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Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal,
valence-only electron basis set. The minimal-basis approximation causes molecular polarization to
be underestimated, and hence intermolecular interaction energies are also underestimated, especially
for intermolecular interactions involving charged species. In this work, the third-order self-consistent
charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response
density using the chemical-potential equalization (CPE) method and an empirical dispersion correc-
tion (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference
interaction energies for a broad range of chemical species, as well as dipole moments calculated at
the DFT level; the impact of including polarizabilities of molecules in the parameterization is also
considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square
Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interac-
tions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set
of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are
dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is
retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension
of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions
than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and
PBE-D3 with modest basis sets. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929335]

INTRODUCTION

Semi-empirical (SE) quantum mechanical (QM) methods
have enabled QM to be used where ab initio methods are too
computationally expensive. Conceptually, the SE methods are
approximations to ab initio QM methods, but introduce param-
eters that must be fitted empirically based on either ab initio or
experimental data. SE methods have been discussed and bench-
marked thoroughly, as most recently reviewed in Refs. 1–5.

In the Neglect of Diatomic Differential Overlap/Modified
Neglect of Diatomic Overlap (NDDO/MNDO)-based methods,
the formalism is derived from Hartree-Fock theory, but with
several approximations in both the matrix algebra and integral
calculation.6,7 In the density functional tight-binding (DFTB)
methods,8,9 the formalism is derived from a Taylor expansion
of the DFT energy in terms of density fluctuation with
respect to a reference, and the matrix elements are calculated
from first-principles density functional theory (DFT).10,11 The
basic DFTB method has recently been expanded to second-
and third-order monopole charge expansions of the density
fluctuation, leading to DFTB2 (referred to also as SCC-
DFTB), and DFTB3, respectively.12,13

Both the NDDO/MNDO and DFTB methods discard
three- and four-center electron-repulsion integrals, and hence
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the computational bottleneck of these methods lies in solv-
ing a set of secular equations. Traditionally the methods
employ minimal, valence electron-only basis sets to keep the
computational cost at a minimum. One downside to the use
of a minimal basis set is that intermolecular polarization is
underestimated by about 25%, which leads to poor accuracy
for the description of intermolecular forces, especially for
polar interactions, such as hydrogen bonds and interactions
to ionic groups.14 Furthermore, the minimal basis also limits
the accuracy of computed Pauli-repulsion within the current
DFTB framework.13

This well-known problem has recently led to a plethora of
hydrogen-bond corrections to be added as post-SCF terms to
the electronic energy calculated by the SE methods. Within the
last decade, the H, H2, H2X, H+H4, and H4X hydrogen bond
corrections have been published.1,15–20 While such mechanical
post-SCF corrections greatly increase the accuracy of SE
methods, they do not directly address the fundamental problem
at the QM level, as they do not alter the electron density at
all. Therefore, the transferability of these corrections is likely
limited (see discussions below).

Several improvements for the DFTB3 method are
currently under development. In the context of non-covalent
interactions, these involve extending the monopole expansion
to include dipoles and quadrupoles in the density fluctuation,21

as well as improvements of the description of Pauli repulsion.
This work addresses the low accuracy of DFTB3 for
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intermolecular interactions that implicate highly polarizable
moieties, while keeping the increase in computational cost at
a minimum. Such effort is important for the enhancement of
not only the accuracy of DFTB3 but also its transferability to
the analysis of chemical events in different environments.22,23

It has previously been proposed to lift the rudimentary
restriction of minimal, valence-only basis sets in several
NDDO/MNDO-based SE methods. For instance, the minimal-
basis SINDO1 method24 was augmented with p-function on
hydrogen atoms, which greatly improved the accuracy of
dimerization energies and hydrogen bonding geometries.25

Likewise, the MNDO/d and PM6 methods26,27 add d-functions
to several main-group and transition metals, for more accurate
descriptions of these elements. More recently, the Polarized
Molecular Orbital (PMO) and PMO2 methods28–30 were
developed with a focus on molecular polarizabilities. As
observed for the SINDO1 method, the PMO polarization
functions on hydrogen atoms increase the accuracy of
predicted hydrogen bonding geometries,29 and additionally
reduce the PMO2 error in predicted molecular polarizabilities
by about 80%.30 Similar to the NDDO/MNDO based SE
methods, the tight-binding based DFTB2 method has also
been previously augmented with p-orbitals on hydrogen with
similar improvements in energetics and geometries.31,32

For biological molecules, the addition of polarization
functions to hydrogen atoms would increase the size of the
DFTB Hamiltonian and overlap matrices by about a factor of
two. Since the diagonalization step formally scales as O(N3),
the valence polarized method would be eight times slower,
which is not desirable for simulation studies.

An alternative approach to increasing the size of the
basis set was explored in the self-consistent polarizing
(SCP)-NDDO, where an NDDO density matrix is augmented
by an additional, SCP multipole density matrix.33,34 A
related approach is the chemical-potential equalization (CPE)
method, in which the density is augmented by an additional,
polarizable response density.35–37 The CPE approach has
previously been combined with the MNDO/d method37,38 and,
more recently, the DFTB239 and DFTB3 methods.40 In both
cases, the addition of the CPE response density increased the
accuracy of molecular dipoles and polarizabilities, but the
effect on intermolecular binding has not been addressed.

