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Abstract

The platelet thrombus is the major pathologic entity in acute coronary syndromes, and antiplatelet 

agents are a mainstay of therapy. However, individual patient responsiveness to current 

antiplatelet drugs is variable, and all drugs carry a risk of bleeding. An understanding of the 

complex role of Prostaglandin E2 (PGE2) in regulating thrombosis offers opportunities for the 

development of novel individualized antiplatelet treatment. However, deciphering the platelet 

regulatory function of PGE2 has long been confounded by non-standardized experimental 

conditions, extrapolation of murine data to humans, and phenotypic differences in PGE2 response. 

This review synthesizes past and current knowledge about PGE2 effects on platelet biology, 

presents a rationale for standardization of experimental protocols, and provides insight into a 

molecular mechanism by which PGE2-activated pathways could be targeted for new personalized 

antiplatelet therapy to inhibit pathologic thrombosis without affecting hemostasis.
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Introduction

Platelets perform a critical function by maintaining hemostasis and initiating thrombus 

formation. However, platelet hyperreactivity has been implicated in the pathophysiology of 

cardiovascular diseases, including acute coronary syndromes, myocardial infarction, and 

ischemic stroke. Antiplatelet therapy, such as with aspirin and P2Y12 antagonists, is a 
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cornerstone in the management of cardiovascular disease. Despite use of these agents, 

platelet hyperreactivity persists in a substantial fraction of patients, contributing to on-

treatment major adverse cardiovascular events including cardiovascular mortality. The 

benefit of antiplatelet drugs is counterbalanced by the risk of major bleeding, because they 

inhibit both arterial thrombosis and hemostasis. There is considerable interest in developing 

novel antiplatelet agents that decrease platelet reactivity, but do not affect hemostasis.

There are many naturally occurring molecules that inhibit platelet function, including 

prostaglandin I2 (prostacyclin, PGI2), prostaglandin D2 (PGD2), nitric oxide, and adenosine. 

Prostacyclin has been the most widely studied of these agents. It is produced by vascular 

endothelium and acts as a potent vasodilator that inhibits platelet aggregation. PGD2 is 

produced by mast cells and activated platelets [1], is more stable than prostacyclin in blood 

plasma, is a vasodilator and inhibits platelet aggregation [2]. Prostaglandin E2 (PGE2) also 

modulates vascular tone and platelet reactivity. It is produced by the vascular endothelium, 

activated macrophages within atherosclerotic plaques, and platelets. Despite decades of 

research, the role of PGE2 on platelet reactivity remains not well understood. Findings have 

long been confounded by differing effects based on experimental conditions, differences in 

murine and human biology, the use of synthetic PGE2 receptor agonists, and unappreciated 

phenotypic differences in PGE2 response. This review synthesizes past investigations and 

current research into the important role of PGE2 in regulating thrombosis and provides 

insight into a potential new therapeutic approach that could inhibit pathologic thrombosis 

without affecting hemostasis.

The role of prostanoids in platelet function

The role of PGE2 in regulating platelet function is best understood in the context of the 

larger family of related prostanoids that are produced in the vasculature from common 

polyunsaturated fatty acid precursors. Prostanoids are bioactive receptor ligands that trigger 

a variety of G-protein coupled receptor signaling pathways characteristic of individual cell 

types and activation states. Inflammation, endothelial function, and platelet reactivity 

interact in contributing to cardiovascular disease and form the mechanistic basis for 

targeting treatments and preventive strategies. In physiologic and pathophysiologic states, 

cellular activation releases arachidonic acid via phospholipase cleavage of membrane 

phospholipids (Figure 1). Arachidonic acid is the key polyunsaturated fatty acid metabolized 

to the precursor prostaglandin (PG) endoperoxides, PGG2 and PGH2, by cyclooxygenases 

COX-1 in platelets or COX-2 in the vasculature. PGH2 is further converted to bisenoic 

prostanoids via specific synthases and isomerases. The most relevant prostanoids for platelet 

function are thromboxane A2 (TxA2), PGD2, PGE2, and prostacyclin (PGI2). Originating 

from arachidonic acid and PG endoperoxides, prostanoids exhibit subtle differences in 

chemical structure that confer striking differences in biological responses attributable to 

characteristic specificity and activity profiles as ligands for the diverse family of prostanoid 

receptors. Prostanoids also exhibit a broad range of chemical stability and differences in 

susceptibility to and consequences of metabolism. The varieties and amounts of prostanoids 

produced vary depending on the specific cell type and activation status. Cell types that 

generate prostanoids in the vascular system include endothelial cells, vascular smooth 
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muscle cells, platelets, leukocytes, mast cells, and macrophages. Prostanoids play key roles 

in vascular tone, inflammation, and thrombosis-hemostasis.

