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The overwhelming preponderance of the
5-HT of every known mammal is in the
gut (Erspamer, 1966; Gershon & Tack,
2007; Gershon, 2013). Enteric 5-HT must
be an important signalling molecule to
be so conserved. Most enteric 5-HT is in
enterochromaffin (EC) cells, but smaller
amounts are present in myenteric neurons.
Despite their small numbers, serotonergic
neurons project widely throughout the
enteric nervous system (ENS) and also
innervate interstitial cells of Cajal (ICC)
(Okamoto et al. 2014). The abundance and
variety of enteric 5-HT receptors (5-HT1-7

and subtypes) also suggest that 5-HT plays a
significant role in GI physiology (Smith et al.
2014). The efficacy of therapies targeting
enteric 5-HT or its receptors against
GI motility disorders supports this idea
(Gershon & Tack, 2007; Gershon, 2013).
Beyond motility and secretion, putative
roles that 5-HT plays include metabolism,
osteogenesis, immunity, neurogenesis and
neuroprotection (Gershon, 2013). The
multiplicity of enteric 5-HT targets and
receptors complicates ascertaining the
physiological roles of 5-HT. Controversy
is thus to be expected and has appeared
in recent papers, which question whether
EC or neuronal 5-HT has anything to do
with peristalsis (Keating & Spencer, 2010;
Spencer et al. 2011; Sia et al. 2013; Spencer
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in the Department of Pharmacology of Oxford University, and chaired the Department of Anatomy and
Cell Biology at Columbia until 2006. His interests are in enteric neuronal development, cell biology, and
function as well as the roles serotonin plays in the bowel.

et al. 2013). These papers are important
not because enteric 5-HT is vestigial (it
is not) or that its roles in normal and
abnormal GI motility can be ignored (they
cannot). Instead, they highlight common
misunderstandings about peristaltic reflexes
and 5-HT cellular biology. The papers focus
on colonic migrating motor complexes
(CMMCs), which are aborally propagating
propulsive contractile complexes, essentially
peristaltic reflexes. The authors assert that
they can evoke CMMCs after mucosal
removal or depleting 5-HT with reserpine;
therefore, they conclude that neither EC
cells, nor neuronal 5-HT is necessary
for CMMCs. To comprehend what is
misunderstood, it is necessary to discuss
basic information about 5-HT and GI
motility.

Two tryptophan hydroxylase isoforms,
TPH1 and TPH2, are rate limiting in 5-HT
biosynthesis, TPH1 in EC cells, and TPH2
in serotonergic neurons (Gershon, 2013).
5-HT is synthesized in the cytosol but stored
in vesicles. Reuptake terminates actions of
5-HT. Because 5-HT is charged, two trans-
porters are required for transmembrane
transport, a vesicular monoamine trans-
porter (VMAT1 in EC cells and VMAT2
in neurons) (Henry et al. 1998) and a
plasmalemmal serotonin reuptake trans-
porter (SERT) (Blakely, 2001). Reserpine
inhibits VMAT (Henry et al. 1998). Intra-
cellular 5-HT is thus reduced due to
enhanced catabolism; but reserpine does not
prevent 5-HT biosynthesis or constitutive
release. That requires deletion or inhibition
of TPH, which when isoform-selective,
distinguishes mucosal from neuronal 5-HT
(Li et al. 2011; Gershon, 2013). SERT
deletion amplifies 5-HT effects. Because
GI motility is abnormal after deletion of
SERT (Chen et al. 2001), either isoform
of TPH (Li et al. 2011; Gershon, 2013),
or exposure to 5-HT antagonists/agonists

(Monro et al. 2002; Smith et al. 2014), 5-HT
clearly influences GI motility.

