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Abstract
Cerium oxide nanoparticles (CeO2 NPs) have been shown to have significant interactions

in plants. Previous study reported the specific-species phytotoxicity of CeO2 NPs by lettuce

(Lactuca sativa), but their physiological impacts and vivo biotransformation are not yet well

understood, especially in relative realistic environment. Butterhead lettuce were germinated

and grown in potting soil for 30 days cultivation with treatments of 0, 50, 100, 1000 mg CeO2

NPs per kg soil. Results showed that lettuce in 100 mg�kg-1 treated groups grew significantly

faster than others, but significantly increased nitrate content. The lower concentrations

treatment had no impact on plant growth, compared with the control. However, the higher

concentration treatment significantly deterred plant growth and biomass production. The

stress response of lettuce plants, such as Superoxide dismutase (SOD), Peroxidase

(POD), Malondialdehyde(MDA) activity was disrupted by 1000 mg�kg-1 CeO2 NPs treat-

ment. In addition, the presence of Ce (III) in the roots of butterhead lettuce explained the

reason of CeO2 NPs phytotoxicity. These findings demonstrate CeO2 NPs modification of

nutritional quality, antioxidant defense system, the possible transfer into the food chain and

biotransformation in vivo.

Introduction
Cerium oxide nanoparticles (CeO2 NPs), as a typical rare earth metal oxide NPs, are commonly
used as a polishing agent for ophthalmic lenses, television tubes and glass mirrors and as fuel
additives in order to decrease the emissions of particulates.[1–3] As they can enter soil through
atmosphere deposition or from biosolids treated in waste water treatment,[4,5] concerns over
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potential health and environmental risks of CeO2 NPs exposure have been raised.[6] CeO2 NPs
are one of the selected nanomaterial for priority testing by the Working Party of Manufactured
Nanomaterials of the Organization for Economic Cooperation and Development (OECD).
CeO2 NPs are generally recognized as stable and insoluble in biological or environment sys-
tems, therefore they can exist for a long time.[7]

Previous reports show that CeO2 NPs exist in nanoparticle form and affect physiological
processes and molecular response to plants. Zhang et al. systematically studied the uptake, dis-
tribution and biotransformation of CeO2 NPs in cucumber plants, and verified that Ce pre-
sented in the roots as CeO2 and CePO4 while in the shoots as CeO2 and cerium carboxylates.
[8,9] Rico et al. showed that CeO2 NPs modify the antioxidative stress enzyme activities and
macromolecule composition in rice seedlings.[10] Ma et al. demonstrated CeO2 NPs could
alter expression of glutathione and sulfated metabolic pathways in Arabidopsis thaliana (L.)
under Petri dish culture condition.[11] The genetoxicity of CeO2 NPs on soybean plants was
reported by López-Moreno et al.[12] Majority of the existed researches were carried out in
aqueous[13], sand[14] or agar medium[15], they are generally used as an idealistic environ-
ment, without complex components. Soil is a complex system of minerals, organic material,
water, gasses, and living organisms. Lee et al. demonstrated that exposure media have signifi-
cant effects on phytotoxicity of NPs, and suggested that application of NPs in soil is important
to understand the terrestrial toxicity of nanoparticles.[16] Zhao et al. found that lipid peroxida-
tion and ion leakage in corn plants were not affected by CeO2 NP exposure in soil.[17] The
results were different from hydroponic medium condition. Priester et al. found that CeO2 NPs
could stunt soil-cultivated soybean growth and pod biomass while shut the nitrogen fixation
down.[18] However, Wang et al. reported that CeO2 NPs had either an inconsequential or a
slightly positive effect on plant growth and tomato production cultivated in potting soil at con-
centrations of 0.1–10 mg�L-1.[19] Morales et al. exhibited that CeO2 NPs could change the
nutritional properties of cilantro.[20] These inconsistencies may be caused by the differences
in exposure methods, plant species, and especially culture media.

