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Abstract

Fast calcium signaling is regulated by numerous calcium channels exhibiting high spatiotemporal 

profiles which are currently measured by fluorescent calcium sensors. There is still a strong need 

to improve the kinetics of genetically encoded calcium indicators (sensors) to capture calcium 

dynamics in the millisecond time frame. In this review, we summarize several major fast calcium 

signaling pathways and discuss the recent developments and application of genetically encoded 

calcium indicators to detect these pathways. A new class of genetically encoded calcium 

indicators designed with site-directed mutagenesis on the surface of beta-barrel fluorescent 

proteins to form a pentagonal bipyramidal-like calcium binding domain dramatically accelerates 

calcium binding kinetics. Furthermore, novel genetically encoded calcium indicators with 

significantly increased fluorescent lifetime change are advantageous in deep-field imaging with 

high light-scattering and notable morphology change.

Introduction

Calcium (Ca2+), a second messenger and the most ubiquitous signaling molecule, plays an 

important role in regulating various biological functions in living organisms (Figure 1A). 

The time scale of calcium ion flow varies from milliseconds in muscle contractions to days 

for fertilization and development (Figure 1B) [1]. Rapid calcium signaling regulates calcium 

channels, excitation-contraction coupling, action potential, calcium sparks, and release of 

neurotransmitters (Figure 1A). Voltage gated calcium channels (VGCCs) exhibit a high 

open and close frequency and deliver fast calcium movement through a hydrophilic path in 

response to plasma membrane voltage changes, allowing precise calcium signaling within 

milliseconds [2, 3]. During channel activation, calcium concentration is estimated to be 

hundreds of micromolar within several nanometers from the mouth of the channels, 

generating Ca2+ microdomains. A high Ca2+ gradient is generated between the microdomain 

and bulk cytosol [4, 5].

In muscle cells, electrical stimuli applied to the plasma membrane can be converted to 

muscle contraction by a process known as excitation-contraction coupling (EC coupling). In 
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skeletal muscle, an action potential activates the dihydropyridine receptor (DHPR) anchored 

in the T tubule of the sarcolemma. DHPR then physically interacts with ryanodine receptors 

(RyR) expressed in the sarcoplasmic reticulum (SR) membrane to induce SR calcium 

release; this interaction occurs within milliseconds. After stimulation, a transient asymmetric 

calcium spike lasting several to tens of milliseconds occurs in the cytosol, with a fast 

calcium recovery phase due to SERCA pump refilling of SR calcium and buffering effects 

of calcium binding proteins in the cytosol [6].

The VGCC is transiently activated after the initial Na+ influx and K+ efflux in cardiac 

muscles, forming a plateau and a sequential slow decayed phase of membrane potential 

lasting for about 200 ms, much longer than that of skeletal muscle or neurons lasting for 

only 2–4 ms. This limits the firing rate up to several Hz, preventing the tetanus contraction 

of cardiac muscles. The fast calcium influx through the calcium channel triggers SR calcium 

release through calcium-induced calcium release (CICR) to further elevate cytosolic calcium 

before decreasing. The Ca2+ influx is terminated by closing of the VGCC with cytosolic 

calcium pumped back into the SR by the SERCA pump or extruded to the extracellular 

space by the sodium-calcium exchanger (NCX) [7]. A normal contracting cardiac muscle 

cell exhibits a train of cytosolic calcium spikes with the time to peak around tens of 

milliseconds, and a decay phase within hundreds of milliseconds.

Calcium sparks, elementary events of the CICR through the RyR in cardiac EC coupling, 

were discovered by fast fluorescence imaging [8]. The opening of the RyRs in cardiac or 

skeletal muscle cells produces calcium transients with 10 ms to peak and 20 ms half-decay, 

restricted around 2 μm. Activation of numerous RyRs produces multiple simultaneous 

calcium sparks, ranging from 50 to 5000 in a cell [9], which is regulated by the SR calcium 

content. The summation of the sparks generates the cytosolic calcium change. The 

counterpart of the calcium sparks are Ca2+ blinks, the transient decrement of Ca2+ in SR 

exhibiting similar fast kinetics and a much smaller region.

