arch. Curvature measures how sharply a curve bends. The
curvature is 0 for a straight line, very small for curves which
bend very little, and large for curves which bend sharply.
Curvature is measured by the amount that the tangent vector
changes direction as we move along the curve. We calculate
the curvature over the centerline curve C(t) parametrized with
t using the following equation:

κ =
x ′(t)y ′′(t)− x ′′(t)y ′(t)
(y ′(t)2+ x ′(t)2)2/3 .

As a measure of tortuosity, the length of curve divided by
the distance between the end points of the curve is often used.
However, this measure is not very sensitive to local changes.
Therefore, we use the approach suggested in Ref. 25 as a
measure of tortuosity. We compute the in-plane and torsional
angles between the normal and binormal vectors of the two
consecutive points on the centerline. A positive total angle is
then calculated at each point by taking the square root of the
sum of the squares of the in-plane angle and of the torsional
angle. The sum of these angles is computed along the curve
and normalized by the curve length. The results are given in
rad/cm.

3. RESULTS

In this section, we report how we evaluate the performance
of the suggested automated aorta segmentation and calcifi-
cation detection pipeline in 45 manual segmented CT scans.
We further test the algorithm results in a large cohort of 2500
subjects.

3.A. Data set

We test our pipeline using the CT images from the
COPDGene study.26 The in-slice image resolutions of the CT
volumes are isotropic and in the range of 0.6–0.7mm with a
slice thickness that varies between 0.5 and 0.7mm.

Due to presence of noise, we filter the CT images with the
anisotropic diffusion filter27 that removes the noise but keeps
the high gradient edge locations in the image, such as the aorta
wall.

We selected a test set of 50 CT scans on which aorta
and aortic calcifications were manually segmented. Forty five
scans are used for validation where we evaluate the perfor-
mance of the proposed segmentation and calcification detec-
tion algorithms in comparison to the expert mark-ups. The

T II. Values of algorithm parameters.

dAA
x dAA

y dDA
x mI σI ∆r ∆d λ ν

2.2 cm 6.2 cm 5.0 cm 40 23 3 mm 5 mm 0.04 0.2

remaining five CT scans are used to optimize the algorithm
parameters. We report these parameters in Table II.

3.B. Validation of automated aorta
segmentation algorithm

We compute three different metrics to compare the auto-
mated segmentation results with the manual segmentations.
These metrics are the mean of the point-wise distances, the
Jaccard coefficient, and the Dice coefficient. The point-wise
distances are calculated as the minimum Euclidean distance
between points on manually and automatically segmented sur-
faces. We report the mean point-wise distance for each subject
in Fig. 7(a). The mean of this measure over all 45 subjects
was 0.62±0.09 mm for the entire aorta including aortic arch,
AA, and DA, 0.61±0.09 mm over DA, and 0.60±0.15 mm
over AA. Another similarity metric that we calculated was
the Jaccard coefficient, which is given by the intersection of
the manually and automatically segmented volumes divided
by the union of these volumes. The final metric is the Dice
coefficient given by two times the intersection of the manu-
ally and automatically segmented volumes divided by the
sum of these two volumes. The mean of these measures over
all 45 subjects was 0.85± 0.02 for Jaccard and 0.92± 0.01
for Dice. Figure 7 shows these measures over each data set.
The 3D isosurface plot of the segmented aorta is shown in
Fig. 8 for two sample CT scans. The colormap indicates the
point-wise error between aorta surfaces segmented manually

F. 7. Mean ± sd of error (top figure), Jaccard coefficient (middle figure),
and Dice coefficient (bottom figure) for each data set.
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F. 8. Segmented aorta in 3D for two sample CT scans. Colormap indicates the closest point Euclidean distance (in mm) between automatically segmented
and manually labeled aorta surfaces.

and automatically. The maximum point-wise error (Hausdorff
distance) was 0.75 and 0.80 mm, respectively, for these two
subjects.