Lettuce is an edible plant and among the 10 species recommended by US EPA (1996) for
phytotoxicity assessment. We previously reported that CeO2 NPs significantly inhibited root
elongation of lettuce in both aqueous suspension and plant agar medium. Compared to deion-
ized water, the bioavailability of CeO2 NPs in the agar medium was reduced, but the sensitivity
of asparagus lettuce to CeO2 NPs was increased. [15]

,[21,22] The aim of this work was to evalu-
ate the influence of CeO2 NPs on the growth of lettuce plants in soil medium. Representative
parameters such as biomasses, chlorophyll, protein, nitrate and soluble sugar contents, antioxi-
dant enzyme activities, and lipid peroxidation were investigated to understand the plant’s
defense and response to abiotic stress caused by CeO2 NPs. In addition, CeO2 NPS uptake and
transformation in lettuce plants were studied using ICP-MS and X-ray absorption near edge
structure.

Materials and Methods

Plant culture and nanoparticle application
The potting soil for this research was obtained from Scotts Miracle-Gro Company and air-
dried at room temperature prior to use. Plastic pots with 12 cm in diameter and 10.8 cm in
height were filled out with 150 g of potting soil. CeO2 NPs (Sigma Aldrich, USA) suspensions
were sonicated for 30 min then applied to the soil to obtain final concentrations of 0, 50, 100,
1000 mg NPs per kg soil with 8 replications. Ten seeds of butterhead lettuce (Lactuca sativa)
were sown at a depth of approximately 1 cm. At 5 d after planting, the seedlings were thinned
to 3 plants per pot. The minimum and maximum greenhouse temperature during the test was
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26 and 18 C. Each pot was supplied 100 mL deionized water every other day. To avoid interfer-
ences with the NPs, no additional fertilizer was added to the pots. After 30 d of growth, chloro-
phyll contents in the leaves were analyzed using a chlorophyll meter (Konic Minolta SPAD-
502 Plus, Japan). Then the plants were harvested.

Determination of Cerium by ICP-MS
Plant roots and shoots were separated thoroughly washed with deionized water, and lyophi-
lized with a freeze dryer (Alpha 1–2 LD plus, Christ, Germany). The dried tissues were digested
with a mixture of concentrated plasma–pure HNO3 and H2O2 (v/v, 4:1) on a heating plate. The
obtained residual solutions were then diluted with deionized water and analyzed by ICP-MS
(Thermo X7, USA). A standard reference (bush branches and leaves, GBW07602) was also
digested and analyzed by ICP-MS to examine the recovery. Indium of 20 ng�mL−1 was used as
an internal standard to compensate for the matrix suppression and signal drifting. Analytical
runs include calibration verification samples, spike recovery samples and duplicate dilutions.
The linearity was from 0.1 to 50 ng�mL−1, Recovery from GBW07602 was 99%. Spike recovery
was 102%. Detection limit was 0.01 ng�mL−1.

Speciation Analysis by X-ray Absorption Near Edge Fine Structure
(XANES)
Lyophilized roots of butterhead lettuces were grinded to powder and pressed into slices with a
diameter of 10mm and a thickness of 2 mm for XANES analysis. The Ce LIII XANES spectra
were recorded in fluorescence mode on beamline 1W1B at Beijing Synchrotron Radiation
Facility (BSRF). The ring storage energy of the synchrotron radiation accelerator during data
collection was 2.5 GeV with current intensity of 50 mA. Cerium phosphate CePO4, cerium oxa-
late Ce2 (C2O4)3 and cerium acetate Ce (CH3COO) 3 as well as the three types of CeO2 NPs
were used as the standard compounds. Data processing and the linear combination fitting
(LCF) of the collected spectra were performed in the software program ATHENA. Samples of
lettuce treated with the three types of CeO2 NPs (1000 mg L-1) were also prepared for the
XANES analysis.