In the present work, we discuss the implementation of
the CPE method in the framework of DFTB3, leading to
a combined model we refer to as DFTB3/CPE. The new,
additional parameters are obtained by fitting DFTB3/CPE
calculated data to reference values obtained from high-level
QM data. We note that DFTB is in itself unable to describe
dispersion due to the use of Perdew-Burke-Ernzerhof (PBE)
as the functional. Thus, we also derive the relevant parameters
for DFTB3/CPE using the empirical two- and three-body
dispersion interaction corrections due to Grimme.41

THEORY

Third-order SCC-DFTB (DFTB3)

The third-order SCC-DFTB (DFTB3) method is thor-
oughly discussed elsewhere, here we introduce the necessary

equations to help present the combined implementation of
DFTB3 and CPE (DFTB3/CPE) and its variants. In DFTB3,
the total energy is given as13

Edftb3 =

occ
i

ni


µν

CµiCνiH0
µν +

1
2


ab

∆qa∆qbγab

+
1
3


ab

∆q2
a∆qbΓab +

1
2


ab

V rep
ab

. (1)

The matrix elements H0
µν are calculated numerically using

the PBE functional and tabulated in the Slater-Koster files.
Expressions for the second-order kernel, γab, and its charge
derivative, Γab, are derived in previous work,12,13 and the
pair-wise repulsive potentials V rep

ab
are fitted empirically and

tabulated in the form of splines.42,43

The LCAO-MO orbital coefficients, Cµi and Cνi, and the
partial Mulliken charges,∆qa and∆qb, are obtained by solving
the secular Kohn-Sham equations

ν

Cνi

�
Hµν − εiSµν

�
= 0 ∀ µ, i, (2)

where Sµν is the overlap matrix.
The Mulliken charges in turn enter the Hamiltonian matrix

elements,

Hµν = H0
µν + Sµν


c

∆qc

(
1
2
(γac + γbc)

+
1
3
(∆qaΓac + ∆qbΓbc) + ∆qc

6
(Γca + Γcb)

)
, (3)

and Eq. (2) must be iteratively solved until self-consistency is
reached.

Chemical-potential equalization

In the chemical-potential equalization method,36 the
electron density is augmented with a (additional) polarization
response density, δρcpe, described by a set of atom-centered
basis functions

δρcpe =

i

ciϕ
cpe
i (r). (4)

The response basis functions are taken to be p-type Gaussian
functions of the following form:

ϕ
cpe
i (r) = 2ζ2

i
*
,

ζ2
i

π
+
-

3/2

(k − Ki)e−ζ2
i
|r−Ri |2, (5)

where the atom is centered at Ri, and k, and Ki are the x-,
y-, or z-components of r and Ri, respectively; ζi is a basis-set
exponent. As suggested by Giese and York,37 the ζ-exponent
takes into account fluctuations in the partial charge, via an
exponential factor, i.e.,

ζi = Zi exp (Bi ∆qi) . (6)

The parameters Zi and Bi are element-specific parameters, the
value of which must be calculated or fitted from empirical or
ab initio data.



084123-3 Christensen, Elstner, and Cui J. Chem. Phys. 143, 084123 (2015)

In this work, the CPE basis functions interact by means
of a simple kernel36 in the form of a Coulomb integral

Ni j =

 ϕ
cpe
i (r)ϕcpe

j (r′)
|r − r′| d3r d3r′. (7)

The interaction between the DFTB3 basis and the CPE basis
is likewise described by an approximate Coulomb integral

Mi j = f (Ri j)
 ϕ

cpe
i (r)ϕdftb3

j (r′)
|r − r′| d3r d3r′, (8)

where ϕdftb3
j (r) is a function in the DFTB3 atomic-orbital Slater

monopole auxiliary basis set, and screening function f (Ri j) is
applied to the DFTB3-CPE interaction term as an empirical
term to account for the missing kinetic energy component
and also dampens the short-range interaction with the DFTB3
density which seems well-described already,37,40

f (Ri j) =



1, if Ri j > Ru

0, if Ri j < Rl

1 − 10x3 + 15x4 − 6x5, otherwise
, (9)

where

x =
Ru − Ri j

Ru − Rl
, (10)

and Ru = Ri,u + Rj,u and Rl = Ri,l + Rj,l. The parameters
Ri,u and Ri,l are empirical parameters that relate to atom i.
These parameters are fitted element-wise. This approach has
previously been used successfully to improve the descrip-
tion of molecular dipole moments and polarizabilities in
DFTB2+CPE39 and DFTB3+CPE frameworks.40

The correction to the total energy in the combined DFTB3
and CPE model (DFTB3/CPE) is then

Edftb3/cpe = Edftb3 [ρ] + Ecpe [q,c] , (11)

where

Ecpe [q,c] = cT ·M · q + 1
2

cT · N · c. (12)

The variational implicit dependence of the response density
coefficients, c, which must be added to the DFTB3 Hamil-
tonian matrix (Eq. (3)) is (derived in the supplementary
material68):

∆H (cpe)
µν =

1
2

Sµν

(
∂Ecpe [q,c]

∂qa
+
∂Ecpe [q,c]

∂qb

)
µ ∈ a, ν ∈ b, (13)

where
∂Ecpe [q,c]

∂qi
= cT ·

(
∂M
∂qi

)
· q + [cT ·M]i + 1

2
cT ·

(
∂N
∂qi

)
· c.

(14)

The set of coefficients of the CPE response density basis
that variationally minimizes the total DFTB3/CPE energy in
Eq. (11) is given by

c = −N−1 ·M · q. (15)

These are re-calculated in each SCF cycle. In practice, 2-3
cycles are sufficient to converge the response density coeffi-
cients, whereas the DFTB3 method typically requires around

10-20 SCF cycles to converge the Mulliken charges. If the
CPE basis set exponents depend on the Mulliken charges, the
inversion of N must be performed each cycle. If the CPE model
is assumed to be independent of the Mulliken charges, i.e., by
setting B = 0 in Eq. (6), the inversion is only performed once.
This inversion is fortunately much cheaper than solving the
Kohn-Sham equations, and the resulting overhead is about 5%
for a charge-independent CPE model and up to 30% for the
charge-dependent model.40

The DFTB3/CPE gradient contribution is derived in
the supplementary material,68 and the relevant equations
necessary to calculate molecular dipole moments and polar-
izabilities in DFTB3 and DFTB3/CPE are also derived in the
supplementary material.68

D3 dispersion correction

To avoid fitting the parameters of the CPE model such
that the response density is implicitly compensating for the
missing dispersion in the DFTB3 Hamiltonian, we augment
DFTB3 energy with the two-body D3 dispersion due to
Grimme41,44 and three-body Axilrod-Teller-Muto dispersion
correction also due to Grimme.41 The two-body D3 term is
given by