Thromboxane A2—TxA2 is the predominant prostanoid generated in activated platelets 

and has been studied extensively. Though chemically among the most unstable prostanoids, 

having a half-life of less than one minute, it acts locally via the TPα receptor as an autocoid 

to potently activate platelets, stimulate platelet shape change, release platelet granule 

contents, and produce irreversible platelet aggregation. Besides its effects on platelets, TxA2 

mediates a number of physiologic and pathophysiologic responses, including 

vasoconstriction, inflammation, and angiogenesis [3]. TxA2 is among the most potent 

known vasoconstrictors of both venous and arterial smooth muscle. Evidence suggests a 

significant, but not fully characterized function in mediating inflammatory responses. In 

septic shock models, TxA2 may be protective by reducing systemic vasodilation [4], but at 

the same time has been shown to contribute to renal dysfunction [5]. TxA2 also has a role in 

angiogenesis and endothelial cell differentiation and proliferation. A TxA2 mimetic that acts 

on the TPβ receptor was shown to inhibit VEGF-mediated endothelial cell migration and 

angiogenesis [6]. However, the TxA2 agonist U46,619 stimulated IL-1beta-induced 

angiogenesis. Whereas the preferential agonist of the TP receptor is TxA2, the metabolic 

precursors of TxA2, PGG2 and PGH2, are also TP agonists and thus may produce similar 

responses.

Excess thromboxane, measured as inactive metabolites including TxB2, has been shown to 

contribute to thrombosis and myocardial ischemic events [7]. Deficiencies in thromboxane 

signaling have been associated with bleeding disorders [8, 9]. Irreversible inhibition of 

COX-mediated PG endoperoxide and TxA2 production, primarily in platelets, is the key 

action of aspirin, leading to its benefit in reducing the risk of acute coronary syndromes and 

stroke. TxA2 synthase inhibitors were developed as potential alternatives to aspirin that may 

have more favorable physiological properties. It was found that such drugs not only decrease 

TxA2 formation, but they also favor PGI2, PGE2, PGF2α, and PGD2 production [10-13]. A 

limitation of the clinical use of thromboxane synthase inhibitors is that while TxA2 

production is reduced and platelet inhibitory PGI2 and PGD2 are increased, there is an 

opposing increase in proaggregatory cyclic endoperoxides [11, 12]. In particular, the parent 

PGH2, which binds the TP receptor, accumulates in this setting. Therefore, it is 

understandable why the net anti-platelet effect of the TxA2 synthase antagonist dazoxiben 

was minimal, unless combined with a TP antagonist [12]. Several TxA2 synthase inhibitors 

and TxA2 / PG endoperoxide (TP) receptor antagonists have been advanced to clinical 

development, but not one has been adopted into clinical use in the United States [14-16]. 

The TP receptor antagonist, terutroban, was compared to, and found to be no different from, 

aspirin in a large clinical trial (PERFORM) for prevention of stroke in patients with prior 

stroke or transient ischemic attacks [17].

Prostacyclin—Prostacyclin is the primary prostaglandin product of endothelial cells. 

Though chemically more stable than TxA2, prostacyclin non-enzymatically converts to an 

inactive product, 6-keto-PGF1α. Prostacyclin enhances microvascular blood flow by potent 

vasodilation. Through IP receptor mediated activation of platelet adenylate cyclase, 
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prostacyclin impairs platelet adhesion and physiologically antagonizes platelet aggregation 

in response to all agonists as well as to vascular injury [18]. The counterbalancing actions of 

stimulatory thromboxane and inhibitory prostacyclin are thought, in part, to regulate 

systemic platelet activation, limit bleeding, and prevent thrombus overgrowth. In general, 

the potent hemodynamic effects of IP receptor agonists limit their clinical utility as 

antiplatelet agents. The stable prostacyclin mimetics epoprostenol, treprostinil, and iloprost, 

are used as vasodilators in patients with pulmonary arterial hypertension [19], and iloprost 

has been explored as a potential therapy in scleroderma and Raynaud's phenomenon [20]. 