Determination of Protein, Nitrate and Soluble Sugar
Fresh leaf and root samples (0.1g) were homogenizing with 1 mL phosphate buffer (50 mM
KH2PO4 at pH 7.4) by the Mixer Mills (MM400, RETSCH, German), and then centrifuged at
4000×g for 15 min at 4°C.The supernatant were quantified for protein according to the method
by Olson et al.[23]

Fresh leaf tissues (0.2 g) were cut in tiny pieces and aced in screw capped tubes to have a
water bath at 100°C for 30 min. After cooling, they were centrifuged at 1500�g for 5 min at 4°C.
The method of determination nitrate and soluble sugar was conducted following by Cataldo
et al and Irigoyen et al.[24,25] Lastly, the absorbance at 625 nm and 410 nm was determined
for soluble sugar and nitrate in a UV-visible spectrophotometer (TU-1901, Beijing)

Stress Response of Butterhead Lettuce to CeO2 NPs
Fresh roots and shoots of lettuce separately homogenized with phosphate buffer solution (PBS,
50 mM, pH 7.8) under ice bath, and then centrifuged at speed of 10 000g and 4°C for 10 min.
The supernatants were kept for analyses of SOD, POD activities and MDA contents using the
assay kits purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China).
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Statistical Analysis
The results are expressed as mean ± SE (n = 8). When data are homogeneity of variance, a one-
way ANOVA using General Linear Model, followed by Turkey’s Honestly Significant Differ-
ence (HSD) test; when data are heterogeneity of variance, Kruskal-Wallis one-way ANOVA be
used, These were performed using SPSS statistical package, version 16.0 (SPSS, Chicago, IL).
Statistical significance was based on a probability of p�0.05.

Results and Discussion

Ce Contents in Tissues of Lettuce
Ce contents in the roots and shoots of 30-day-old lettuce plants treated with CeO2 NPs were
determined by ICP-MS. As shown in Fig 1A, the Ce contents in roots increased as the external
CeO2 NPs increased. From Fig 1B, plants in shoot exposed to 100 mg�kg-1 and 1000 mg�kg-1
CeO2 NPs had significantly higher Ce content compared to control. Ce content in the root
(12.7–449.4 μg�g-1) was much higher than that in the shoots (2.3–105.8 μg�g-1). Compared to
previous results[15], Ce concentrations in butterhead lettuce roots and shoots in this study
were lower than in agar medium or hydroponic medium. As a consequence, it is difficult to
find the CeO2 NPs in the roots by TEM.

Speciation Analysis of Cerium in the Lettuce Plants by XANES
The biotransformation of CeO2 NPs determines the ultimate fate and toxicity of manufactured
nanoparticles in living organisms. By XANES, the oxidation state of Ce in the butterhead let-
tuce root can be identified. The XANES spectra of normalized Ce LIII edge in the reference Ce
compounds and roots of butterhead lettuce are shown in Fig 2. Peak a in the spectra represents
the characteristic peak of Ce (III), which come from CePO4, Ce (CH3COO) 3 and Ce2 (C2O4)3
here. Double peaks B and C indicate the characteristic peak of Ce(IV), which come from CeO2

in this study.[26] Compared with standard references, the spectra from roots of treated aspara-
gus lettuce showed the mixed features of peaks A, B and C. These indicate that Ce in roots pres-
ents a mixed oxidation state of Ce (IV) and Ce (III). To obtain the quantitative information of
Ce species in the roots, LCF was performed on the normalized spectra of samples using CeO2,
CePO4, Ce (CH3COO) 3 and Ce2 (C2O4)3 as the standard compounds. The fitted lines and fit-
ting parameters indicate that the results are satisfying and convincing.