Ed3(bj) = −

a<b

s6
C6,ab

r6
ab
+ [ f (rab)]6

+ s8
C8,ab

r8
ab
+ [ f (rab)]8

, (16)

where rab is the interatomic distance and f (rab) is the Becke-
Johnson damping function,44

f (rab) = a1r0,ab + a2. (17)

In this scheme, all parameters besides s8, a1, and a2 are
determined from first principles. A value of s6 = 1.0 is used
as suggested by Grimme.41

Furthermore, we include the Axilrod-Teller-Muto three-
body dispersion term given by

Eabc = −


a<b<c

fd,3(rabc)C9,abc (3 cos θa cos θb cos θc + 1)
(rabrbcrca)3

,

(18)

where θa, θb, and θc are the angles formed by the triangle
formed by the atoms a, b, and c, and rab, rbc, and rca are
the corresponding interatomic distances, and finally C9,abc
is a constant calculated from first principles. fd,3(rabc) is a
damping function described in Ref. 41.

The total energy of the dispersion corrected DFTB3/CPE-
D3 model is then

Edftb3/cpe−d3 = Edftb3/cpe + Ed3(bj) + Eabc. (19)

Optimization of parameters

We employ an optimization approach based on Bayesian
inference to find the most likely set of parameters given
the data available in our training set. Since the chemical
nature of the data sets is diverse and the reference interaction
energies span two orders of magnitude, we also apply different
weights to the restraints in our optimization. Rather than
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hand-picking these weights, we optimize them on-the-fly dur-
ing the parameterization by including these in our probability
function.

Cost function

The probability of a set of unknown parameters {Pj} and
the unknown relative weights {σi} of the reference data sets,
given the set of input reference data sets {Di} is given from
Bayes’ theorem by the following relation:

p
�{Pj},{σi}|{Di}� ∝ L �{Di}|{Pj},{σi}� p

�{Pj}�
× p ({σi}) . (20)

Here, j is the index of each parameter in the model and i is the
index of each data set available. The probability of observing
a particular set of reference data given a set of parameters and
a set of weights is given as

L
�{Di}|{Pj},{σi}� =


i

L
�
Di |{Pj},σi

�

∝

i

σ
−Ni
i exp *

,

−χ2

2σ2
i

+
-
, (21)

where χ2 is the chi-squared agreement between the reference
data and the corresponding data, calculated using a particular
set of parameters. This assumes that the error in the reference
and model data follows a Gaussian distribution. According
to the principle of maximum entropy, this is the least biasing
choice.45 Since all that is known about the parameters and
weights is that they are positive numbers, these are described
using Jeffery’s prior as the least biasing uninformative prior,
in this case,46

p(x) ∝ 1
x
. (22)

Maximizing the probability in Eq. (20) is in practice carried
out by minimizing the following equivalent cost function:

E = −β−1 ln
(
p
�{Pj},{σi}|{Di}�

)
(23)

= β−1



j

ln(Pj) +

i

*
,
(Ni + 1) ln(σi) + χ2

i

2σ2
i

+
-


, (24)

where β is an artificial simulation temperature factor.
Likely parameter sets are generated by running a Monte

Carlo Metropolis-Hastings47 simulation at β = 0.25 for 10 000
to 25 000 steps. From this simulation, a number of parameter
sets with high likelihood are picked and a greedy optimization
is performed on these, until the cost function has converged
into a minimum.

Akaike information criterion (AIC)

The CPE model introduces a considerable number of free
parameters (see Table I) that are fitted to a relatively limited
set of data. The validity of adding each parameter is evaluated
using the Akaike information criterion48 which is a measure
of the relative Kullback-Leibler distance between a collection
of models and a possible “true” model.

For the data presented in this paper, the AIC can be
calculated as

AIC = 2k + 2

i

Ni ln
�
RMSDi

�
, (25)

where k is the number of parameters in the model, i is the
index of each data set, Ni is the number of data points for the
ith data set, and RMSDi is the Root Mean Square Deviation
(RMSD) between the model calculated and reference data for
the ith data set. See the supplementary material68 for a detailed
derivation of this expression for the AIC.

In cases where k2 ≪ N (N =


i Ni) is not true—when
the data are somewhat sparse compared to the number of
fitting parameters—the AIC is slightly biased towards more
parameters.49 In these cases, the corrected AIC (AICc) can
be used to correct for finite-size effects, by adding a slightly
heavier penalty on more parameters.50 The AIC and AICc are
asymptotically equivalent for N → ∞, and also for k → 0.
The AICc can be derived as an added correction to the AIC,

AICc = AIC +
2k (k + 1)
N − k − 1

. (26)

The Akaike weight (wi) is a measure of the relative
likelihood for each model amongst a collection of candidate
models.49 In the following, we use the AICc values to calculate
the Akaike weights as

wi =
exp

�
− 1

2∆AICci
�

r exp
�
− 1

2∆AICcr
� , (27)

where∆AICci = AICci − AICcmin, i.e., the difference between
the AICc for a particular model minus the lowest AICc
observed across all models.

COMPUTATIONAL METHODOLOGY

The dispersion correction models and the CPE model
are added to the SCCDFTB module of CHARMM version
40a1.51 All DFTB3 and DFTB3/CPE calculations are carried
out in CHARMM using the 3OB parameter set and the X-H
correction.42,43 DFT calculations are carried out in Gaussian
09.52 CCSD(T) and MP2 calculations are carried out in
MOLPRO 2012.1.17.53,54

Reference data sets

The data sets used to parameterize and test the DFTB3/
CPE method are described here; among them, S22 is not used
in the parameterization and serves as a test set for the final
models, while all other datasets are included in the training
set. We note that there is some overlap between S22 and
S66 (5 complexes are found in both sets). All interaction
energies are calculated at the CCSD(T) level of theory. If the
counter poise approximation is used to compensate for basis
set-superposition error, this is noted as (cp) in the following.

