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Abstract
Intracellular protein aggregation is the hallmark of several neurodegenerative diseases.

Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt

amyloid-like structures that are resistant to denaturation. We used a novel purification strat-

egy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded

polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we

identified the protein species that are trapped within these polyQ aggregates. We found that

proteins with very long intrinsically-disordered (ID) domains (�100 amino acids) and RNA-

binding proteins were disproportionately recruited into aggregates. The removal of the ID

domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggre-

gates. We also observed that several neurodegenerative disease-linked proteins were repro-

ducibly trapped within the polyQ aggregates purified frommammalian cells. Many of these

proteins have large ID domains and are found in neuronal inclusions in their respective dis-

eases. Our study indicates that neurodegenerative disease-associated proteins are particu-

larly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high

frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are

frequently found in pathological inclusions in various neurodegenerative diseases.

Introduction
Accumulation of intracellular and extracellular protein aggregates—frequently in the form of
amyloid—is a common feature of multiple age-associated human disorders, particularly neuro-
degenerative diseases [1, 2]. Amyloid is a highly-ordered aggregate that consists of polypeptides
arranged in filamentous, beta sheet-rich structures with abundant interlocking hydrogen
bonds between sheets [3–6]. Multiple proteins can adopt this architecture [7], and once
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established, they all share extraordinary resistance to proteolysis, chaotropic agents, detergents,
and mechanical breakage [8–12]. Amyloid aggregates—or their oligomeric precursors—are
believed to contribute to cellular toxicity through a variety of mechanisms, such as physically
disrupting membranes or sequestering essential heterologous proteins [13, 14].

Triplet CAG expansions resulting in polyglutamine (polyQ) tracts are characteristic of at
least nine neurodegenerative diseases [15, 16], of which the most common is Huntington dis-
ease (HD). Proteins with expanded tracts of polyQ, which are natively unstructured, are predis-
posed to adopt conformations with amyloid-like properties [17, 18]. When polyQ tracts of the
Huntingtin protein (Htt) exceed ~35 glutamines, Htt fragments can form intracellular inclu-
sions [17, 19–21] resulting in impaired Htt function and aberrant protein interactions [22].
These inclusions (or their early precursors) may confer a dominant gain-of-function cellular
toxicity [23, 24]. Other studies suggest that aggregation caused by polyQ expansion can result
in loss of protein function (and thus pathology), either directly via functional loss of the aggre-
gating species [25], or from the sequestration of proteins that tightly interact with the aggregate
[26, 27]. Thus, the proteins that interact with aggregates may mediate pathological mecha-
nisms, either by conferring new cytotoxicity or by contributing to a general loss of function.
For these reasons, determining how and why specific proteins interact with polyQ aggregates is
important to understanding—and ultimately combating—disease mechanisms.

Recently, we established a mass spectrometry-based approach for non-targeted identifica-
tion of intracellular amyloid-forming and amyloid-associated proteins [9, 28]. Our method,
called TAPI (Technique for Amyloid Purification and Identification), exploits the biophysical
characteristics of amyloid, namely detergent resistance and high molecular weight, to isolate
amyloid aggregates from cell lysates. Stringent nuclease treatment followed by SDS-gel electro-
phoresis eliminates non-specific or loosely associated proteins. Thus the TAPI protocol differs
from antibody-based pull-down protocols by limiting positive hits to those most tightly associ-
ated with amyloid-like aggregates.

In this study we applied the TAPI protocol coupled with mass spectrometry to aggregates
formed by polyQ-expanded huntingtin fragments in both yeast (S. cerevisiae) and mammalian
cells (PC-12, rat neuronal precursor). Previously, various proteins have been shown to interact
with Htt or Htt fragments [27, 29–33], but our approach was designed to identify proteins that
are directly trapped within the amyloid-like polyQ aggregates to determine the types of pro-
teins most prone to irreversible inclusion. We hypothesized that these aggregates would recruit
and/or sequester proteins with common biophysical properties. We observed that inclusion
into polyQ aggregates was mediated by long intrinsically-disordered (ID) protein domains
(� 100 amino acids) in two evolutionary divergent cell models. Also, many proteins normally
associated with neuronal aggregation in other degenerative diseases (especially amyotrophic
lateral sclerosis (ALS)) were disproportionately recruited into polyQ aggregates in mammalian
cells. This study expands the emerging connection between ID domains and neurodegenerative
disease [34], and demonstrates that long ID domains predispose proteins to be recruited into
amyloid-like aggregates.

Materials and Methods

Cell Lines and Maintenance
Yeast strains BY4741 (MATa his3 leu2 met15 ura3 [PIN+] [psi-]) or W303 (MATa leu2 ade2-1
ura3 can1 trp1 his3 gal+) were transformed with Gal-Inducible Huntingtin Exon 1 polyQ
expansion plasmids (Htt-Q25-GFP or Htt-Q103-GFP) [9, 35]. Genes (or truncated variants)
were cloned into pFPS261 and pFPS262, which encode single HA tags in-frame with the multi-
ple cloning site, thus adding c-terminal epitope tags to genes cloned into the Xho1 site.
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Plasmids pFPS261 (CEN LEU2 PGAL1) and pFPS262 (2μ LEU2 PGAL1) are respectively deriva-
tives of previously-described pH316 [36] and pH317 [37]. Truncated SGT2-ΔID is SGT2Δ300–
346, and truncated FUS-ΔID is FUSΔ1–135. Human α-synuclein-GFP was expressed from the
previously-described plasmid DK258 (2μ LEU2 PGAL1) [38]. All strains were cultured in syn-
thetic defined media with appropriate auxotrophic selection for plasmid maintenance. Protein
expression was induced overnight with growth on selective galactose-containing medium.

The PC-12 cell lines were previously described by Wyttenbach et al. [39]. Briefly, the PC12
cells were stably transformed with Doxycycline-inducible GFP-tagged normal Htt-Q23 Exon 1
or expanded Htt-Q74. Cells were cultured on collagen IV (BD Biosciences) coated T-75 flasks
and maintained in DMEM with 75 μg/mL hygromycin, 100 U/mL penicillin/streptomycin, 2
mM L-glutamine, 10% heat-inactivated horse serum, 5% Tet-negative fetal bovine serum and
100 μg/mL G418 at 37°C, 10% CO2. Culture reagents were obtained from Corning.

Technique for Amyloid Purification and Identification (TAPI)
The yeast TAPI protocol was performed as previously described [9] with the following alter-
ations: Buffer A- 30mM Tris-HCl pH = 7.5, 5 mMDTT, 40 mMNaCl, 3 mMMgCl2, 5% glyc-
erol, 1x Complete protease inhibitors cocktail (Roche), 20 mMNEM (Sigma), 0.5 μl Benzonase
nuclease (250 U/ul; Sigma); RNase A (200 μg/ml; Sigma) treatment for 15’ at 4°C prior to ultra-
centrifugation at 300,000 g.