The neurotransmitter released from the presynaptic vesicles [10] triggered by presynaptic 

calcium channel activation will induce the postsynaptic receptors, for the synaptic 

transmission. Calcium microdomains and high calcium gradients are formed around the 

presynaptic calcium channels during the sub-millisecond calcium influx. In varying cell 

types, the local calcium concentration ranges from 10 μM to 200 μM for membrane fusion. 

Additionally, numerous calcium sensor proteins on the vesicle membrane surface are 

activated throughout the neurotransmitter release process [11]. Calcium dependent 

inactivation regulates the rapid termination of the calcium influx within 1–2 ms [12].

Need for calcium sensors with fast kinetics

The link between abnormal calcium channels and pathology requires precise tools to study 

them. Fluorescence microscopy with calcium sensors is indispensable in understanding live 

cell processes with high spatiotemporal resolution. Development of cell permeable calcium 

dyes has contributed greatly to our understanding of intracellular calcium signaling [1, 13]. 

Dyes such as Fluo-5N with fast off rates are commonly used to monitor calcium dynamics 

(Table 1). However, calcium dyes without targeting are not suitable for microdomain 
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imaging. The current genetically encoded calcium indicators (GECIs) possessing the EF-

hand motif show slow kinetics of signal decay (Table 1) that hamper their applications in 

probing fast calcium transients, especially in neuronal and skeletal muscle cells. Most 

calcium dyes with high affinity can only perfuse up to 80 nm from the channel, and are 

unable to measure tens of micromolar calcium in calcium microdomains. Imaging of 

calcium sparks should be deconvoluted with equations for intrinsic signals, and significant 

modification of the decay curve [14]. A similar convolution was applied for skeletal muscle 

myoplasmic calcium measurement, for which an initial peak is sometimes missing during 

the long-last pulse stimulation [15]. Furthermore, the complete decay of calcium in each 

spike was not measured in high frequency action potential stimulation, which is different 

from the membrane voltage changes. Rather a single transient peak was recorded for both 

single and multiple action potentials [16]; summation of calcium peaks is possible but not 

clear. This separation or summation of calcium spikes can be influenced by the choice of 

sensor [17, 18]. Therefore, there is a strong demand for tools to image fast transient or high-

frequency calcium signaling generated by the activity of numerous calcium channels and 

receptors. GECIs with fast on and off rates and simple quantitation are required to monitor 

rapid calcium signaling in microdomains.

What has been done in the field?

Calcium imaging has evolved from aequorin and calcium dyes to GECIs [19]. Figure 1C 

summarizes the structures of the major classes of calcium indicators. Calcium dyes based on 

BAPTA are mainly applied in bulk cytosol due to their strong binding affinity. Relatively 

weak affinity dyes are used to measure calcium concentration in internal calcium stores 

containing high calcium [20], but require plasma membrane permeabilization, an obstacle 

for intact live cell imaging. Novel strategies have been applied to improve the targeting 

capability of calcium dyes [21], but they are not as practical as GECIs. The kinetics of 

calcium sensors are highly dependent on the calcium binding protein used as the sensor and 

the target peptides used. Both calmodulin and troponin C based sensors bind calcium 

cooperatively between four EF-hands with a fluorescence change resulting from the calcium 

induced global protein conformational change [22–26]. These types of calcium sensors have 

been successfully applied to measure cytosolic calcium due to fast on rates [27–29]. 

Applying these sensors to measure rapid calcium release from the ER is limited by their 

slow off rate [30]. A fast GCaMP sensor has recently been reported to have a 20 fold 

improvement in the koff rate [31], and progress has also been made for red fluorescent 

sensors [32]. However, the slow off rates of these sensors may originate from the coupled 

EF hand calcium binding motifs and the subsequent large global conformational change 

[33–36]. Multiple binding processes are introduced by modification of multiple calcium 

binding sites in calmodulin and troponin C raising additional challenges for quantitative 

measurements of rapid calcium dynamics by the developed sensors.

CatchER (a GFP-based Calcium sensor for detecting high concentrations in 

the high calcium concentration environment such as ER)

A previous calcium sensor—G1 reported by our lab was created by grafting an EF-hand 

motif into EGFP and exhibited ratiometric change in response to calcium but its kinetics 
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were limited by an intermediate state [37]. The design of CatchER with a fast off rate was 

achieved based on key determinants for fine-tuning Ca2+ binding affinity and Ca2+ -induced 

conformational changes and the established chromophore properties of fluorescent proteins. 