We note that an auxiliary basis of purely p-functions will
likely only contribute very little to the anisotropic (i.e., out-
of-plane) polarizability,40 as this would necessitate the use of
higher order polarizing functions, such as d-functions, or a
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TABLE I. Parameters with the highest likelihood for the DFTB3/CPE-D3 models parameterized from interaction energies. Models marked with (pol) are
parametrized using additional polarization data for a set of 87 neutral molecules.

Method (au) DFTB3
DFTB3i-

D3a
DFTB3/

CPE(U )-D3*b,c
DFTB3/

CPE(U )-D3c
DFTB3/

CPE(ζ)-D3
DFTB3/

CPE(q)-D3
DFTB3/

CPE(ζ)-D3 (pol)
DFTB3/

CPE(q)-D3 (pol)

a1 0.5719 0.5719 0.1227 0.3772 0.3942 0.3863 0.3045
a2 3.6017 3.6017 5.2156 4.3174 3.7047 3.5912 0.0000
s8 0.5883 0.5883 0.0166 0.0179 0.0139 0.0128 4.1738

H Z 1.8557 2.1040 1.3356 2.2551 2.3933 2.8005
H B 0.0000 0.0000 0.0000 0.8566 0.0000 0.4084
H rl 0.0624 0.1398 0.1315 0.3796 0.1449 0.4029
H ru 5.1978 4.5281 5.3714 0.3796 2.2003 0.4030

C Z 1.6133 1.8292 1.2331 1.4783 2.4025 1.9271
C B 0.0000 0.0000 0.0000 0.0048 0.0000 0.0111
C rl 2.2399 3.0349 2.1469 1.0862 0.4482 1.5431
C ru 6.9382 5.8196 6.5002 2.3530 1.6382 1.9163

N Z 2.1914 2.4847 5.3497 2.0292 28.867 2.1352
N B 0.0000 0.0000 0.0000 0.3238 0.0000 0.2542
N rl 6.2019 6.3024 5.8490 1.6511 6.0026 2.0131
N ru 6.2023 6.3027 5.8496 2.2921 6.0028 2.0321

O Z 1.9061 2.1612 53.419 4.3227 58.602 9.7552
O B 0.0000 0.0000 0.0000 0.0451 0.0000 0.0965
O rl 3.0359 3.0606 3.5507 3.4832 3.4609 3.4807
O ru 3.7043 3.6479 3.6175 3.6050 4.3822 3.5745

S Z 1.4545 1.6491 1.4068 3.2853 1.4895 2.9192
S B 0.0000 0.0000 0.0000 1.8661 0.0000 1.7258
S rl 3.0731 3.2127 3.1834 17.555 2.4655 16.577
S ru 3.0731 3.2127 3.1836 1884.98 2.4659 2752.47

No. of
parameters

0 3 11 14 18 23 18 23

aD3 parameters from Gerit et al.
bThe D3 parameters are not fitted for this model.
cThe values of Z for each element is set to the value of the Hubbard U times the globally fitted constant.

polarizing sp-basis. Therefore, only isotropic polarizabilities
are included in the training data.

S22

The S22 data set consists of 22 small organic molecules
with a mix of polarization and dispersion dominated interac-
tions.55 We use the updated energies for the S22 data set given
by Takatani et al. in Ref. 56. Energies are calculated at the
CCSD(T)/CBS(cp)//MP2/cc-pVTZ level of theory.

S66

The S66 data set consists of 66 small organic molecules
with a mix of polarization and dispersion dominated inter-
actions.57 Energies are calculated at the CCSD(T)/CBS(cp)//
MP2/cc-pVTZ level of theory.

Charged interactions (“C15”)

This dataset1 consists of 15 dimer complexes where
one species is charged, and is thus dominated by strong
polarization interactions. This dataset is referred to as the
C15 dataset in this paper. Energies are calculated at the
CCSD(T)/CBS(cp)//MP2/cc-pVTZ level of theory.

During parameter optimization, it was discovered that
one complex in the C15 dataset, namely, the imidazolium-
methylamine complex, had a discrepancy of 12 kcal/mol
between the CCSD(T)/CBS and DFTB3 interaction energy.
This complex is excluded from the fitting data and also from
the statistics presented in the Results section, as the large error
reflects an intrinsic limitation of the DFTB3 model for treating
(nitrogen) lone-pairs rather than issues related to the limited
polarizability (see additional discussions below).

Sulfur (“S14”)

This data set consists of 14 dimer complexes where one
species contains a sulfur atom, and is very similar in nature to
the S22, S66, and C15 datasets.58 This dataset is referred to
as the S14 dataset in this work. Energies are calculated at the
CCSD(T)/CBS(cp)//MP2/cc-pVTZ level of theory.

Ionic bonds (“I9”)

This dataset is created similar to the S22, S66, and
C15 datasets, and consists of 9 salt-bridge dimer complexes,
using combinations of guanidinium, imidazolium, and methyl
ammonium as cations and methyl acetate, thiomethoxide, and
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methoxide as anions. Details about this dataset, including
coordinates and interaction energies, are described in the
supplementary material.68 This dataset is referred to as the
I9 dataset in this paper. Energies are calculated at the
CCSD(T)/CBS(cp)//MP2/cc-pVTZ level of theory.

Charged water clusters

This dataset consists of 9 water clusters, where each com-
plex contains one hydronium and one to three water molecules.
Details about this dataset, including coordinates and interac-
tion energies, are described in the supplementary material.68

Energies are calculated at the CCSD(T)/CBS(cp)//MP2/cc-
pVTZ level of theory.

Charged water dimers (“W2”)

This dataset consists of two dimer complexes: the
hydronium-water complex and the hydroxide-water complex.
Details about this dataset, including coordinates and interac-
tion energies, are described in the supplementary material.68

This dataset is referred to as the W2 dataset in this paper.
Energies are calculated at the CCSD(T)/CBS(cp)//MP2/cc-
pVTZ level of theory.