Mammalian TAPI samples were prepared as follows: a cell pellet of at least 1x109 cells
(~100μl in volume) were lysed in cold modified 300 μl RIPA buffer (1% Triton X-100, 0.1% SDS,
1% Sodium deoxycholate, 150 mMNaCl, 10 mMNa3PO4, 50 mMNaF, 5 mMMgCl2, 5mM
DTT, 5mMNa3VO4, with 1x protease inhibitors (Roche) and 33 U DNase 1 (Sigma), 3 mg
RNase A (Sigma) and 750 U Benzonase (Sigma)), followed with a 10-minute incubation at room
temperature and then 20 minutes of mild rotation at 4°C. Lysates were then spun at low speed (5
minutes centrifugation at 100 g) and the pellets were subjected to a second lysing in modified
RIPA buffer with rotation for 20 minutes at 4°C. Combined supernatants were run through a
30% sucrose gradient by ultracentrifugation (2 hours at 45000 rpm at 4°C with a Beckman SW-
50A rotor). Some samples were analyzed at this point to determine the presence of specific pro-
teins in the pellet fraction by western blotting. After ultracentrifugation, the pellet was re-sus-
pended in high SDS buffer (1x TBS, 5 mMDTT, 5 mM EDTA, 2–4% SDS, with 1x protease
inhibitors (Roche)) and incubated with gentle mixing for at least 20 minutes at 37°C. Samples
were run at 200 volts on an acrylamide gel (Any kD, Bio-Rad) in 10% glycerol with 0.1% bromo-
phenol blue to monitor sample migration. The top 3 millimeters of the wells were excised and
frozen. Frozen gel fragments were thawed and resuspended in elution buffer (10mM Tris pH 8.0,
0.4% SDS, 5mMDTT), then mixed and incubated at 99°C for several minutes. Sample volume
was reduced by half in a speed-vac and applied to a desalting column (Zeba spin, Thermo Scien-
tific), pre-equilibrated with 25mm triethylammonium bicarbonate (TeABC). The flow-through
was analyzed for elution efficiency by western blot prior to digestion.

Samples were digested for mass spectrometry (MS) analysis using a previously described
method [40] with minor modifications. Briefly, DTT was added to the sample to obtain a 15
mM solution prior to addition of iodoacetamide to a concentration of 50 mM followed by a
20-minute incubation at 30°C in the dark. Next, 9M urea was added to the sample, which was
then filtered (30 kDA amcon 30K spin filter—centrifuged at 16000 x g 5–10 min), and washed
with 25mM TeABC twice, and finally trypsin digested (5–10μg trypsin) overnight at room tem-
perature. The sample was retrieved from the column by centrifugation (16000 x g for 4 min),
and washed with 25mM TeABC prior to lyophilization. Lyophilized samples were analyzed by
tandemMS/MS by Johns Hopkins Mass Spectrometry and Proteomics Facility.
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Mass Spectrometry Analysis
Samples were run on Q-Exactive (Thermo Scientific) or Orbitrap Velos (Thermo Scientific) at
70,000 resolution for MS and 17,500 for MS2, or 30,000 resolution for MS and 15,000 for MS2
respectively. The data were collected in data dependent mode with the top 15 precursors cho-
sen for MS/MS. The peptides were eluted with a 90 minute gradient at 300 nanoliters per min-
ute after trapping and desalting for 5 minutes at 5 microliters per minute. Peptides were
fragmented with a normalized collision energy of 27 for Q-Exactive, and 35 for Orbitrap Velos.
Target values were 3E6 ions with 60 millisecond maximum injection time for MS and 5E4 with
250 milliseconds for MS2 for Q-Exactive and 1E6 ions for MS with a 100 millisecond maxi-
mum injection time for MS and 5e4 with 300 milliseconds for MS2 for LTQ Orbitrap Velos.

All data were searched using Mascot (v2.6 Matrix Science) through Proteome Discoverer
(v1.4 Thermo Scientific). The database for Yeast included Htt-Q25-GFP in addition to the
RefSeq 2014 Saccharomyces cerevisiae and the database for Rat included GFP-Htt-Q23 in addi-
tion to the RefSeq 2014 Rattus norvegicus. Variable modifications included oxidation on Met,
deamidation on N and Q, and carbamidomethylation on C. Data were searched with a 30 part
per million (ppm) tolerance for precursor mass and 0.03 daltons for fragment masses. Data were
searched with and without the MS2 processor node which deisotopes the MS2 spectra to the +1
charge state prior to searching. Data were filtered through the Target Decoy PSMValidator.

The resulting data were filtered through Scaffold software for Total Spectra Count at 5%
FDR. Criteria for proteins to be defined as associated with Htt-Q74/103 (Htt-PolyQ aggregate)
were as follows: 2 or more total spectra, and present in the expanded Htt-polyQ aggregate
while absent in the short Htt-polyQ control sample (henceforth termed binary) in at least 2 of
4 samples examined. Thus, the requirement for a protein to be considered positive is that in at
least 2 of the matched samples (containing a pair of Q-short and a Q-long samples) performed
at the same time on the same instrument, the protein shows�2 spectra in the Q-long and not
the Q-short. This resulted in 52 Htt-polyQ aggregate associated proteins identified in Saccharo-
myces cerevisiae (Table 1; S1 File) and 91 Htt-polyQ aggregate associated proteins identified in
Rattus norvegicus (Table 2; S2 File). In the accompanying supplementary files, we also include
the proteins that meet a less stringent threshold: present in the Htt-polyQ aggregate sample
while absent in the control for at least one sample set (binary) and 2-fold greater spectra

Table 1. Molecular function of proteins associated with Htt-polyQ aggregates as identified by TAPI
(N = 52) in Saccharomyces cerevisiae.

Functional Category % of
total

Protein Name

Protein Quality Control/
Chaperone

12% Apj1, Bmh1, Def1, Mca1, Sgt2, Ydj1

RNA/DNA Binding 44% Ccr4, Cyc8, Dhh1, Eap1, Hrp1, Ixr1, Mbf1, Mcm1, Mot3,
Nab3, Nam8, New1, Nrd1, Pbp1, Pin4, Pop2, Puf3, Snf5,
Srp54, Taf5, Tup1, Whi3, Ygr250c

Mitochondrial 8% Apj1, Nam8, Puf3, Ynl208w

Endocytosis, Vessicle &
Cytoskeletal Transport

21% Akl1, Ent1, Ent2, Gts1, Pan1, Scd5, Sla1, Yap1801,
Yap1802, Pin3, Sec24

Other 21% Cbk1, Epo1, Gal2, Mum2, Nup57, Nup100, Nup116, Pgd1,
Sml1, Slm1, Ylr177w

Molecular function determined by gene ontology and Saccharomyces Genome Database. Proteins in bold

represent those with overlapping cellular functions; totals exceed 100% because of multiple

categorizations. Yeast ribosomal proteins Rpl30 and Rps6b were excluded.

doi:10.1371/journal.pone.0136362.t001
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number in Htt-Q74/103 (Htt-PolyQ aggregate) than the short Htt-polyQ control in at least
one additional sample pair. As a control for the above method of processing, we also used nor-
malized spectral counting (NCS), a label-free quantification method that compares the number
of MS/MS spectra assigned to each protein normalized for the total spectral counting among
samples [41, 42]. The NCS processing yielded very similar data sets (data not shown).

Bioinformatic Analysis
The proteins identified to be associated with polyQ aggregates using TAPI and MS were further
characterized by molecular function, Q/N content and intrinsic disorder. Gene Ontology, Sac-
charomyces Genome Database (SGD) and the Rat Genome Database (RGD) were used to
determine the molecular function of each protein [43–45]. Q/N-rich regions were defined as
30 or more Q/N in an 80-amino acid stretch [46]. For the cases in which data were not avail-
able, we developed a PERL-based algorithm to examine protein sequences for Q/N-rich regions
(S3 File).