3.C. Validation of calcification detection algorithm

We evaluate the calcification detection performance of the
algorithm in comparison to the manually detected calcifica-
tions. We apply 3D connected component analysis to automat-
ically detected aortic calcifications. We compute false posi-
tive (FP), true positive (TP), and false negative (FN) rates
for number and volumes of calcifications detected in 45 CT
scans. Out of the 424 calcified regions marked by the expert
(FN+TP), the algorithm successfully detected 96% correctly
((TP/(FN+TP))×100) which is better than 84% rate reported
in Ref. 17. The ratio of the successfully detected calcification
volume to the volume marked by the expert is 0.92. The ratio
of the number of FP calcifications to the number of algorithm
detected calcifications (FP/(FP+TP)) is 0.14 and this ratio is
0.08 for the volume of FP calcifications.

3.D. Validation on large cohort

We run the pipeline on the first 2500 subjects of COPDGene
study. We used the measures computed from these subjects to
further validate the results of the automated aorta morphology
measurements with the 2D measurements of aorta radius from
the literature. We also report correlations of morphology and
size changes with calcification measures and aging.

T III. Mean, standard deviation (sd), and ranges of clinical measures.

Mean ± sd Range

Age (yr) 59.76 ± 8.90 45–81
Male (%) 46
Height (cm) 170.41 ± 9.47 141.20–203.20
BMI (kg/m2) 28.66 ± 5.83 15.43–57.90
Pack years of smoking 44.40 ± 24.31 10–216
%Emphysema in CT 5.46 ± 8.80 0.02–60.78
FEV1% predicted 67.21 ± 16.11 19.00–97.00
Body surface area 1.96 ± 0.26 1.27–3.06

3.D.1. Average morphology measures

Table III shows the average values of demographic and
clinical data over our study group of smokers. The clinical data
include pack years of smoking (years of smoking multiplied
by the number cigarettes smoked in a day divided by 20),
%emphysema in CT (percentage of low attenuating lung re-
gions less than−950 HU in CT) and FEV1% predicted. (FEV1

T IV. First numerical column shows mean and standard deviation (SD)
of regional aorta size and morphology measures reported. Second and third
numerical columns show Pearson correlation coefficient of these measures
with age and body surface area (BSA), respectively.

Correlation
coefficient

Measure Region Mean ± SD Age BSA

Max arch width (cm) Arch 7.92 ± 1.17 0.48 0.33

Arch width (cm) Arch 7.28 ± 1.23 0.45 0.35

Mean radius (cm)

Aorta 1.31 ± 0.13 0.45 0.26
DA 1.18 ± .13 0.49 0.22
Arch 1.38 ± 0.13 0.29 0.28
AA 1.54 ± 0.17 0.32 0.21

SD radius Aorta 0.32 ± 0.03 0.43 0.27

Mean tortuosity (rad/cm)

Aorta 2.00 ± 0.42 −0.31 −0.02
DA 1.21 ± 0.46 −0.06 0.13
Arch 2.99 ± 1.53 −0.41 −0.31
AA 2.89 ± 0.90 −0.25 −0.04

Mean curvature (rad/cm)

Aorta 0.014 ± 0.006 −0.18 0.11
Arch 0.020 ± 0.009 −0.32 0.03
AA 0.021 ± 0.015 −0.14 0.05

Log 10 plaque volume
(mm3)

Aorta 2.26 ± 1.09 0.63 −0.05
DA 1.45 ± 1.19 0.51 −0.08
Arch 1.82 ± 1.18 0.59 −0.05
AA 1.02 ± 1.15 0.55 −0.07

Log 10 of num plaques Aorta 0.77 ± 0.49 0.61 −0.05

Log 10 of sum 3D Agatston Aorta 3.06 ± 1.44 0.63 −0.07

Log 10 of sum 2D Agatston Aorta 2.94 ± 1.39 0.63 −0.07
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T V. Pairwise partial Pearson correlation coefficient values between aorta morphology measures, aorta calcification measures that are adjusted by age and
body surface area. The nonempty cells show statistically significant values (p < 0.05/m) after Bonferroni correction, where m = 77 is the number of hypothesis
tested.