Large water

This dataset consists of 15 water clusters, ranging from 6
to 17 water molecules.59 Interaction energies are calculated
at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level of
theory.

L7

This dataset consists of 7 large organic complexes that are
dominated by large dispersion forces.60 Interaction energies
are calculated at the DLPNO-CCSD(T)/CBS(cp)//TPSS/TZVP
level of theory, and are given in the supplementary material.68

Polarizabilities

The geometries for 133 molecules are taken from
the QCRNA database,61 and dipole moments and isotropic
molecular polarizabilities are re-calculated at the B3LYP/aug-
cc-pVTZ level of theory.62 This data set is divided into 87
neutral molecules, 27 anions and 19 cations.

RESULTS

The optimization process outlined above results in four
different models discussed below. They differ in the number
of parameters.

• DFTB3/CPE(U)-D3*: In this model, the values of the
parameters in the D3 dispersion model are fixed to those
found in Ref. 3. Additionally, the charge dependence of
the CPE basis functions is set to B = 0 in Eq. (6). Fur-
thermore, the value of Z is set to the Hubbard U ,12 but
scaled for all elements by single adjustable parameters.

• DFTB3/CPE(U)-D3: This model additionally relaxes
the parameters of the D3 dispersion model.

• DFTB3/CPE(ζ)-D3: This model relaxes all parameters,
except that the charge dependence of the CPE basis
functions is ignored by setting B = 0 in Eq. (6). Two
versions of this model are parametrized: one based on
only interaction energies, and one additionally using
isotropic polarizabilities for neutral molecules.

• DFTB3/CPE(q)-D3: In this model, all parameters are
optimized. Two versions of this model are parame-
trized: one based on only interaction energies, and one
additionally using isotropic polarizabilities for neutral
molecules.

The final parameters of the four models are summarized
in Table I, and the final RMSD values of the fitting datasets and
the S22 test set are presented in Table II, which also includes
comparison to several other semi-empirical methods as well
as PBE calculations. A graphic overview for the performance
of several methods is presented on Fig. 1. We note that these
parameters are rather different from those optimized in Ref. 40
based on polarizabilities. Indeed, parameters from Ref. 40
would lead to very poor intermolecular interaction energies
for some systems (see Table II and discussion below).

We start by examining the results of DFTB3, DFTB3-D3,
and DFTB3-D3H4 models1,3,42,43 as a reference to gauge the
performance of the DFTB3/CPE models. As shown in Table II,
DFTB3-D3 and DFTB3-D3H4 are major improvements over
the original DFTB3/3OB for dispersion dominated datasets;
for datasets where no charged molecules are present, the
RMSD is typically around 1 kcal/mol for smaller complexes
and 2.31 kcal/mol and 2.61 kcal/mol, respectively, for the L7
dataset, as opposed to the value of 15.92 kcal/mol for DFTB3.
However, for the charged C15 and I9 data sets, the degree
of improvement is notably smaller. The RMSD values are
4.99 kcal/mol and 3.91 kcal/mol for the DFTB3-D3 model,
and 4.10 kcal/mol and 4.66 kcal/mol for the DFTB3-D3H4
model; the corresponding values are 6.07 and 5.60 kcal/mol for
DFTB3. We also note that for the large water dataset of Truhlar
et al.,59 the average binding energy is greatly underestimated
by DFTB3, which gives a large RMSD of 14.16 kcal/mol. With
the inclusion of D3 dispersion, the RMSD drops significantly
to a remarkable value of 2.04 kcal/mol, supporting discussions
in the literature regarding the importance of dispersion to bulk
water properties.34,59,63–65 Interestingly, the binding energies
of large water clusters are severely overestimated by DFTB3-
D3H4, with a RMSD of 23.88 kcal/mol. This is likely caused
by the lack of cooperative hydrogen-bonding effects in the
D3H4 model, which is molecular mechanical in nature.

Regarding the DFTB3/CPE models, it is seen from
Table II that both adjusting the D3 dispersion and improving
the response properties of DFTB3 are required to achieve
a satisfactory description for intermolecular interactions of
different nature. Without adjusting the D3 model, for example,
large errors are seen for dispersion dominated cases such
as L7. On the other hand, including the CPE component is
essential to bringing down errors for polar cases such as C15,
I9, and charged water clusters. For C15 and I9, for example,
the RMSD values for DFTB3/D3 and DFTB3/D3H4 are in the
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TABLE II. RMSD and mean error for 10 data sets using various methods. Reference energies are calculated at the CCSD(T)/CBS(cp)//MP2/cc-pVTZ(cp) level
of theory, and polarizabilities using B3LYP/aug-cc-pVTZ. Values are given in kcal/mol for energies and bohrs3 for polarizabilities. Models marked with (pol)
are parametrized using additional polarizability data for neutral molecules. The model marked (orig) uses the CPE parameter set of Kaminski et al.40 and the D3
parameters of Ref. 3.

S22 S66 C15 I9 S14

Method RMSD Mean RMSD Mean RMSD Mean RMSD Mean RMSD Mean

DFTB3 4.12 3.38 2.99 2.74 6.07 4.82 5.60 4.74 2.04 1.60
DFTB3-D3 1.45 0.68 1.07 0.36 4.99 3.59 3.91 2.56 1.08 0.46
DFTB3-D3H4 1.24 0.48 0.89 0.29 4.10 2.22 4.66 2.69 1.48 0.81
DFTB3/CPE(U )-D3*a 1.18 0.30 0.85 0.04 2.27 1.27 3.02 1.44 1.00 0.17
DFTB3/CPE(U )-D3 1.19 0.44 0.84 0.19 2.37 1.40 3.09 1.71 0.98 0.29
DFTB3/CPE(ζ)-D3 1.21 0.48 0.80 0.16 1.78 0.41 2.58 0.20 1.01 0.14
DFTB3/CPE(q)-D3 1.13 0.51 0.63 −0.02 1.49 0.62 1.73 0.51 0.85 0.07