Long intrinsically-disordered (ID) domains were determined using the IUPred-L structural
prediction algorithm; ID domains were defined as 30 or more amino acids with a disorder
score of 0.5 or greater [47]. To approximate the percentage of proteins in the yeast and rat
genomes with long ID regions, 100 and 200 proteins respectively (~ twice the size of each sam-
ple data set; S1 and S2 Files), were randomly selected using a random number generator in
alignment with the full proteomes of yeast (S. cerevisiae) and Rat (R. norvegicus) downloaded
from uniprot (www.uniprot.org). Domains with intrinsic disorder were evaluated for all pro-
teins by IUPred-L. Chi-Square 2x2 Fisher’s Exact test (Graphpad software) was used to deter-
mine if proteins with long ID domains (�100 amino acids) were significantly enriched in
polyQ aggregates. Analysis was also performed to ensure that the TAPI methodology was not

Table 2. Molecular function of proteins associated with Htt-polyQ aggregates as identified by TAPI
(N = 91) in Rattus norvegicus.

Functional Category % of
total

Gene/Protein Name

Protein Quality Control/
Chaperone

26% ADRM1, CLTC, DDI2, DNAJA2, DNAJA4, DNAJB1, DNAJC7,
HSP90AA1, HSPA8, LAP3, PPIA, PSMB2, PSMC1,
PSMC2, PSMC3, RAD23B, SGTA, SQSTM1, SUMO2,
UBQLN2, UBQLN4, UBXN7, USP7, VPS35

RNA/DNA binding* 37% AARS2, AKAP81, ARL6IP4, ATP5A1, ATRX, DDX5,
DYNC1H1, EIF4G1, EIF4G2, FASN, FUS, GIGYF2,
HNRNPA3, HNRNPF, HNRNPH2, HNRNPM, HNRNPU,
HSP90AA1, MATR3, NONO, NR3C1, PCBP1, PPIA,
PRPF40A, PRRC2B, RBMS1, SF1, TDP-43, TCERG1,
TCF20, TNRC6B, TUFM, XRN2, YTHDF1

Mitochondrial 18% AARS2, ACAD9, ACSF2, ATP5A1, CLTC, ETFB, GLS,
HADHA, IDH2, NDUFS7, OGDH, PCK2, PDHB, SUCLG2,
TUFM

Endocytosis, Vessicle &
Cytoskeletal Transport

14% AAK1, ARL6IP4, ASAP1, CLINT1, CLTC, CNN2, DYNC1H1,
MYO1D, NSFL1C, RAB10, SCYL2, TFG, VPS35

Other 15% EP300, GNAO1, KPRP, LDHA, MAGED1, MLF2, PHGDH,
PLEKHB2, PPP2R1A, SIK3, SFN, TGM3, THY1, YWHAB

Molecular function assignments were determined by gene ontology, RGD, and NCBI.

* RNA-binding was assigned in some cases on empirical data [99], thus classification does not necessarily

imply primary function. Proteins in bold represent those that were placed in multiple categories, thus totals

can exceed 100%. Rat ribosomal proteins Rpl6 and Rpl13a were excluded.

doi:10.1371/journal.pone.0136362.t002
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biased towards identifying proteins that are abnormally large or abundant. The size (kDa) and
cellular abundance (molecules/cell) was determined for each protein in the yeast sample set
and compared with the whole proteome (values accumulated from [48–51]; S1 Fig).

Western Blotting
Western blotting of cell lysates (input) and TAPI-purified samples were used to verify high
molecular weight protein aggregation (observed as large species that cannot migrate beyond
the top of an acrylamide stacking gel) and confirm that specific proteins are trapped in polyQ
aggregates. Standard Western blotting techniques were employed using nitrocellulose or PVDF
membranes, which were probed with primary antibodies against the following targets at dilu-
tions of ~1:5000: αGFP (Roche), αHA (Santa Cruz and Sigma), αErk (Santa Cruz sc-93), αFUS
(Bethyl), αhnRNPA1 (Cell Signaling), αRAD23B (Protein Tech), αTDP43 (Protein Tech), and
αUBQLN2 (Novus Bio- 5f5). Appropriate HRP-conjugated secondary antibodies were used at
1:1000 dilutions, followed by HRP chemiluminescent substrate (Pierce ECL) for visualization.

Lysate Partitioning
Analysis of proteins (Bmh1p, Def1p, FUS, Ent2p and Sgt2p) entrapped within aggregates was
performed by observing the fraction of protein in the total lysate, supernatant or pellet fraction
that partitioned to the stacking well of an acrylamide gel under standard SDS electrophoresis
conditions. Briefly, yeast lysates were prepared by mechanical breakage using glass beads in
TAPI Buffer A (with RNase A). Pellet and supernatant fractions were prepared as described in
the TAPI methodology described above. Cellular fractions were subjected to SDS-PAGE using
Any kD gels (Bio-Rad) followed by Western Blotting. The effectiveness of the TAPI buffer to
eliminate RNA from the aggregates was examined by RNase-Free Agarose gel electrophoresis
with and without nuclease treatment (S1B Fig). The FUS protein is prone to degradation fol-
lowing cell lysis, thus denaturing buffer (10 mM Tris, pH 7.5, 8 M urea) was used to visualize
protein levels under conditions in which degradation is greatly inhibited. This enables confir-
mation that the lysates contain equivalent initial amounts of FUS.

Confocal Microscopy
Confocal microscopy slides were prepared on Poly-L-lysine coated slides with 1x106 cells/spot,
fixed with 4% paraformaldehyde in 1x PBS and permeablized with 0.1% Triton X-100 in PBS.
Primary antibodies for RAD23B (Bethyl) or FUS (Bethyl) were added at 1:200 dilution, fol-
lowed by type-specific Alexa Fluor conjugated secondary antibodies (α-rabbit 647 and α-
mouse 568, Southern Biotech) at 1:1000 dilution in 1% fetal calf serum in 1x PBS. Sample slides
were mounted with DAPI-containing fluoramount (EMS) and viewed on a Zeiss 710 confocal
laser scanning microscope and analyzed using Zen software (2009).

Thioflavin-T Analysis
Thioflavin-T (Th-T; Sigma) fluorescence was used to determine if HttQ103-GFP aggregates
are in an amyloid-like form. Purified Sup35-NM fibers (amyloid positive control from previous
study [52]), HttQ25-GFP, and HttQ103-GFP samples were treated with 1μg Th-T in 50mM
Tris pH 8.0, 50mM NaCl buffer in a black 96-well plate. Samples were analyzed on a BioTek
Synergy H1 plate reader using an excitation of 440 nm and emission at 490 nm. To determine
if Thioflavin-T absorbance was significantly different between HttQ25-GFP and
HttQ103-GFP, a two-tailed T-test analysis was used.
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Results

Isolation & analysis of polyQ aggregates in yeast
To identify aggregate-associated proteins, human HttQ103-GFP and HttQ25-GFP [35] were
expressed under control of a galactose-inducible (GAL1) promoter in the yeast Saccharomyces
cerevisiae. Both expression constructs contain the human huntingtin (Htt) exon 1 fragment
with polyQ tracts (103 or 25 glutamines, respectively) fused in frame with green fluorescent
protein (GFP). As observed previously, HttQ25-GFP is soluble during expression, whereas
HttQ103-GFP forms toxic cytoplasmic SDS-resistant aggregates [35] (Fig 1A) that have amy-
loid-like tinctorial properties and can be trapped at the top of an SDS acrylamide gel [9] (Fig
1B; S1B Fig). Proteins that are specifically associated with Htt amyloid-like aggregates were iso-
lated using the TAPI method [9, 28], which traps the large detergent-resistant species in acryl-
amide gel matrix for subsequent extraction and identification. As demonstrated in Fig 1B, the
TAPI method isolates amyloid-like aggregates of HttQ103-GFP, whereas the non-aggregate-
forming HttQ25-GFP does not form species large enough, or sufficiently detergent-resistant,
for isolation.