We reasoned that Ca2+ sensors with fast fluorescence response can be better designed by 

coupling Ca2+ binding sites directly to the chromophore rather than relying on stretched 

protein-protein interaction to modulate chromophore conformation. First, four or five 

oxygen ligand atoms from protein residues (typically, carboxyl groups of D, E, N, Q) are 

situated in the pentagonal bipyramidal geometry [38] to form a calcium binding site similar 

to natural calcium binding proteins [39–42]. A single calcium binding site without 

cooperativity from protein coupling is important for fast off rate. Second, appropriate choice 

of residue charge and type can fine-tune Ca2+ binding affinity and metal selectivity [43, 44]. 

Third, diffusion-limited access of Ca2+ to the site requires good solvent accessibility [45]. 

Fourth, propagating Ca2+-induced, local conformational and electrostatic changes to the 

chromophore can be achieved by proper location of the charged ligand residues with respect 

it [46, 47]. Fifth, these changes must occur rapidly—more rapidly than the rate of 

conversion from neutral to anionic state ascribed to these chromophores [37, 48]. Sixth, the 

created binding site must not interfere with the chromophore’s synthesis and formation. We 

have designed CatchER by introducing five acidic residues to form a hand-like metal 

binding pocket in EGFP (Figure 2). The calcium binding site exhibits a pentagonal 

bipyramidal geometry and spreads across three antiparallel beta-sheets on the surface of 

EGFP. This designed calcium binding pocket is in close proximity to the hydrophobic 

chromophore, with hydrogen bond interaction, but facing outwards with high solvent 

accessibility. Calcium binding affects the hydrogen bond network between the binding 

residues and chromophore, triggering fluorescence change. Calcium binding to CatchER 

induces the ratiometric changes in the absorption spectra, as well as an increase in 

fluorescence emission at 510 nm upon excitation at both 395 and 488 nm. This novel 

designed calcium pocket lacks two binding ligands from its ideal coordination, thereby 

exhibits lower binding affinity and fast kinetics [35]. The X-ray crystal structures of 

CatchER have been resolved at 1.78–1.20 Å in Ca2+ loaded and Ca2+ free form, respectively 

(Figure 3A) [35]. Calcium binding altered the conformations of Thr203 and Glu222 

associated with two forms of Tyr66 of the chromophore to induce the optical change [49]. 

From the X-ray crystal structure, Ca2+ ions were partially occupied in two locations within 

the extended designed binding site, suggesting the ability of Ca2+ ions to move around these 

possible locations may be responsible at least in part for the fast kinetics of metal-ion 

binding to CatchER [49]. A more dynamic observation was achieved by NMR [35].

Our novel GECI—CatchER has been applied to measure the ER calcium dynamics in non-

excitable mammalian cells [50]. Furthermore, having fast kinetics, CatchER was able to 

record the SR luminal Ca2+ in flexor digitorum brevis (FDB) muscle fibers during voltage 

stimulation (Figure 2), and successfully determined the decreased SR calcium release in 

aging mice [51]. Thermostablity and brightness impaired the application of the early version 

of GCaMP, which was dim and experienced difficulty folding at 37°C [52]. Later it was 

improved using site directed mutagenesis. We have further improved the optical properties 

of CatchER. The new version of CatchER variant has been recently developed for optimal 

expression at 37°C (Reddish et al., unpublished results). Recently, we have designed red 
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fluorescent protein based CatchER with improved pKa value (Zhuo et al., unpublished 

results).

For multi-color imaging with different fluorescent sensors, a red fluorescent protein-based 

calcium sensor (R-CatchER) has been designed to expand the imaging wavelength (Zhuo et 

al., unpublished results). The red fluorescent protein based ER sensor R-LAR-GECO1 was 

reported recently with a weaker binding affinity of 24 μM by modifying the interaction 

surface between CaM and M13 of the cytosolic calcium sensor R-GECO1 [53, 54]. It is 

interesting progress since the binding affinity decreased around 50 folds, whereas earlier it 

was reported as impossible to tune the binding affinity of GCaMP significantly lower by the 

same mutations found in Cameleon [22, 52].