Peristalsis is a general term applied to
enteric motile behaviour that should not be
conflated with the ENS-mediated peristaltic
reflex that can drive propulsion (Gershon
& Tack, 2007; Gershon, 2013; Furness et al.
2014). That reflex, first called the ‘law of
the intestine’ (Bayliss & Starling, 1899), is
an oral contraction and anal relaxation; it is
evoked by increased intraluminal pressure
and involves polarized neural pathways
within the ENS (Furness et al. 2014; Smith
et al. 2014). Many enteric cells, not just
neurons and muscle, participate in peri-
staltic reflexes (Smith et al. 2014). The peri-
staltic reflex is only one of many activity
patterns encoded within the ENS (Furness
et al. 2014).

Mucosal pressure/distortion or chemical
stimuli release 5-HT from EC cells and
evoke peristaltic reflexes (Bülbring & Lin,
1958; Bertrand et al. 2008). Luminally
applied 5-HT mimics pressure (Bülbring
& Crema, 1958; Bülbring & Lin, 1958).
Fecal pellets apply pressure to the mucosa
and thereby release 5-HT, which entrains
CMMCs (Heredia et al. 2009). Mucosal
removal, anaesthesia, or asphyxiation all
abolish mucosally evoked peristaltic reflexes
(Bülbring & Crema, 1958; Bayguinov et al.
2010; Dickson et al. 2010). Mucosally
released 5-HT acts on 5-HT3 and/or 5-HT1P

(or 5-HT7) receptors to stimulate intrinsic
primary afferent neurons (IPANs) (Pan
& Gershon, 2000; Bertrand et al. 2008;
Dickson et al. 2010), which engage the ENS
(Kirchgessner et al. 1992; Bayguinov et al.
2010; Okamoto et al. 2014). IPANs are found
in both plexuses (Kirchgessner et al. 1992;
Bayguinov et al. 2010; Okamoto et al. 2014),
and appear to link mucosal and neuro-
nal 5-HT pools together (Okamoto et al.
2014; Smith et al. 2014). 5-HT3 antagonists
can block CMMCs when applied around
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fecal pellets, as do intraluminal 5-HT3

and 5-HT7 antagonists, suggesting that
these antagonists act locally on the EC
cell-to-IPAN junction (Heredia et al. 2009;
Smith et al. 2014).

Evidence suggests that neuronal, as well
as mucosal, 5-HT is critical for peristaltic
reflexes. Serosally applied 5-HT desensitizes
ENS receptors, thereby inhibiting peri-
staltic reflexes (Bülbring & Crema, 1958;
Smith et al. 2014). 5-HT antagonism inter-
feres with transmission in ENS pathways,
CMMCs, and tonic inhibition in the colon
(Monro et al. 2002; Dickson et al. 2010).
Neuronal 5-HT can mediate intestinal slow
excitatory postsynaptic potentials (sEPSPs):
5-HT7 antagonists inhibit sEPSPs in IPANs
(Monro et al. 2005), as well as CMMCs
(Dickson et al. 2010). Tryptamine, which
first releases and then depletes end-
ogenous 5-HT, initially induces but then
abolishes sEPSPs without affecting similar
responses to exogenous 5-HT (Takaki et al.
1985). Anti-idiotypic antibodies, which
bind selectively to all 5-HT receptors,
also mimic sEPSPs before blocking them
irreversibly (Wade et al. 1994).