Proteins tightly associated with the isolated Htt-polyQ aggregates were identified using tan-
dem mass spectrometry (MS/MS). Qualitative comparison of all identified proteins from the
HttQ103-GFP samples—relative to the HttQ25-GFP samples—reveals a subset that is only
associated with the large polyQ aggregates (Table 1; S1 File). In total, 52 proteins were consid-
ered polyQ-associated because they were reproducibly found in the expanded HttQ103 aggre-
gate (Table 1) while absent in the HttQ25 control sample (described in methods). To confirm
that our approach is not enriching for abundant, large, or charged proteins, the polyQ aggre-
gate-associated proteins were compared against the entire yeast proteome. No obvious differ-
ences in size distribution, abundance ([51]; S1 Fig), or charge (the avg. pI of TAPI-identified
proteins is 7.1, the same as the approximation for the yeast proteome [53]) were observed
between our TAPI-identified proteins and that of the entire yeast proteome.

Molecular functions of polyQ aggregate-associated proteins in S.
cerevisiae
HttQ103-GFP aggregate-associated proteins were examined using gene ontology (GO) and
Saccharomyces genome database (SGD) to assign their functions and properties [43–45, 54].
Unexpectedly, RNA/DNA-binding (mostly RNA binding; Table 1) proteins make up the larg-
est percentage of HttQ103-GFP aggregate-associated proteins. In fact, more than 1/3rd of the
polyQ-associated proteins are specifically characterized as RNA-binding proteins (RBPs). Pre-
vious studies suggest that RBPs may localize to aggregates because RNA co-aggregates with
amyloid-forming proteins [55]. However the TAPI method involves extensive RNase treatment
[9, 28]; while we cannot conclude that RNA is completely absent, the vast majority of RNA is
eliminated prior to aggregate isolation (S1B Fig). As most RNA-dependent interactions should
be lost, a preponderance of RBPs in the HttQ103-GFP aggregate is likely independent of RNA-
mediated interactions.

Yeast proteins recruited into polyQ aggregates share common
biophysical properties
PolyQ aggregates have been proposed to induce heterologous protein misfolding via a “cross-
seeding”mechanism [56]. Previously, Michelitsch andWeissman observed that Q/N-rich
domains have an increased propensity to adapt amyloid structure and concluded that 30 gluta-
mine and/or asparagine residues within an 80-amino acid stretch served as a good predictor of
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amyloid formation [46]. Assuming that the polyQ aggregates could “cross-seed” such Q/N-
rich proteins, we analyzed the 52 identified proteins and found they are significantly more
likely to have Q/N-rich domains than the whole of the yeast proteome (54% vs. 2% [46],
respectively; S1 File). For comparison, if simply measuring for total glutamine content of the
identified proteins, the HttQ103-GFP aggregate-associated proteins have only a two-fold
greater total percentage of glutamine content relative to the yeast proteome (respectively, 9.7%
vs. 3.8%[57]; S1 File).

Fig 1. Polyglutamine-expanded Huntingtin exon 1 forms aggregates in yeast that can be isolated by TAPI. (A) Fluorescence microscopy of yeast
expressing GFP-tagged Huntingtin exon 1 (Htt) with a normal (Q25) or an expanded polyglutamine tract (Q103). (B) Western blot of GFP-Htt-Q25 and
GFP-Htt-Q103 showing that high molecular weight aggregates can be isolated from Htt-Q103 expressing yeast cells. Lysate = input; TAPI = purified
aggregate.

doi:10.1371/journal.pone.0136362.g001
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An enrichment of Q/N-rich segments also implies an increase in intrinsically unstructured
protein domains. When each of the polyQ aggregate-associated proteins was examined for
global intrinsic disorder (described here: [58]), the aggregate-associated proteins show a higher
average total percent intrinsic disorder relative to the average value for the whole yeast prote-
ome (48% vs. 20%, respectively). However, if the identified proteins are specifically analyzed
for containing discrete regions that are intrinsically disordered (using IUPred-L prediction
algorithm described in the methods [47]), the polyQ-associated proteins are strongly enriched
for the presence of an ID domain (Fig 2). Previous studies have classified ID domains as
unstructured regions greater than 20–40 amino acids long [59, 60]. For the yeast proteins asso-
ciated with polyQ aggregates, almost all have an ID domain of at least�30 amino acids in
length (92% vs. 31% of the proteome control, respectively; S1 File). However, ~2/3rds of the
proteins contain very long ID domains of�100 amino acids (63% versus 9%; Fig 2), and strik-
ingly of these proteins, ~1/3rd contain no Q/N-rich domain.

ID domains facilitate protein interactions with RNA, so the large cohort of RBPs we found
associated with polyQ aggregates could simply be a result of these proteins disproportionately
possessing ID domains. The RBP subset of aggregate-associated yeast proteins was compared to
all putative and characterized RBPs in the yeast proteome for ID content (S1 File). A majority
(70%) of the HttQ103-GFP aggregate-associated RBPs contain ID domains of�100 amino acids,
while RBPs in general rarely have such long ID domains (~17%; S1 File). Thus, the high frequency
of RBPs in the polyQ aggregates might result from the presence of long ID domains in these pro-
teins, rather than a result of some uncharacterized RNA-binding mechanism of polyQ aggregates.

Biochemical confirmation of protein recruitment to polyQ aggregates in
yeast
Def1p, Ent2p, Sgt2p and Bmh1p are among the proteins we found to be specific to polyQ
aggregates in yeast. We also found that mammalian homologs of Ent2p, Sgt2p and Bmh1p
(CLINT1, SGTA and YWHAB, respectively) co-aggregate with polyQ in mammalian cells (dis-
cussed in detail below). Ent2p, Sgt2p and Bmh1p were previously shown to have effects on pro-
tein aggregation (or toxicity) in yeast models [61–63], while Def1p has not been shown to
influence protein aggregation. We selected Def1p, Ent2p, Sgt2p and Bmh1p for biochemical
confirmation of the MS results.