From Intensity to Lifetime

Two photon fluorescence lifetime imaging is an indispensable method for understanding 

molecular signaling in environments with highly dynamic morphological changes and light 

scattering, such as the brain [55–58]. Until now, synthesized calcium indicators, such as 

OGB1, have single exponential lifetime decay, allowing for quantification of calcium 

change with high accuracy. However, there are limited reports of calcium fluorescence 

lifetime imaging with GECIs. A study reported that there was no significant lifetime change 

before and after adding Ca2+ to Cameleon YC3.1 that used ECFP and Venus [59], which are 

commonly used by other FRET-based calcium sensors. The multiple component lifetime 

decay of CFP makes it difficult to accurately determine the lifetime change. A fluorescent 

protein with a single exponential lifetime decay and high photostablity would be a good 

alternative for the FRET pair donor. Recently, an mTFP-Cit pair based TnC sensor was 

reported to exhibit significant lifetime change [60]. However, the kinetic property of this 

sensor was not recorded.

We have recently reported that CatchER is the first protein-based calcium indicator with the 

single fluorescent moiety to show the direct correlation between the lifetime and calcium 

binding (Figure 3C). Calcium binding increases the mean fluorescence lifetime of the 

deprotonated form of CatchER by 44%. Compared to wild type GFP, the site-directed 

mutagenesis to create calcium binding ligands disrupted the proton-transfer path and altered 

the optical properties. Calcium binding rescues this path and affects the fluorescence 

intensity (Figure 3B) [61]. Our finding provides important insights for a strategy to design 

calcium sensors and suggests that CatchER could be a useful probe for FLIM imaging of 

calcium in situ.

Perspectives

Fluorescent sensor based calcium imaging has dramatically increased our knowledge of 

cellular functions. However, there are still pressing needs for the accurate determination of 

fast calcium signaling besides simulation, especially in excitable cells expressing calcium 

channels. For further development, accelerating the kinetics and broadening the binding 

affinities of GECIs will compensate current imaging limitations. Looking for different 

calcium binding motifs other than the EF-hand for GECIs may provide a beneficial approach 

in overcoming these issues. For neuronal and deep field imaging with strong light-scattering, 
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it could be advisable to design calcium sensors with high sensitivity for fluorescence 

lifetime imaging. Furthermore, EGFP-based calcium sensors are generally pH sensitive to 

the physiological conditions, as CatchER exhibited a pKa around 6.9 in the presence of 

Ca2+, with a 0.7 unit decrease than apo-form. Recently reported GCaMPs displayed a more 

significant pKa shift from 8~10 in the apo-form to 6~7.2 in the holo-form [16]. The pH 

insensitive sensors such as blue fluorescent protein [53] or red fluorescent protein-based 

sensor (Zhuo et al, unpublished results) are superior for monitoring calcium signaling in the 

Golgi and lysosome. The new, advanced GECIs will significantly improve our 

understanding of the molecular basis of Ca2+ homeostasis in health and pathology.
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Highlights

• Fast calcium signaling is mainly regulated by calcium channels.

• Calcium indicators facilitate our understanding of fast calcium signaling.

• It is necessary to improve the kinetics of genetically encoded calcium indicators.

• CatchER with a pentagonal bipyramidal-like binding domain exhibits fast 

kinetics.

• Fluorescent lifetime calcium imaging is advantageous for deep field imaging.

Tang et al. Page 10

Curr Opin Chem Biol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Calcium signaling and fluorescent calcium sensors. (A) Fast calcium signaling regulated by 

the voltage-gated calcium channels (VGCC) includes EC coupling, cardiac action potential, 

calcium sparks and neurotransmitter release. (B) Different time scales of calcium signaling. 

(C) Representatives of calcium dye and genetically encoded calcium indicators. Fura-2 is 

synthesized calcium dye. Aequorin is used as genetically encoded calcium indicator. 