Log 10 plaque volume
Log 10

num plaques
Log 10

3D Agatston
Log 10

2D Agatston

All subjects Region Aorta DA Arch AA Aorta Aorta Aorta

Max arch width (cm) Arch 0.10 0.08 0.09 0.13 0.13 0.08 0.08

Arch width (cm) Arch 0.12 0.09 0.10 0.15 0.16 0.11 0.11

SD radius Aorta 0.16 0.14 0.10 0.10 0.22 0.14 0.14

Mean radius (cm)

Aorta 0.16 0.15 0.10 0.10 0.23 0.14 0.14
DA 0.19 0.19 0.13 0.14 0.26 0.17 0.17
Arch 0.11 0.13 0.18 0.09 0.09
AA 0.10 0.07 0.14 0.09 0.09

Mean tortuosity (rad/cm)

Aorta −0.07 −0.07 −0.08 −0.07
DA
Arch −0.08 −0.09 −0.08 −0.09 −0.07 −0.07
AA

is the forced expiratory volume in 1 s measured by spirometry
and FEV1% predicted is calculated according to prediction
equations for the US population. Prediction equations are
based on age and height by gender and ethnicity.28) This is a
cohort of heavy smokers, with slightly more than half females,
and with moderate airflow obstruction measured by FEV1%
predicted.

We report the mean values of aorta size and morphology
measures on all COPD subjects in Table IV. The mean aorta
diameter computed by our automated pipeline on GOLD= 0
subjects, with normal lung function, was compared with the
result reported in the literature. Most results in the literature
were from measurements of aorta radius in a single axial
slice while we calculate mean radius along cross sections of
the entire aorta. Our results are in the same range with the
previously published results on large studies reported using
MRI and CT images.9,29,30 In Framingham heart study (FHS)30

and multi-ethnic study of atherosclerosis (MESA) cohorts,29

a mean AA diameter of 32 mm was reported, while in our
measurements we report a mean AA diameter of 31±3 mm.
In Ref. 9, a mean DA diameter of 24± 3 mm was reported
over 1931 subjects, while in our measurements we also report
a mean DA diameter of 24± 3 mm. We report a mean arch
width of 77±11 mm over GOLD= 0 subjects measured at the
level where the width is maximum, which we call max arch
width in the table. We also report a mean arch width of 70±11
measured at the level of trachea carina, which in the same
range of the value of 66±10 for women and 72±11 reported
over 108 subjects.

3.D.2. Correlation between morphology measures
with calcification measures and age

We report the correlation of aorta calcification and mor-
phology measures with age and body surface area (BSA) in
the second and third columns of Table IV. These are the

main correlates of the reported measures. There were signif-
icant correlations of all measures with age, and some mea-
sures with BSA. We then computed pairwise partial Pear-
son correlation coefficient values between aorta morphology
measures and aorta calcification measures after adjusting for
age and body surface area. The values in Table V indicate
statistically significant correlation values (p < 0.05/m) be-
tween most measures even after Bonferroni correction, where
m is the number of hypothesis tested (m = 77). The mean
aorta radius, arch width, and standard deviation of the radius
had a positive correlation with the log transform of the calci-
fication measures. The tortuosity of aorta centerline had a
negative correlation with the log transform of the calcification
measures.

4. DISCUSSIONS AND CONCLUSIONS

Automatically extracted measures of aorta morphology,
size, and calcification have a promising role as potential quan-
titative biomarkers for various clinical applications. These
measures can be used to study age and cardiovascular disease
related changes in aorta morphology in smokers. Many recent
studies published in the literature show clinical interest in
these quantitative measures. However, the commonly reported
values of these measures in the clinical literature are from
values computed on a single slice and performed by a sin-
gle expert. Measuring these quantitative values manually is
very time consuming, subjective, and prone to error. Available
automated techniques require some kind of user interaction to
initialize the segmentation pipeline.