The presence of Def1p, Ent2p, Sgt2p and Bmh1p in polyQ aggregates was tested by immu-
noblotting following a modified version of our TAPI protocol (Fig 3). HttQ103-GFP, expressed
in yeast, forms a high molecular weight aggregate that partitions to the pellet fraction and gets
stuck at the top of an SDS-PAGE gel (Fig 3A). When HA-tagged Def1p, Ent2p, Sgt2p and
Bmh1p are co-expressed with HttQ103-GFP, they show a similar pattern in their respective
western blots, but only when expressed with the long polyQ expansion, not with HttQ25-GFP
(Fig 3B). Thus, the interactions of all three proteins with polyQ aggregates are sufficiently
strong that they co-fractionate and withstand the conditions of SDS-PAGE, resulting in their
retention in the large resistant species that cannot migrate into the gel (Fig 3B). The His3 pro-
tein was chosen as a negative control as it was never identified in our TAPI samples. Immuno-
blotting confirms that unlike Def1p, Sgt2p and Bmh1p, HA-tagged His3p is not entangled
within polyQ aggregates (Fig 3B), thus recapitulating our MS results biochemically. To ensure
that proteins were not independently forming large detergent-resistant aggregates as a conse-
quence of cellular stress caused by HttQ103-GFP, cells were treated with two alternative
stresses: proteasome inhibitor MG132 and over-expressed human α-synuclein protein, which
is toxic in yeast cells [64]. Neither condition resulted in Sgt2p getting stuck at the top of an
acrylamide gel (S1C Fig).
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Fig 2. Cellular proteins trapped with Htt polyQ aggregates are disproportionately composed of long
intrinsically-disordered (ID) domains. (A) Comparisons of the percentages of proteins with long ID
domains of the 52 yeast proteins in Table 1 (reproducibly found by TAPI to be tightly associated with Htt-
Q103-GFP aggregates) versus 100 randomly-selected yeast proteins (S1 File). Most of the identified proteins
have long ID domains of at least 100 amino acids. (B) Comparisons of the percentages of proteins with long
ID domains of the 91 rat proteins in Table 2 (reproducibly found by TAPI to be tightly associated with GFP-Htt-
Q74 aggregates) versus 200 randomly-selected rat proteins (S2 File). ID domains are defined as regions of
30 or more amino acids with IUPred scores of 0.5 or greater [47, 98]. Chi-Square Fisher’s Exact test
(Graphpad software) was used to determine significance between TAPI-identified proteins and proteome
control sets.

doi:10.1371/journal.pone.0136362.g002
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Analysis of polyQ aggregate-associated proteins in PC-12 cells
With the observation that RBPs and proteins with ID or Q/N-rich domains are bound to
HttQ103-GFP aggregates in the yeast model, we asked if the same would be true in a mamma-
lian system. To test this, another Huntington disease model was used: mammalian PC-12 cells
stably expressing doxycycline-inducible HttQ23-GFP or HttQ74-GFP developed by David
Rubinsztein’s lab [39]. Again, both constructs contain the Htt exon 1 fragment with a polyQ
tract (23 or 74) fused in frame with GFP, and only the protein with pathogenic extended polyQ
forms SDS-resistant aggregates (Fig 4A). In this model, the polyQ aggregates have an approxi-
mately equal distribution in the cytoplasm and nucleus [39], thus may interact with most of
the non-secreted cellular proteome. The amyloid-forming HttQ74-GFP, but not HttQ23-GFP,
could be successfully purified and detected using the TAPI method, as shown in Fig 4B. MS
analysis followed by comparison of all identified proteins showed a subset that was unique to
samples with polyQ aggregates. Using the criteria described above, 91 proteins were considered
specific to the HttQ74-GFP aggregates (Table 2; S2 File).

Molecular functions of polyQ aggregate-associated proteins from PC-12
cells
Characterization of the proteins enriched in polyQ aggregates from PC-12 cells reveals a dis-
proportionate number of RBPs, as similarly observed in yeast (Table 2; S1 and S2 Files). Also,
several functional homologs were common to the polyQ aggregates isolated from both the
yeast and mammalian cells (S1 Table): RNA-binding proteins DDX5 (yeast Dhh1p) and
hnRNPA3 (yeast Hrp1p), 14-3-3 proteins YWHAB and SFN (yeast Bmh1p), endocytosis pro-
teins CLINT1 (yeast Ent1/2p) and AAK1 (yeast Akl1p), and chaperone proteins SGTA (yeast
GET pathway protein Sgt2p), DNAJA2 and DNAJA4 (yeast Ydj1p and Apj1p).

Fig 3. Western blotting confirms that TAPI-identified proteins are trapped in large, detergent-resistant Htt-polyQ aggregates. (A) Immunoblotting
reveals that Htt-Q103-GFP, but not Htt-Q25-GFP, forms large detergent-resistant aggregates that fractionate in the pellet (partial TAPI purification; see
methods) and remain at the top of an acrylamide gel under SDS-PAGE conditions. (B) Immunoblotting confirms that HA-tagged Bmh1p, Def1p, Ent2p, and
Sgt2p (proteins identified by mass spec) get trapped in the detergent-resistant aggregates that can be seen stuck at the top of the gels in the pellet fractions.
As a negative control, HA-tagged His3p (not identified by mass spec) shows no susceptibility to co-aggregation with Htt-Q103-GFP. Note that Def1p was not
easily visualized in the supernatant fraction because it is prone to degradation (data not shown). Samples were spun at 45,000 rpm, except Ent2p (10,000
rpm). S = supernatant; P = pellet fraction.

doi:10.1371/journal.pone.0136362.g003
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Fig 4. Polyglutamine-expanded Huntingtin exon 1 forms aggregates in PC-12 cells that can be
isolated by TAPI. (A) Fluorescence microscopy of PC-12 cells expressing doxycycline inducible transgene
GFP-tagged Huntingtin exon 1 (Htt) with normal (Q23) or expanded polygluamine tract (Q74). (B) Western
blot of GFP-Htt-Q23 and GFP-Htt-Q74 showing high molecular weight aggregates can be isolated from Htt-
Q74 expressing PC-12 cells. Lysate = input; TAPI = purified aggregates.

doi:10.1371/journal.pone.0136362.g004
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Biophysical properties of proteins that associate with polyQ aggregates
in PC-12 cells
Biophysical characterization reveals the HttQ74-GFP aggregate-associated proteins from PC-
12 cells are enriched for Q/N-rich regions relative to the entire rat proteome (7% versus 0.4%),
albeit to a much lesser degree than in yeast. Proteins containing long ID domains (�100 amino
acids) are significantly increased among the TAPI-identified HttQ74-GFP aggregate-associated
proteins (31% vs. 18% for proteome control, respectively, p = 0.021; Fig 2; S2 File). As in yeast,
this suggests that cellular proteins with long ID domains may be inherently prone to inclusion
in polyQ aggregates.

Neurodegenerative disease-linked proteins are recruited into polyQ
aggregates
Among the aggregate-specific proteins in PC-12 cells, we also identified a significant subset of
proteins that are neurodegenerative disease-associated (Table 3). Surprisingly, these proteins
were not limited to huntingtin-interacting proteins; we identified a cadre of ALS-linked pro-
teins. We hypothesized polyQ aggregates could pull in proteins that are prone to aggregation
in other pathological contexts. When we probed the purified polyQ aggregates (purified frac-
tion confirmed in Fig 5A) with antibodies specific to proteins that are known to aggregate in
the motor neurons of ALS patients (and were identified by MS in this study), we corroborated
the specific presence of FUS, TDP-43, and UBQLN2 in the Htt-Q74 aggregates (Fig 5B). We
hypothesized that other ALS-linked proteins may be similarly recruited into aggregates but
escaped detection by MS. Immunoprobing for the ALS-linked HNRPA1 also revealed its pres-
ence in the purified polyQ aggregates (Fig 5B). For a control, we probed for the kinase Erk,
which was not identified by MS in our samples, and indeed, it could not be found in the polyQ
aggregates (Fig 5A). In total, of the HttQ74-GFP aggregate-associated proteins in PC-12 cells,
21% (19/91) have previously been found in the intraneuronal inclusions of various neurode-
generative diseases (Table 3). Of these disease-linked HttQ74-GFP aggregate-associated pro-
teins, many are RBPs (7/19) and more than half (9/19) contain very long ID domains (�100
amino acids) (Table 3; S2 File).