DFTB3/CPE(ζ)-D3 (pol) 1.17 0.24 0.92 0.04 2.22 1.40 2.36 0.24 0.68 −0.06
DFTB3/CPE(q)-D3 (pol) 1.15 0.52 0.60 −0.09 2.17 1.08 2.41 1.80 0.93 0.22
DFTB3/CPE(q)-D3 (orig) 1.23 0.23 0.00 0.16 3.12 1.96 3.49 1.51 0.98 0.32

PM6 4.18 3.38 2.99 2.65 4.57 4.27 9.13 8.50 1.74 1.35
PM6-D3H4 0.83 0.38 0.64 0.17 1.48 0.80 6.05 5.61 1.19 0.56

PBE/6-31G(d) 3.07 0.51 2.14 0.30 4.57 −4.30 12.96 −12.13 1.38 −0.55
PBE-D3/6-31G(d) 2.82 −2.18 2.34 −2.04 5.71 −5.46 14.90 −14.22 1.90 −1.72
PBE/def2-QZVP 3.71 2.55 2.65 2.05 0.67 0.05 2.39 −1.88 1.08 0.63
PBE-D3/def2-QZVP 0.79 −0.14 0.52 −0.29 1.25 −1.11 4.31 −3.97 0.61 −0.54

Large water Charged water L7 W2 Polarizability

Method RMSD Mean RMSD Mean RMSD Mean RMSD Mean RMSD Mean

DFTB3 14.16 11.05 5.75 5.61 15.92 14.10 6.04 −0.81 19.08 −18.30
DFTB3-D3 2.04 −1.43 3.77 3.72 2.31 −1.36 6.04 −1.39
DFTB3-D3H4 23.88 −20.31 2.51 2.46 2.61 0.75 6.03 −0.69
DFTB3/CPE(U )-D3*a 3.59 −3.14 2.04 2.01 4.23 −2.90 5.78 −1.88
DFTB3/CPE(U )-D3 3.44 −2.95 2.01 1.97 3.72 −1.89 5.75 −1.87
DFTB3/CPE(ζ)-D3 2.51 −1.57 1.21 1.14 4.03 −1.79 5.49 −2.23 92.37 82.29
DFTB3/CPE(q)-D3 3.04 −1.89 2.97 2.94 2.11 −0.55 5.63 −1.79 23.27 21.29

DFTB3/CPE(ζ)-D3 (pol) 2.46 −0.78 2.50 2.41 2.40 −1.51 5.48 −1.78 3.64 1.53
DFTB3/CPE(q)-D3 (pol) 2.75 0.92 4.04 3.97 2.08 −0.81 5.75 −1.40 4.75 3.41
DFTB3/CPE(q)-D3 (orig) 223.69 −156.88 3.32 −2.06 2.18 −0.93 6.37 −2.35 3.67 −3.00

PM6 34.81 27.89 14.01 12.24 12.83 10.92 11.50 6.63
PM6-D3H4 11.04 8.85 9.34 8.22 3.42 −1.06 11.73 6.92

PBE/6-31G(d) 69.57 −58.30 15.86 −13.76 14.53 11.49 14.58 −13.02 9.88 −9.46
PBE-D3/6-31G(d) 82.69 −68.79 17.42 −15.09 5.02 −4.35 14.98 −13.51
PBE/def2-QZVP 4.11 −3.69 3.90 −3.45 17.88 15.56 4.41 −3.85
PBE-D3/def2-QZVP 16.05 −14.17 5.43 −4.78 1.79 −0.29 4.81 −4.35

a“*” denotes that the D3 parameters are not fitted for this model.

range of 4-5 kcal/mol, while DFTB3/CPE-D3 models have
RMSD errors on the order of 2 kcal/mol. Among the four
DFTB3/CPE-D3 models introduced here, as the number of
parameters in the fitting procedure is increased, the RMSD
for the fitting datasets is lowered. Therefore, which model to
choose requires a statistical analysis as we present in the sec-
tion titled Model selection . Finally, we note that the impact of
geometry optimization on the performance of the DFTB3/CPE
models is rather modest (see supplementary material).68

As a comparison to representative NDDO models, we
focus on PM6 and its recent extension, PM6-D3H4. As shown
in Table II, PM6 has lower RMSD interaction energies than
DFTB3 for the smaller complexes, but somewhat higher

RMSD interaction energies for the C15 and I9 datasets. The
addition of the -D3H4 correction makes the PM6-D3H4 model
rather accurate for the S22, S66, and C14 datasets, but only
improves I9 from 9.13 kcal/mol to 6.05 kcal/mol. Additionally,
the RMSD values for the water clusters are rather large for
the PM6 models: for the “Large water” dataset of Truhlar
et al.,59 for example, the RMSD is 34.81 kcal/mol for PM6 and
11.04 kcal/mol for PM6-D3H4. The latter can be compared
to DFTB-D3 (i.e., without any hydrogen bond correction), for
which the same RMSD value is only 2.04 kcal/mol. Again, we
attribute this to the lack of cooperativity in the D3H4 model,
which results in a loss of accuracy when the molecular cluster
size is scaled towards the condensed phase.
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FIG. 1. The RMSD interaction energy
relative to CCSD(T) for 9 data sets (see
text) using five different methods.

As emphasized in our recent discussions,42,2 it is worth-
while comparing DFTB3 models to “first principles” DFT
methods, especially when modest basis sets are used, because
typical DFT based molecular dynamics simulations require
the use of modest basis sets. Accordingly, we show in Table II
also RMSD values for PBE and PBE-D3 DFT models with a
small basis set, 6-31G(d), and a large basis set, def2-QZVP.
The PBE functional with the 6-31G(d) basis set gives very
large RMSD error across all the test sets, presumably due
to basis set superposition errors, while using the large def2-
QZVP yields very accurate interaction energies for all the
smaller complexes. For various water clusters, even the PBE-
D3/def2-QZVP method gives large errors in some cases (see
Fig. 1); for the “Large water” dataset, for example, the RMSD
is 16.05 kcal/mol.