Radial stretch of the bowel wall activates
high threshold mechanosensitive inter-
neurons that activate CMMCs (Heredia
et al. 2009). Mucosal stimuli and radial
stretch evoke similar reflex responses
because nerve pathways from each converge
on final common neurons (Smith et al.
1992, 2007). Mucosal reflexes alone propel
small fecal pellets that do not produce
radial stretch down the colon (Heredia et al.
2013); fluid or larger pellets that stretch
the gut can be propelled in the absence
of the mucosa or mucosal 5-HT (Spencer
et al. 2011; Heredia et al. 2012, 2013).
Because stimuli that short circuit mucosal
activation evoke CMMC-like responses
does not mean the mucosa and its 5-HT
are not physiologically critical. Stimuli
restricted to the mucosa cannot evoke
CMMCs in the TPH1KO colon and thus are
5-HT-dependent (Heredia et al. 2013). If the
TPH1KO bowel is stretched, CMMC-like
responses are evoked; however, they do not
propagate and thus are not CMMCs. In an
analogy, the lower leg can be made to move
involuntarily through the patellar reflex or
voluntarily. Voluntary leg movement does
not obviate the need for quadriceps muscle
spindles to evoke patellar reflexes. Circuits
in the myenteric plexus can be engaged in
the absence of mucosal 5-HT to give rise to
contractile activity; however, under physio-
logical circumstances the mucosa is present

and, when pressed, secretes 5-HT. When the
gut is intact, therefore, 5-HT will do what
it does when the mucosa releases it, initiate
peristaltic reflexes.

The argument (Spencer et al. 2013) that
because reserpine-induced 5-HT depletion
fails to prevent CMMCs, 5-HT is not needed
is invalid. Because reserpine only inhibits
VMAT, it cannot drive tissue 5-HT to
zero. Reserpine lowers intracellular 5-HT
to levels that may be difficult to detect
(Bülbring & Crema, 1959; Spencer et al.
2013); however, the 5-HT that remains
activates receptors. In fact, constitutive
5-HT release in reserpine-treated animals
enhances intestinal motility (Bülbring &
Crema, 1959). The continued secretion of
5-HT thus explains the ability of 5-HT3

and 5-HT4 antagonists to block responses
in reserpinized preparations (Sia et al. 2013;
Spencer et al. 2013). Importantly, 5-HT3

antagonists do not affect the CMMC-like
activity in TPH1KO mice (Heredia et al.
2013). The abnormality of CMMCs in
TPH1KO mice establishes that physio-
logically meaningful peristaltic reflexes are
5-HT dependent (Heredia et al. 2013).

Total GI transit and colonic motility
are slowed in TPH2KO mice but gastric
emptying is accelerated (Li et al. 2011;
Gershon, 2013). Normal GI motility thus
requires neuronal 5-HT; however, because
neuronal 5-HT is a growth factor, the
TPH2KO ENS is severely hypoplastic (Li
et al. 2011), which could be responsible
for defective GI motility. Accelerated
gastric emptying probably occurs because
serotonergic activation of gastric inhibitory
motor neurons is impaired in mice
lacking neuronal 5-HT (Li et al. 2011).
Patterns of GI motility other than peri-
staltic reflexes evidently compensate for
the defective peristaltic reflex/CMMC of
TPH1KO mice (Li et al. 2011; Gershon,
2013). Compensatory mechanisms, such
as enhanced prostaglandin synthesis may
also be mobilized to generate CMMC-like
activity in the absence of mucosal 5-HT
(Heredia et al. 2012; Smith et al. 2014).

In conclusion, 5-HT has satisfied all of
the criteria needed to identify it a mediator
of peristaltic reflexes. EC cells and enteric
neurons synthesize 5-HT. Exogenous 5-HT
and stimuli that release endogenous 5-HT
evoke peristaltic reflexes, which are lost
or impaired when mucosal and/or neuro-
nal 5-HT is depleted or 5-HT receptors
are antagonized. Mucosal and neuronal
5-HT are thus essential for physiological
manifestation of peristaltic reflexes.

Call for comments

Readers are invited to give their views on this
and the accompanying CrossTalk articles in this
issue by submitting a brief (250 word) comment.
Comments may be submitted up to 6 weeks after
publication of the article, at which point the
discussion will close and the CrossTalk authors
will be invited to submit a ‘Last Word’. Please
email your comment, including a title and a
declaration of interest to jphysiol@physoc.org.
Comments will be moderated and accepted
comments will be published online only as
‘supporting information’ to the original debate
articles once discussion has closed.
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