Since one fifth of the proteins we identified have been previously linked to pathological
aggregates, perhaps many of the remaining proteins represent novel aggregate-associated pro-
teins that have never been specifically probed in various pathological contexts. We selected
HSPA8, CLINT1 and SGTA as candidate proteins that could potentially be recruited into path-
ological aggregates in neurodegenerative disease. We chose CLINT1 and SGTA because
intriguingly their homologs (Sgt2p and Ent2p, respectively) were also identified in our yeast
model. The Hsp70 protein HSPA8 was selected because Hsp70s have been previously sus-
pected to play critical roles in neurodegenerative disease [65–67]. We confirmed by immuno-
blotting the presence of all three proteins in the highly-purified Htt-Q74-GFP aggregates from
PC-12 cells (Fig 5b).

Confirmation of recruitment of identified proteins to polyQ aggregates by
immunocytochemistry
The localization of selected polyQ aggregate-associated proteins was also confirmed by confo-
cal microscopy (Fig 5C). The proteins CLINT1, RAD23B and FUS were selected because they
appeared to be particularly strong hits based on the initial analysis of the polyQ mass spec-
trometry data andWestern blot results. Using immunocytochemistry, each was observed to be
aberrantly recruited to the major sites of HttQ74-GFP aggregation (Fig 5C). However, despite
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strong over-expression of HttQ74-GFP and the formation of large intracellular aggregates, the
recruited proteins did not appear to completely localize to the aggregates. In fact, only a frac-
tion of each protein’s respective total was found at the aggregate.

Intrinsically-disordered domains play a role in the recruitment of proteins
to polyQ aggregates
We selected yeast Sgt2p and human FUS to further examine the role of ID domains in localiza-
tion to Htt-polyQ aggregates. Sgt2p is involved in protein quality control and does not contain
a known RNA-binding domain (RBD). Interestingly, we also identified Sgt2p’s mammalian
homolog, SGTA, among the proteins associated with polyQ aggregates in PC-12 cells. The FUS
protein contains a distinct RBD and a long N-terminal ID domain, and when expressed in
yeast, exhibits aggregation and toxicity reminiscent of what is observed in diseased motor neu-
rons [68–71].

To determine the contribution of their respective ID domains toward recruitment to polyQ
aggregates, we created expression vectors in which the major ID domain (as determined by
IUPred-L) of both FUS and Sgt2p is deleted (FUSΔID = FUSΔ1–134; Sgt2ΔID = Sgt2Δ300–346).
The full-length versions of FUS and Sgt2p, or their ΔID counterparts, were co-expressed with
either HttQ25-GFP or HttQ103-GFP. We truncated the TAPI protocol to easily evaluate the
co-localization of the proteins with polyQ aggregates (lysate partitioning; see methods). When
we isolated the Htt-polyQ aggregates by lysate partitioning from the Sgt2-transformed strains
(shown in Fig 6A as the resistant species stuck at the top of the gel), we observed an enrichment
of full-length Sgt2p in the Htt-polyQ high molecular weight aggregates (Fig 6B, left panel).
However, when the major ID domain was deleted, most of the co-localization with the polyQ

Table 3. Htt-polyQ aggregate-associated proteins found in inclusions and aggregates in various neurodegenerative diseases.

Gene/Protein Name Disease or Disease Model ID Domain RBP PQC Reference

AAK1 ALS-SOD1 209, 81, 50 [100]

FUS ALS 284, 71, 87 yes [101–103]

HNRNPA3 ALS 39 yes [104]

HSPA8 HD & SCA1 46, 36 yes [94, 105]

MATR3 ALS 31, 57, 42, 119, 72 yes [106]

MLF2 HD 136 [107]

NONO ALS-FUS 66 yes [108]

PPIA ALS-SOD1 None yes yes [109]

RAD23B HD, SCA3 120, 67, 41 yes [110, 111]

SQSTM1 PD & ALS 153 yes [112–115]

SUCLG2 AD None [116]

SUMO2 HD & ALS None yes [117, 118]

TARBP (TDP-43) ALS 45, 55 yes [119, 120]

TCERG1 HD 138, 177, 70, 36 yes [74]

TCF20 HD 87, 739, 50, 32, 709, 34, 121 yes [121]

TFG CMTD 35, 54, 105 [122]

TGM3 HD 49 [123]

UBQLN2 ALS 62, 58, 42, 81, 31, 84 yes [124]

YWHAB ALS None [125]

The numbers for ID Domains indicate the length of distinct unstructured regions �30, for the identified rat proteins from PC-12 cells, as determined by

IUPred-L. RBP = RNA-binding protein as described in the legend of Table 2; PQC = protein quality control.

doi:10.1371/journal.pone.0136362.t003

Polyglutamine Aggregates Trap Intrinsically Unstructured Domains

PLOS ONE | DOI:10.1371/journal.pone.0136362 August 28, 2015 14 / 27



Fig 5. Confirmation of polyQ-associated proteins from PC-12 cells identified by TAPI. (A) Western blotting shows that the addition of doxycycline to the
PC-12 cell model induces the expression of HttQ74-GFP, resulting in aggregates that can be purified by TAPI. The kinase ERK is probed as a negative
control; ERK was never identified by mass spectrometry, so is not expected to co-fractionate with polyQ aggregates. (B) Western blot analysis of TAPI-
purified polyQ aggregates from PC-12 cells confirms the presence of several disease-associated proteins only in the Htt-Q74 samples. All proteins migrated
near their predicted molecular weights. For control, the TAPI procedure was conducted in parallel on the induced Htt-Q23 cell line (FUS, TDP-43, UBQLN2,
HNRNPA1) or the un-induced Htt-Q74 cell line (CLINT1, HSPA8, RAD23B, SGTA). (C) Confocal microscopy shows localization of identified proteins to Htt-
Q74 aggregates in PC12 cells. (left) RAD23B, nominally a DNA repair protein, localizes to nuclear Htt-Q74 inclusions but not cytoplasmic inclusions. (middle)
FUS, an RNA-binding protein localizes to nuclear and cytoplasmic Htt-Q74 inclusions. (right) CLINT1, a clatherin-interacting protein, is observed in
cytoplasmic Htt-Q74 aggregates. Arrows indicate foci with co-localized proteins. Green = GFP; Magenta = CLINT1, FUS or RAD23B in merge.

doi:10.1371/journal.pone.0136362.g005
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Fig 6. The ID domains of Sgt2p and Fusmediate their localization to Htt-polyQ aggregates in yeast
cells. (A, B) Western blots of lysates from yeast strain W303 expressing HttQ25-GFP or HttQ103-GFP in
combination with HA-tagged Sgt2p or Sgt2ΔID (A = αGFP; B = αHA). (C, D) Western blots of cells expressing
HttQ25-GFP or HttQ103-GFP in combination with FUS or FUSΔID (C = αGFP; D = FUS & α-β actin).
Because FUS is quickly degraded in non-denaturing conditions, input controls using urea lysis of cells were
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aggregate is eliminated (Fig 6B, right panel). The exact same pattern was observed for FUS and
FUSΔID (Fig 6C and 6D, respectively). For comparison, we also used an engineered variant of
FUS, which has leucines in place of four conserved phenylalanines (FUS(4F-L): amino acids
305, 341, 359 and 368) in the RNA recognition motif (RRM) domain. FUS(4F-L) was previ-
ously shown to be RNA-binding incompetent [72]. We observed that FUS(4F-L) was recruited
to polyQ aggregates as readily as wild-type FUS (Fig 6E and 6F), thus suggesting that RNA
binding may not play a significant role in facilitating a protein’s inclusion into polyQ
aggregates.