We note from Table II (also see Fig. 2) that DFTB3
with no CPE correction gives an underpolarization for neutral
molecules in the gas phase of ∼18 bohrs3 on average. If the
DFTB3/CPE models are parametrized using only interaction
energies, the combined model actually overpolarizes greatly
by 82 bohrs3 on average for the charge-independent CPE
model and by ∼21 bohrs3 for the charge dependent model.
These numbers can be improved by including polarization

data in the parametrization to 1.5 and 3.4 bohrs3, respectively.
This, however, increases the RMSD interaction energy error
by between 0.1 and 3.4 kcal/mol, except for the charged water
data set, which improves by about 1 kcal/mol. For comparison,
PBE with the modest sized 6-31G(d) basis set underpolarizes
by 10 bohrs3 on average.

Using DFTB3/CPE(q) with the original parameters from
Kaminski et al.40 and the standard D3 parameters, predicted
interaction energies are generally improved compared to
DFTB3-D3. However, for the large water clusters there is
a catastrophic overpolarization, and the binding energy is
greatly overestimated by up to around 200 kcal/mol. As the
CPE from Kaminski et al. parameters were fitted using the
MIO parameter set, we re-did the same calculation with the
MIO parameters set with the same observations. The fact that a
single set of CPE parameters is not optimal for simultaneously
describing intermolecular interactions and polarizabilities to
high accuracy reflects the semi-empirical nature of the current
DFTB3 model; i.e., some of the errors are compensated
empirically during the fitting process, which emphasizes on
energetics. On the other hand, the fact that a reparameterization
of essentially the same DFTB3/CPE model has alleviated the
over polarization problem in large water clusters highlights the

FIG. 2. Gas-phase polarizability for 87 neutral
molecules calculated with four different methods,
compared to a B3LYP/aug-cc-pVTZ reference.
DFTB3/CPE(q) is parameterized without polarizabilities
in the training data, while for DFTB3/CPE(q) (pol)
polarizabilities are included in the training data.
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importance of considering larger clusters than dimer models
for the calibration and parameterization of intermolecular
interactions for condensed phase applications.

In the supplementary material,68 we present the perfor-
mance of the models on anions and cations. Generally, all
the new DFTB3/CPE models as well as PBE/6-31G(d) fail to
reproduce the gas-phase polarizability of anions accurately;
this is hardly surprising because for anions much more diffuse
functions are needed in the gas phase. However, we note that
anions in solution are generally much more electronically
restricted and, hence, much less polarizable. For example,
in the supplementary material68 we show for one of the worst
outliers (thiomethoxide), that when embedded in a droplet
of water, the predicted DFTB3/CPE polarizability is close to
that of a higher level DFT calculation. These results further
underline the great importance and difficulty of extrapolating
from properties of gas-phase model systems to an accurate
description of solution-phase behavior.

Before concluding this section, we note that in the
C15 dataset, the imidazolium-methylamine complex has an
discrepancy of 12 kcal/mol between the CCSD(T)/CBS and
DFTB3 interaction energies. Hence, we chose to leave this
complex out of the optimization procedure, as otherwise the
cost function was dominated by this single outlier. Also, the
methylammonium-methylamine complex differs by almost
10 kcal/mol between CCSD(T)/CBS and DFTB3 results. In
fact, we note a general trend in S66: complexes that include
a nitrogen atom with a lone pair have a larger deviation
between CCSD(T)/CBS and DFTB3 compared to other cases
(see supplementary material68). These observations suggest
a limitation of the current DFTB3/3OB model,42 which
likely reflects the inadequacy of a monopole charge model
for treating strong interactions involve a lone-pair, as also
discussed in Ref. 66. We do not expect the CPE model to solve
this problem, apart from fact that the CPE parameters will be
fitted such that they may implicitly compensate for this issue.
A more physical improvement requires including multipoles in
the charge fluctuations21 and is being pursued independently.
Similarly, although the performance of DFTB3 for water
clusters is rather encouraging once dispersion is included, the
coupled DFTB3/CPE approach remains to have sizable errors
for charged water clusters, especially for water-hydroxide
interactions (W2 set); along this line, we note that a recent
study that included an “on-site” integral correction67 seemed
to reduce the error for charged water cluster considerably.

Model selection

Since the CPE model introduces a number of new
parameters, we estimate the effect of the increasing number
of parameters in the models against the relative likelihood of
each DFTB3/CPE model using the AICc.

The baseline model is the introduction of 0 parameters,
i.e., the DFTB3/3OB model with no further corrections. The
AICc for this model is 359.0. As expected from the higher
accuracy of the DFTB3-D3 model, the three parameters
introduced in this model vastly decrease the AICc to 131.5.
A graphical overview of the ∆AICc values vs. number
of parameters is displayed in Fig. 3. AIC values for the

FIG. 3. AIC values for the DFTB-D3 model and four DFTB3/CPE models
with an increasing number of parameters (see also Table III).

DFTB3/CPE models are presented in Table III. The lowest
scoring (i.e., favorable) models are the DFTB3/CPE(ζ)-D3
and DFTB3/CPE(q)-D3 models. The AIC weight clearly
favors a DFTB3/CPE model over DFTB3 (wi = 0.0%) and
DFTB3-D3 (wi = 0.0%). Additionally, it also seems very
beneficial to optimize the parameters in the dispersion model
along with the parameters in the CPE model. The lowest AICc
is found for the model with the most parameters, namely, the
DFTB3/CPE(q)-D3 model (wi = 99.999%).

The RMSD for the S22 test set, which is not included in
the training data, is improved both by addition of the D3 model
and the CPE model. Among the DFTB3/CPE models, the
RMSD varies by a few percent, although such small variations
may also reflect the fact that the S22 test set does not include
charged molecules.