In this work, we introduced a fully automated pipeline
that first segments the aorta in 3D CT volumes, then detects
aorta calcifications, and extracts the aorta centerline and cross
sections. Finally, the automated pipeline extracts quantitative
features representing aorta size, morphology, and calcifica-
tion amount. Since all measurements were computed on cross
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sections of the vessel extracted in 3D, they provide more
accurate representation of the vessel cross section.

The validation of the proposed segmentation pipeline
against expert segmentations in 45 CT scans indicated that
the segmentation algorithm performed well with mean dis-
tance error of 0.62± 0.09 mm over 45 subjects. The distri-
bution of point-wise segmentation errors was shown for two
subjects. The maximum point-wise errors (Hausdorff dis-
tances) were less than 0.8 mm, with largest errors occurring
in regions where the aorta branches into smaller supra-aortic
vessels.

The calcification detection algorithm also performed well
and correctly detected 96% of the calcified plaques which is
better than the 84% detection rate reported in Ref. 17 over a
different data set. However, note that results in Ref. 17 were
reported on low-dose CT scans.

For more extensive validations on a larger data set, we
applied the fully automated pipeline applied to noncontrast
CT images from 2500 smokers from COPDGene study. We
compared the averaged measures of descending and ascending
aorta diameter and aorta arch width with the values reported
in recent studies from the literature. The measures that were
computed using the proposed automated pipeline agreed well
with the measures reported in the literature.

We found statistically significant associations between
aorta morphology and calcification measures. Calcification
volume within the aorta was negatively associated with
normalized tortuosity of the aorta, but positively associated
with the aorta arch width and mean radius of aorta, especially
the mean radius of descending aorta. These results may be
related to the aorta stiffening as well as unwrapping of arch and
the enlargement of aorta cross sections with increasing calci-
fication. Aorta morphology was also highly associated with
aging. Aging was positively associated with arch width and
mean radius but it was negatively associated with tortuosity
and curvature. These are all preliminary results on a COPD
cohort of smokers.

The suggested automated pipeline is an objective tool that
can be used to assess aorta morphology and aorta calcium
plaque on CT scans that will be potentially useful to provide
clinically relevant information related to cardiovascular dis-
ease in smokers.

One limitation of this study is that our population is from
a COPD cohort not a cardiovascular cohort. The reason why
we used a COPD cohort is that cardiovascular disease is one
of the principal comorbidities in COPD, and, therefore, this
is a population with a wide range of diseases that makes it
suitable to validate new biomarkers. However, an extensive
statistical analysis on a cardiovascular disease cohort needs
to be done to draw conclusions from these results.
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APPENDIX A: SELECTING THE INITIAL DA
AND AA CIRCLES

We begin the circle detection process from the axial slice
of the main carina and apply circular Hough transform to that
slice (see left image in Fig. 9). The search space of circles
is limited to the circles with radius from 0.9 to 2.3 cm for
DA and 1.5 to 2.9 cm for AA. To select the circles corre-
sponding to DA and AA, we first eliminate some detected

F. 9. The left image shows all the detected circles in the slice of main carina, middle and right images show the detected AA and DA circles, respectively. The
pink dot shows the location of carina.
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circles according to their relative positions with respect to
main carina. For AA, we first eliminate the circles which
are to the posterior of main carina. We then eliminate circles
with a distance from carina larger than dAA

x and dAA
y in x

(left–right) and y (anterior–posterior) directions, respectively.
For DA, we eliminate circles that are inferior to the carina,
and the circles with a distance from carina larger than dDA

y in
y direction.

From the remaining candidate circles, the one that maxi-
mizes an energy function is selected (middle and right images
in Fig. 9).