Discussion

Compositional analysis of polyQ aggregates using TAPI
Models of huntingtin exon 1 mimic truncated versions of huntingtin found in intraneuronal
aggregates [73], and thus are helpful for studying intracellular aggregation. Here we analyze
the protein species that get recruited into amyloid-like aggregates formed by polyQ-expanded
Huntingtin exon 1 in both yeast (Q103) and mammalian cells (Q74). The distinctive tinctorial
properties and detergent resistance of the aggregates indicates that they are in an amyloid-like
state (S1B Fig).

Proteins that specifically associate with polyQ aggregates are hypothesized to play either
positive or negative roles in pathogenic processes. Previous attempts to identify the proteins
that interact with huntingtin, have employed yeast-two-hybrid, immuno-precipitation and
immuno-histochemical screening [27, 30, 32, 33, 74–78]. The overlap in identified proteins
from different methods is often low or the identification of hundreds of proteins limits clarity.
Also, antibody-based screening is limited to a predetermined set of functioning antibodies and
thus may overlook unexpected interactions. Our mass spectrometry-coupled approach, called
TAPI, is specific to the most chemically-resistant forms of protein aggregates and eliminates
the need to excise individual bands from acrylamide gels [9, 28]. The high stringency of TAPI
—due to DNase, RNase, and detergent treatment along with SDS-gel electrophoresis of aggre-
gates—minimizes the identification of non-specific and loosely-associated proteins. In sum,
our data set, in addition to the work of others, helps identify the important factors that make
specific proteins most vulnerable to inclusion into polyQ aggregates.

Our analysis in both yeast and mammalian systems revealed a compact group of proteins
enriched in polyQ aggregates. In both cell types, the proteins recruited to aggregates belonged
to common functional classes (Tables 1 & 2); RNA-binding, endocytosis-related and mito-
chondrial proteins were disproportionately found in all Htt-polyQ samples. Importantly, the
proteins identified by mass spectrometry could be independently confirmed by immuno-blot-
ting. Moreover, our findings are supported by a previous study in Neuro 2A cells, which cou-
pled Sarkosyl treatment with conventional 1D-gel separation and manual band excision, to
identify polyQ-associated proteins [67]. Among the twelve proteins identified by Mitsui and
coworkers, 8 were also identified by our approach in PC-12 cells (EEF1A1, HSPA8,
HSP90AB1, MLF2, PSMC1, RAD23B, UBQLN2, YWHAB; Table 1), suggesting that across cell
types, certain proteins consistently have a high propensity for inclusion into polyQ aggregates.
Moreover, functional orthologs are common to both the yeast and mammalian samples
(YWHAB/Bmh1/2p, DDX5/Dhh1p, SGTA/Sgt2p, CLINT1/Ent1/2p, hnRNPA3/Hrp1 and
HSPA8/Ssa1p). The recruitment of SGTA/Sgt2p and CLINT1/Ent2p into polyQ aggregates

included to show initial protein loads. (E, F) Western blots of FUS or FUS(4FL) in HttQ25-GFP-expressing or
HttQ103-GFP-expressing cells.

doi:10.1371/journal.pone.0136362.g006
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was confirmed in both the yeast and mammalian systems by immuno-detection methods. This
overlap—not only between TAPI samples, but also across divergent organisms—suggests that
these specific proteins (or their properties) may play a role in processes linked to pathological
polyQ aggregation. This is supported in the literature where Ssa1p [35], HSP70 [79] and Sgt2p
[77] have all been directly connected to polyQ aggregates in various models. As for the cla-
thrin-interacting proteins CLINT1 and Ent2p, their presence suggests that aggregates can have
important interactions with vesicle-dependent processes.

RNA binding proteins are disproportionately recruited to polyQ
aggregates
RNA-binding proteins were highly represented in the Htt-polyQ TAPI data sets from yeast
and rat cells. The presence of quality-control proteins, such as chaperones, was not particularly
surprising since Htt-polyQ forms toxic intracellular aggregates. However, the enrichment of
RNA-binding proteins was unexpected, especially considering the extensive nuclease treatment
that is used prior to isolation of the aggregates (S1B Fig). RNA-binding proteins have been
shown to contribute to the pathologies of a number of neurodegenerative diseases [55, 80]. The
aggregation of RNA-binding proteins is transient in normal cellular homeostasis, but may
accumulate in neurodegenerative diseases due to pathological alteration of assembly and clear-
ance pathways [55]. This aberrant accumulation is frequently tied to interactions mediated by
“prion-like” domains [81, 82], which are intrinsically unstructured domains that resemble the
domains that enable certain yeast proteins to adopt self-propagating amyloid conformations. It
is this intrinsically-disordered property that is likely responsible for the abundance of RNA-
binding proteins in polyQ aggregates, because nucleic acid-interacting proteins frequently hav-
ing intrinsically unstructured regions. Thus, our results suggest that a proteins’s ID domain,
not the RNA binding per se, may be the major determinant of inclusion into Htt-polyQ aggre-
gates (Fig 6C and 6D). This is corroborated by our observation that disrupting the RNA-bind-
ing domain of FUS had no effect on its inclusion in polyQ aggregates (Fig 6E and 6F).

Mitochondrial proteins are found in polyQ aggregates
Mitochondrial proteins represent a significant fraction of the polyQ-associated proteins in
yeast and rat cells, 8% and 18% respectively. In yeast, this percentage is less than the proteome
representation of mitochondrial proteins (~18[83]), but in rat cells this is an over-representa-
tion (5–12%[84]). In yeast cells the polyQ aggregates form primarily in the cytoplasm, and in
the rat cells the aggregates are equally in the nucleus and cytoplasm. Mitochondrial proteins
are mostly synthesized in the cytoplasm and transported as unfolded polypeptides into mito-
chondria post-translationally. A probable explanation for the presence of mitochondrial pro-
teins in aggregates is that because of their unfolded conformation they are vulnerable to
integration into aggregates or because of their dependence on chaperones may be more sensi-
tive to general problems associated with protein quality control.

Intrinsically-disordered domains facilitate protein recruitment to polyQ
aggregates
Why are proteins with ID domains tightly and disproportionately associated with Htt-polyQ
aggregates? Not only did we observe an enrichment of ID domain-containing proteins, but pre-
vious proteomic studies of polyQ also reveal data sets that are rich in such proteins [32, 78, 85].
Ratovitski et al. observed that proteins with ID domains of�30 amino acids were enriched in
aggregates formed by Htt-50Q in HEK293 cells. This is consistent with our results, although
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we found significant enrichment with very long ID domains (�100aa). Similarly, Raychaud-
huri et al performed a bioinformatic analysis of intrinsic disorder in neurodegenerative dis-
ease-associated proteins. Their bioinformatics dataset (obtained from Entrez Gene database
keyword search) when compared to control datasets indicates an increase in intrinsic disorder
(using FoldIndex) for Huntington disease-associated proteins with ID domains up to 100
amino acids in length [86]. Intrinsically unstructured regions frequently facilitate molecular
interactions or serve as sites of post-translational modifications [60], as well as being promi-
nent features of many nucleic acid-binding proteins and chaperones [87, 88]. These domains
generally lack hydrophobic residues sufficient for adopting a folded structure in aqueous envi-
ronment [89] and thus may be more accessible to aggregation simply by virtue of accessibility.
We demonstrated that elimination of the major ID domains of two proteins eliminated their
co-aggregation with polyQ (Fig 5).