Additional insights can also be gained from the values
of the parameters presented in Table I. In DFTB, the second
order integrals are evaluated using Slater functions: in this
case, the parameter (corresponding to Zi) is proportional
to the chemical hardness. For CPE, Gaussian functions are
used, i.e., the squared value of Zi would correspond to
the chemical hardness. The chemical hardness suggested by
the value of the calculated DFTB3 Hubbard parameters13

TABLE III. Akaike information criterion.

Method k AIC AICc ∆AICc wi (%)
S22 RMSD
(kcal/mol)

DFTB3 0 359.0 359.0 295.29 0.000 4.12
DFTB3-D3 3 131.3 131.5 67.72 0.000 1.45
DFTB3/
CPE(U )-D3*a

11 100.7 102.9 39.16 0.000 1.18

DFTB3/
CPE(U )-D3

14 102.8 106.5 42.73 0.000 1.18

DFTB3/
CPE(ζ)-D3

18 79.9 86.1 22.34 0.001 1.21

DFTB3/
CPE(q)-D3

23 53.2 63.8 0.00 99.999 1.13

a“*” denotes that the D3 parameters are not fitted for this model.
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suggests that reasonable values for Zi are on the order of
2-4 a.u. for a Gaussian function. This trend is indeed observed
for the CPE(U) models. However, for the CPE(ζ) models
with no constraints on Zi, we find values of Zi for oxygen
and nitrogen that seem unreasonably high. When charge
dependence is introduced in the CPE(q) models, however,
the values of Zi seem to relax to values in the expected range.
These observations are also consistent with the AICc values
reported in Table III: removing the constraints on the Zi-
values in the CPE(ζ) model lowers the AICc considerably
compared to the CPE(U) models, but the cost seems to be
unreasonable values of the exponents. Introducing the charge
dependence in the CPE(q) models leads the exponents to a
very reasonable range, and at the same time, lowers the AICc
considerably, suggesting that the CPE(q) models better capture
the underlying physics.

Effects of geometry optimization with the DFTB3/CPE

Here we investigate the effects of geometry optimization
with the DFTB3/CPE(q)-D3 model. We re-optimize the S22,
S66, C15, S14, large water, charged water, and L7 data
sets, and calculate the interaction energies using the re-
optimized geometries. The structures were optimized using
the adopted basis Newton-Raphson in CHARMM, with a
tolerance of 5.0 × 10−4 Hartree/bohrs. A summary of the
effects of optimization is in Table IV. For the data sets used
in the training set, the RMSD of the interaction energy is
increased from 0.63–3.04 kcal/mol to 1.14–4.87 kcal/mol. An
increase in this RMSD value is expected, since the parameters
were specifically optimized to the reference geometries. For
the S22 data set which we use as validation, the RMSD is
practically unchanged; in fact, it is lowered by 0.09 kcal/mol,
which suggests that the model is indeed transferable.

In terms of changes in the structures of the complexes,
we observe no case where the optimized geometry differs by
more than 0.4 Å from the reference. The few largest changes
are illustrated in Figs. S2-S4 of the supplementary material.68

Over all, the root mean squared structural RMSDs between
the reference and the re-optimized complexes are found to be
in the range of 0.09–0.12 Å, as shown in Table IV.

TABLE IV. The RMSD of the calculated interaction energy (RMSD ∆E)
in kcal/mol for the various data sets using either reference geometries or
DFTB3/CPE(q)-D3 optimized geometries is listed. All RMSD values are in
kcal/mol. Energies are evaluated using the DFTB3/CPE(q)-D3 model. The
root mean squared structural RMSDs (i.e., the RMS RMSD) between the
reference and the re-optimized complexes are listed for each data set.

Data set RMSD ∆E (Ref)a RMSD ∆E (Opt)a RMS RMSD (Å)
S22 1.13 1.02 0.09
S66 0.63 1.14 0.08
C15 1.49 2.09 0.09
S14 0.85 1.20 0.11
Large water 3.04 4.87 0.12
Charged water 2.97 3.11 0.10
L7 2.11 3.77 0.11

a(Ref) denotes that the high-level optimized, while (Opt) denotes that the
DFTB3/CPE(q)-D3 re-optimized complexes are used.

CONCLUDING REMARKS

We have augmented the DFTB3 method with a CPE
response density and the D3 dispersion correction in a
combined methodology termed DFTB3/CPE-D3. Depending
on the number of free parameters, four different DFTB3/CPE-
D3 models are parametrized using a broad range of molecular
complexes of biological interest. Compared to DFTB3-D3, the
accuracy is largely unchanged for small, neutral complexes,
whereas the accuracy is clearly improved for charged com-
plexes. Compared to the D3H4 corrected DFTB3 and PM6
models, the accuracy of DFTB3/CPE-D3 models is compa-
rable for small, neutral complexes, but the scaling to larger
clusters and larger complexes is notably improved. Compared
to PBE and PBE-D3 models with modest (double-zeta
quality) or large (def2-QZVP) basis sets, the DFTB3/CPE-
D3 models are also competitive, especially for large water
clusters. The statistical analysis using the AICc favors the
DFTB3/CPE-D3 models over the DFTB3-D3 and DFTB3
models.

Despite these encouraging observations, we emphasize
that the DFTB3 methodology requires further development
for a generally robust and accurate treatment of non-covalent
interactions in different environments.23 As discussed in
our and related studies, including multipoles and improved
description of Pauli repulsion are of the highest priority;
this is also underlined by the large errors for several cases
involving nitrogen lone-pairs noted in this study. What
we hope to illustrate in this work is that improving the
response properties of DFTB3 is a viable approach to improve
intermolecular interactions involving charged and highly
polarizable molecules. Ultimately, these developments need
to be integrated together to form an efficient and robust
computational framework for condensed phase properties,
especially reactive events in polar liquids and biomolecules.
Along this line, developing test cases beyond the relatively
small clusters used here and most benchmark studies is also
crucial, as illustrated by the different performances of the
previous40 and current DFTB3/CPE models for large water
clusters. Nevertheless, to echo the point of the recent work
of Grimme et al.,3 the future of describing non-covalent
interactions using the DFTB3 methodology seems bright.
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