APPENDIX B: SAMPLING OBLIQUE PLANES
ALONG THE ARCH

Here, we explain how we sample oblique planes along the
arch. The first step is finding the line segment connecting
the descending (xDA= (x1,y1,z1)) and ascending aorta centers
(xAA= (x2,y2,z1)) in the slice of TC. The middle point of this
line segment (xM = ((x1+ x2)/2,(y1+ y2)/2,0) is selected and
a second line orthogonal to the first one, and passing through
this middle point, is found. The slope of second line is then
π/2 plus the slope of first line [Fig. 3(a)].

This second line is converted to a plane by sweeping this
line along the superior–inferior (z) direction. This gives us a
plane that passes through the middle of the arch [vertical plane
in Fig. 3(b)]. Rotating this plane around the second line from
−90◦ to +90◦ with 3◦ steps, we obtain oblique cross-sectional
planes along the half torus shaped arch [oblique planes in
Fig. 3(b)].

To implement this rotation around the second line, we first
represent the line parametrically, using a unit vector u and a
point (x0) on the line as follows: x(t)= x0+tu. Before rotating
the points on the vertical plane around vector u, we first
translate the points with an amount −s calculated as follows:
s= x0− ⟨x0, u⟩u. We then rotate the points and translate them
back using an inverse of the initial transformation matrix
for the translation. The overall transformation is given by
T=T−1

transTrotTtrans, where

Ttrans= *
,

I3×3 −s3×1

01×3 1
+
-
.

We compute the rotation matrix using the Rodrigues’ formula
for rotating a point around a vector (u). We choose x0 to be
the middle point (xM), and choose another random point xP on
the line using the line equation. Then, u= (xP−x0)/|xP−x0|.
Using the Rodrigues’ formula, we obtain the rotation matrix
R to rotate a point θ degrees around u as follows:

*...
,

v1 cos(θ)+ (u×v1)sin(θ)+ ⟨u,v1⟩(1−cos(θ))u
v2 cos(θ)+ (u×v2)sin(θ)+ ⟨u,v2⟩(1−cos(θ))u
v3 cos(θ)+ (u×v3)sin(θ)+ ⟨u,v3⟩(1−cos(θ))u

+///
-

,

where v1, v2, and v3 are the unit vectors in the direction of x, y,
and z axis, respectively. The transformation matrix for rotation

is then given by

Trot= *
,

R 03×1

01×3 1
+
-
.

We use the transformation matrix T to rotate all the points
within the initial vertical plane to obtain the oblique plane
coordinates.

APPENDIX C: TRANSFORMATION MATRIX TO
COMPUTE OBLIQUE CROSS-SECTIONAL PLANE

Here, we describe how we sample oblique planes along the
aorta centerline curve c(s). First, the tangent vector at each
point along the centerline is calculated and the cross-sectional
plane normal to the tangent vectors is extracted.

To extract the oblique cross-sectional plane, we first gener-
ate coordinates for an axial plane centered at a point s along
the centerline. We then rotate this axial plane to obtain the
coordinates of the oblique plane using the overall rotation
matrix (To). To obtain the overall rotation matrix, the inverse
of two rotation matrices is multiplied. First, rotation matrix
(Txy) rotates the tangent vector t = [u v w] into xz-plane and
the second rotation matrix (Tz) rotates it further to the z-axis
direction. Applying the inverse of these transformations to the
axial plane coordinates (To=Txy

−1Tz
−1) with a normal vector

pointing in z direction rotates them such that the obtained
oblique plane has normal vector in the direction of the tangent
vector t,

Txy=

*.....
,

cc ss 0 0
−ss cc 0 0

0 0 1 0
0 0 0 1

+/////
-

,

cc=
u

√
u2+ v2

,

ss =
v

√
u2+ v2

,

Tz=

*.....
,

dd 0 −ee 0
0 1 0 0
ee 0 dd 0
0 0 0 1

+/////
-

,

dd =
w

√
u2+ v2+w2

,

ee=

√
u2+ v2

√
u2+ v2+w2

.
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