While we do not assert that ID domains are solely responsible for association with Htt-
polyQ aggregates, it is clear that ID domain content plays a prominent role in recruiting sec-
ondary proteins to aggregates. In some cases, quality-control proteins could even employ
intrinsic disorder within a specific domain to facilitate the functional recognition of misfolded
protein aggregates. However, because of the large number of quality-control proteins that we
identified it cannot be concluded that there is a single mechanism by which all such proteins
are tightly associated with polyQ aggregates; some proteins, such as UBQLN2, likely only have
specific affinity for aggregates following ubiquitination.

Why are neurodegenerative disease-associated proteins recruited to
polyQ aggregates?
Neurodegenerative disease-linked proteins that have been identified in cellular inclusions in
their respective diseases represent a fifth (19/91) of the total TAPI-identified Htt-polyQ aggre-
gate-associated proteins (Table 3). Examining this sub-set reveals that nearly all of them contain
ID domains. We observed that some ALS-associated proteins were trapped in polyQ aggregates.
Three of these proteins—FUS, HNRPA1 and TDP-43 –are RNA-binding proteins that form
pathological inclusions in certain forms of ALS and frontotemporal lobar dementia (FTLD)
[90–92]. These proteins have ID domains that resemble the domains of yeast prion proteins due
to similar amino-acid composition. It has been concluded that these prion-like domains may be
primary-aggregating species, but the fact that these ALS-associated proteins are pulled into
polyQ aggregates suggests that in some long-lived cells, such as neurons, there could be underly-
ing protein quality control problems with proteins like FUS and TDP-43 getting preferentially
recruited into pre-existing primary aggregates [93]. For example, it is possible that over decades,
intermediate-length polyQ expansions in various proteins lead to persistent aggregates that
recruit proteins with ID domains; these inclusions would be marked (i.e. immuno-positive) by
specific aggregation-prone proteins. Alternatively, the diminution of protein-quality control
with aging may create a cellular environment where proteins with long ID domains are increas-
ingly susceptible to aggregation, thus polyQ models and their induced stress may be good tools
for identifying proteins that are most vulnerable to aggregation (or functionally localize to
aggregates) under conditions of compromised protein-quality control. We hypothesize SGTA
and CLINT1—proteins we confirmed to co-aggregate with polyQ—may be two such candidate
proteins with the potential to localize to multiple types of pathological neuronal inclusions.
However, just because proteins co-localize with polyQ aggregates in cell models does not mean
they will similarly co-localize in animal models or in diseased neurons. HSPA8, whose presence
we confirmed in polyQ aggregates in PC-12 cells was not observed in cytoplasmic polyQ aggre-
gates in a transgenic mouse model of Huntington’s disease [94].
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Mechanisms of toxicity
Both the yeast and mammalian model systems show a correlation between polyQ-expanded
huntingtin aggregation and cellular toxicity [35, 39], however much debate still persists as to
the mechanism by which aggregation leads to cell death [95]. One possible mechanism is that
sequestration of proteins to an aggregate may impair cellular function [96], which is arguably
an indirect loss of function. Such sequestration by aggregates of polyQ-expanded Ataxin3 (spi-
nocerebellar ataxia-causing protein) was proposed to cause a loss-of-function toxicity [26].
Our observations suggest this indirect loss-of-function toxicity due to sequestration of essential
proteins could occur with huntingtin aggregation as well. We observe altered cellular localiza-
tion for a subset of proteins when Htt-polyQ aggregates are present. It is possible that these
proteins may maintain some function while associated with the Htt-polyQ aggregate. If the ID
domain of a protein becomes embedded in the polyQ aggregate, while globular or functional
domains remain peripheral, function in the wrong place at the wrong time could be a gain-of-
function toxicity associated with aggregates. Stoichiometrically, this may be more plausible
than loss-of-function because we observe only a fraction of any given co-aggregating species
mis-localized to the polyQ aggregate, which itself is quite abundant due to over-expression of
Htt (Fig 5). Of course, a combination of gain-of-function and loss-of-function mechanisms
could contribute to the overall cellular toxicity.

Although many techniques have been employed to identify huntingtin-interacting proteins,
few examine specifically the amyloid form. Our results show that a select group of proteins are
trapped by polyQ amyloid-like aggregates. Proteins with long ID domains are disproportion-
ately prone to inclusion, as are many proteins that are associated with other neurodegenerative
diseases. The enrichment in ID domain-containing proteins in polyQ aggregates, and the elim-
ination of this enrichment when the ID domains are deleted, reveals the significant role of pro-
tein structure in determining if a protein gets secondarily recruited into certain types of
aggregates. Thus, while some proteins might be predicted to be recruited into aggregates
because of their function (i.e. quality-control proteins or proteins that interact with the soluble
form of an aggregating species), many proteins may be recruited simply as a consequence of
their secondary and tertiary structural elements. The metastable structure and accessibility of
long ID domains may render proteins particularly susceptible to aberrant inclusion in amy-
loid-like aggregates. Recently, Habch and colleagues put forth the idea that ID proteins repre-
sent a class of pharmacological targets [97]. As our results suggest, if the recruitment of specific
ID domain-containing proteins into pathological aggregates is critical to cellular degeneration,
then targeting ID domains to reduce their sequestration may have therapeutic potential in a
variety of neurodegenerative diseases.

Supporting Information
S1 Fig. Additional controls for TAPI method. A—Comparison of protein size and abundance
for TAPI proteins versus the yeast proteome. B—Efficacy of Rnase treatment in the TAPI pro-
cedure (left panel) and Th-T fluorescence of crude aggregates isolated from yeast expressing
Htt-Q103-GFP or HttQ25-GFP (right panel). C—Proteasomal inhibition or proteo-toxic stress
is not sufficient to cause Sgt2p to be trapped in (or form) detergent-resistant high-molecular
weight aggregates.
(PDF)

S1 File. Proteins identified by mass spectrometry following TAPI purification of polygluta-
mine aggregates from yeast cells. This Excel file contains tables that list initial mass spectrom-
etry results for multiple yeast samples and the values for ID domains for all identified proteins,
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as well as controls. S1A includes the proteins identified by our stringent binary analysis (see
methods) and contains biochemical characterization of the identified proteins. S1B contains an
expanded list of identified proteins using a less stringent arbitrary threshold of the mass spec
data. S1C includes the list of 100 random yeast proteins used for comparison purposes. S1D
includes the RBPs identified by TAPI as well as the proteomic RBPs, identified by Gene Ontol-
ogy search, and their ID domains as predicted by IUPred-L.
(XLSX)

S2 File. Proteins identified by mass spectrometry following TAPI purification of polygluta-
mine aggregates from rat cells. This Excel file contains tables that list initial mass spectrome-
try results for multiple rat samples and the values for ID domains for all identified proteins, as
well as controls. S2A includes the proteins identified by the stringent binary analysis (see meth-
ods) and contains biochemical characterization of the identified proteins. S2B is an expanded
list of identified proteins using a less stringent arbitrary threshold of the mass spec data. S2C
includes the list of 200 random rat proteins and their ID domains as predicted by IUPred-L.
(XLSX)

S3 File. PERL-based algorithm for examining protein sequences for Q/N-rich regions.
(PL)

S1 Table. Analogous proteins in yeast and rat associate with Htt-PolyQ aggregates.
(DOCX)
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