Cameleon and TnC sensor are composed by calmodulin and troponin C containing four EF-

hands, respectively, flanked with FRET pair. GCaMP, GECO and R-CaMP are single 

fluorescent protein based sensor with calmodulin. CatchER is the single fluorescent protein 

with a designed calcium binding site on the surface of EGFP.
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Figure 2. 
CatchER tracks Ca2+ release and uptake kinetics in response to single or repetitive muscle 

fiber depolarization. (A) SR Ca2+ transients were recorded in FDB fibers expressing either 

CatchER or D1ER elicited by 100-ms command pulses to 20 mV under whole-cell patch-

clamp. CatchER’s and D1ER citrine’s fluorescence is illustrated to compare their amplitude 

and kinetics. D1ER citrine emission (535 nm) was chosen over the cyan fluorescence 

protein (485 nm) because of its larger amplitude. The D1ER excitation wavelength was set 

at 436 nm. D1ER’s and CatchER’s fluorescence was recorded using a spectrofluorometer 

and confocal microscope in the line-scan mode (see above), respectively. The dashed line 

indicates the baseline. (B) Time to peak, half recovery time, and response amplitude 

normalized to basal fluorescence were analyzed for CatchER and D1ER citrine fluorescence 

(ΔF/F). Asterisks indicate a statistically significant difference (*P < 0.01). Values are mean 

± SEM for 19 and 13 fibers expressing CatchER or D1ER FDB, respectively. Transient 

changes in CatchER’s fluorescence response to various 20-mV command pulses: (C) a 10-

ms pulse, (D) five 10-ms pulses at 10 Hz, (E) a 10-ms pulse at 3.3 Hz, (F) a 10-ms pulse at 

1.6 Hz, (G) a 100-ms pulse, (H) 100-ms pulse at 5 Hz, and (I) 50-ms pulse at 3.3 Hz. Images 

provided with kind permission from Springer Science and Business Media and Tang et al., 

PNAS Copyright © 2011.

Tang et al. Page 12

Curr Opin Chem Biol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Structure and fluorescence lifetime of CatchER (A) The X-ray crystal structure of Ca2+-

CatchER (PDB ID: 4L12). The residues shown in stick are the designed calcium binding 

site. Residues 164-168 were shown with 50% transparency. The residue shown in green is 

the chromophore. The atom shown in grey is the calcium atom. The oxygen atoms and 

nitrogen atoms are indicated in red and blue, respectively. (B) The proton wire observed in 

the crystal structure of Ca2+-CatchER (PDB ID: 4L12). The H-bonds are shown in the black 

dash line with the cut off of 3.5. Only side chains were shown in S72, T203, S205 and E222. 

(C) Fluorescence decay traces of apo-CatchER (dash line) and CatchER supplemented with 

10 mM Ca2+ (Holo, solid line). CatchER was excited at 372 nm and emitted at 510 nm in 

the time range of 15 ns. Ex and Em are short for excitation and emission, respectively. 

Reprinted (adapted) with permission from Zou, et al., J. Phys. Chem. B, 2014. Copyright © 

2015 American Chemical Society.
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Table 1

Kinetics of recent major calcium indicators.

GECI/Dye Rise time constant Decay time constant kon (M−1 s−1) koff (s−1)

R-CatchER 0.33 ms >2.5×107 >2100

CatchER [35] 1.44 ms ~3.89×106 ~700

CH-GECO2.1 [53] 3.70 × 105* 0.423

R-GECO1 [42] 9.52 × 109* 0.752

TN-XL [54] 240 ms 430 ms 2.3

TN-XXL [28] 1.04 s 0.88 s 1.1

D1ER [24] 3.6×106 256

YC3.3 [18] 1.41 s 1.05 s 12

YC3.6 [18] 0.82 s 0.73 s 1.4

YC2.6 [18] 5.24 s 0.2

D3cpv [18] 0.68 s 1.96 s 0.5

TN-L15 [18] 0.81 s 1.49 s 0.7

TN-XL [18] 0.59 s 0.20 s 5

GCaMP1.6 [18] 1.38 s 0.45 s 2.2

GCaMP3 [31] 0.22 s 4.6

Fast-GCaMP-RS09 [31] 36 ms 27

OGB-1 [18] 0.24 s 0.38 s 2.6

Fluo-4 [55] 6.0×108 210

Calcium Green-5N [56] 4.0×108 9259

Mag-Fura-2 [56] 7.5×108 26760

Fluo-5F [55] 3.0×108 300

*
The unit is M−ns−1. n(CH-GECO2.1)=0.58 and n(R-GECO1)=1.6.
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