Fig 1. (A) Ce contents in roots (A) and leaves (B) of lettuce plants. Error bars stand for standard errors. Bar with the same letters show no statistically
significant differences at p�0.05. n = 8.

doi:10.1371/journal.pone.0134261.g001
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The Ce species in the potting soil emerged as 95.1% CeO2 and 4.2% Ce2 (C2O4)3, without
CePO4 and Ce (CH3COO)3. In the root samples, the Ce species presented as 77.3% CeO2 and
22.7% Ce carboxylates (included 0.5% CePO4, 7.5% Ce (CH3COO)3 and 12.3% Ce2(C2O4)3.
According to our previous report[22], Sigma CeO2 NPs with non-uniform size contained a
large number of small particles less than 25 nm (S1 Fig), so they have higher reactivity and
released more Ce3+ than the dimension of 25 nm CeO2. Particles with smaller size have higher
specific surface area and can be expected to show higher reactivity. The release of Ce3+ may
play a key role in phytotoxicity of metal-based NPs.[27]

Growth of Lettuce Plants
In this study, butterhead lettuce plants were treated with CeO2 NPs in potting soil at different
concentrations (0, 50, 100, 1000 mg NPs per kg soil). After 30 days, wet and dry mass of the
root and shoot of lettuce plants were weighed and shown in Fig 3). It is observed that plants
treated with 100 mg�kg-1 grew significantly faster than others. The lower concentration (50
mg�kg-1) treatment had no impact on plant growth, compared with the control. However, the
higher concentration (1000 mg�kg-1) treatment significantly decreased the dry masses of root
and shoot. The results indicated that CeO2 NPs are phytotoxic to plants at a high concentra-
tion, and the effect to dry biomass of lettuce plants is more obvious than the fresh ones (more
than 94% water in the fresh plant). Rare earth elements (REEs) including cerium can exert pos-
itive or negative physiological effects on plants depending on the dosage and other conditions.
Much evidence has accumulated in support of the view low concentrations of REEs exert posi-
tive effects on growth and yield of crops, whereas high concentrations of REEs seem to be
harmful for plants, although the exact mechanism is still unknown.[28] According to our pre-
vious results, the effects of CeO2 NPs on lettuce plants were probably attributed to the released
Ce3+ in the roots.

Fig 2. XANES Ce LIII-edge spectra (5723 eV) in roots of butterhead lettuce treated with CeO2 NPs. The
dotted line indicates the feature a, b and c.

doi:10.1371/journal.pone.0134261.g002
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Chlorophyll and Protein Content
The contents of chlorophyll and protein are important physiological parameters in the devel-
opment of plant growth. In this study, no significant differences among of treatments were
observed, even at a high concentration (1000 mg�kg-1) exposure (S2 and S3 Figs) Several stud-
ies have demonstrated that ENPs induce modifications on the protein levels in plants at early
seedling stage.[16],[29,30] Zhao et al. have shown that neither CeO2 nor ZnO NPs impacted
cucumber chlorophyll content at concentrations of 0, 400, and 800 mg kg-1, however, at 800
mg kg-1 treatment, CeO2 NPs reduced the yield by 31.6%.[31] Different plant species may act
differently to the exposure of nanoparticles.

Nitrate and Soluble Sugar Contents
Physiological effects of CeO2 NPs on nitrate and soluble sugar contents in lettuce plants were
shown in Fig 4. In 100 mg�kg-1 group, CeO2 NPs significantly increased the nitrate content by
38.2%, compared with the control. Nitrate is one of the major N sources for high plants; it pro-
motes vegetative development and yield. Recently, there are numerous studies evaluating the

Fig 3. (A) Root and shoot fresh biomass of lettuce plants grown for 30 days in potting soil, treated with 0 (control)-1000 mg�kg-1 CeO2 NPs. (B) Root
and shoot dry biomass of lettuce plants grown for 30 days in potting soil treated with 0 (control)-1000 mg�kg-1 CeO2 NPs. Error bars stand for
standard errors. Bar with this asterisk (*) symbol shows statistically significant differences at p�0.05. n = 8.

doi:10.1371/journal.pone.0134261.g003

Fig 4. NO3--N (A) and soluble sugar (B) contents content in the leaves Error bars stand for standard errors. Bar with this asterisk (*) symbol shows
statistically significant differences at p�0.05, n = 8.

doi:10.1371/journal.pone.0134261.g004
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impact of CeO2 NPs on quality of plants, but few reports with nitrate. The finding explained
why CeO2 NPs promoting lettuce growth at certain concentrations. However, excessive nitro-
gen could influence the quality of vegetable.[32] Nitrate itself is relatively non-toxic but its
metabolites may produce a number of negative health effects.

Sugar is one of the three major nutrients of plant. CeO2 NPs had a significantly inhibitory
effect on the soluble sugar content of at the concentration of 1000 mg�kg-1. CeO2 NPs at a con-
centration of 50 mg�kg-1 had no impacts on biomass, chlorophyll content, protein, enzyme
activity; probably due to the fact that CeO2 NPs were absorbed by potting soil, leading to
reduction of Ce bioavailability. It is not surprising to see that at 100 mg�kg-1, CeO2 NPs stimu-
lated the lettuce growth, which is in consistent with an earlier study that Yuan et al. reported a
fertilizer containing Ce increased root elongation of rice seedlings, attributed to the Ce3+.[33]

Antioxidant defense system in roots and shoots
The plant cells have antioxidant defense system composed of enzymes, such as SOD and POD
that are known to be involved in the detoxification of H2O2 by converting the H2O2 to water
and oxygen. These root enzymes were differently affected by the concentrations of CeO2 NPs
used in this study. As seen in Fig 5A, SOD and POD activities of lettuce roots were slightly up-
regulated by 50 and 100 mg kg-1 CeO2 NPs exposure, but significantly down-regulated at 1000
mg kg-1. Additionally, the high concentrations of CeO2 NPs led to high levels of MDA. The
antioxidant defense system of plant cells is composed of SOD, POD and other enzymes, the
MDA is a product of degradation of cell membrane components damage of free radicals.15

And it can be accepted that the toxicity of CeO2 NPs may be caused by excessive production of
reactive oxygen species (ROS). These excessive ROS would be cleared by antioxidant enzymes,
such as SOD and POD. But if the ROS had not been cleared timely, they would have some
damages to the plant cells membrane, also damage the antioxidant defense system, means the
increase of MDA levels and the decrease of SOD and POD contents.

Similar to the roots, SOD and POD activities in the shoots were also only slightly up-regu-
lated at all test concentrations of CeO2 NPs (Fig 5B). But MDA levels remained constant.
These suggested that the CeO2 NPs had little impacts on the physiology of the shoots.

Fig 5. SOD and POD activities andMDA levels in the roots and shoots of of lettuce plants Error bars stand for standard errors. Bar with this asterisk (*)
symbol shows statistically significant differences at p�0.05.

doi:10.1371/journal.pone.0134261.g005
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Conclusion
In this research, we investigated the fate and phytotoxicity of CeO2 NPs amended in soil.
Results show that CeO2 NPs were uptake by lettuce plant, and had a positive effect on plant
growth at 100 mg kg-1, whereas inhibited plant growth at 1000 mg kg-1. Meantime, SOD and
POD activities and MDA levels was also disrupted by 1000 mg kg-1 treatment. The toxicity was
probably attributed to the biotransformation of CeO2 NPs and the high sensitivity of Lactuca
plants to the released Ce3+ ions.

Supporting Information
S1 Fig. TEM image of sigma CeO2 NPs.
(JPG)

S2 Fig. Chlorophyll contents in the leaves of lettuce plants grown for 30 days in potting
soil, treated with 0 (control)-1000 mg kg-1 CeO2 NPs.
(TIF)

S3 Fig. Root and shoot protein of lettuce plants grown for 30 days in potting soil treated
with 0 (control)-1000 mg kg-1 CeO2 NPs. Error bars stand for standard errors. Bar with this
asterisk (�) symbol shows statistically significant differences at p�0.05.
(TIF)

S1 Data. The data for all of the experiments.
(XLSX)
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