Iloprost has also been studied as a potential benefit in critical limb ischemia [21-25], likely 

due to both antiplatelet and vasodilatory effects.

Prostaglandin D2—PGD2 is the primary prostaglandin produced by mast cells. PGD2 has 

predominantly been studied in association with inflammation, particularly its role in asthma 

and other allergic disorders [26, 27]. More recently, PGD2 has been linked to androgenic 

male pattern baldness. Prostaglandin D2 inhibits hair growth and is elevated in the bald scalp 

of men with androgenetic alopecia [28]. PGD2 signals in leukocytes and hair follicles 

through the DP2 receptor (CRTH2) to induce Th2, eosinophil, and basophil chemotaxis and 

inhibition of hair growth via G-alpha(i) [28, 29]. An important mechanism for niacin-

induced flushing is vasodilation following release of PGD2. This prompted development of 

laropiprant, a DP1 receptor antagonist, for use in combination with niacin to optimize 

niacin-induced cholesterol reduction and prevent niacin-induced facial flushing. However, 

this combination was abandoned because it caused more harm than good in a large clinical 

trial (HPS2-THRIVE) [30]. PGD2 may also play roles in the central nervous system, 

including effects on sleep, body temperature regulation, and nociception.

PGD2 interacts with DP1 receptors on both platelets and vascular smooth muscle cells that 

couple to G-alpha(s) to stimulate adenylate cyclase, which inhibits platelet aggregation and 

causes vasodilation [31]. However, the clinical importance of PGD2 as an inhibitor of 

platelet function is not currently known, though laropiprant did not produce an overt 

prothrombotic effect.

Prostaglandin E2—PGE2 is produced in several cell types and contributes to homeostasis 

in the GI tract, kidney, immune system, and vasculature. PGE2 is produced from PGH2 by 

PGE synthase or spontaneous rearrangement of PGH2 in aqueous solution [32]. PGE2 is the 

major prostaglandin secreted by cultured vascular smooth muscle cells and macrophages. 

PGE2 has been found to be the predominant prostanoid from endothelial cells in human 

microvessels [33] and rabbit coronary microvessels [34], and it likely plays a significant role 

in angiogenesis [35] and vascular tone [36, 37]. PGE2 is also present in atherosclerotic 

plaque [38, 39]. Resident macrophages in atherosclerotic plaque constitutively express 

COX-1 and make small amounts of PGE2 at baseline. Induction of COX-2 with 

lipopolysaccharide was shown to preferentially increase production of PGE2. High 

nanomolar concentrations of PGE2 produced by activated macrophages are implicated in 

cardiovascular pathologies such as plaque rupture and abdominal aortic aneurysm formation 

[40]. COX-2 and PGE synthase co-localize in symptomatic carotid plaques, and their 

expression correlates with the extent of inflammatory infiltration and matrix 
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metalloproteinase activity [41]. PGE2 derived from atherosclerotic plaque can exit the 

plaque and act directly on platelets [39]. Activated platelets themselves produce a large 

amount of PGE2 [42]. The significant presence of PGE2 in platelets, microvasculature, 

atherosclerotic plaque, and activated macrophages makes it natural to extrapolate that PGE2 

contributes importantly to vascular physiology and the pathophysiology of thrombosis. The 

remainder of the review will focus on the evolution to the current understanding of the role 

of PGE2 in regulating platelet function.

Cyclic AMP role in platelet activation

Platelet homeostasis has long been ascribed to a balance of mechanisms that either raise or 

decrease cyclic adenosine 3'5'-monophosphate (cAMP) [43]. Prior to the discovery of the 

various prostaglandin receptors, Ashby et al. hypothesized that prostaglandins exert their 

effects via either stimulation or inhibition of cAMP production [44, 45]. While it is now 

recognized that cAMP is but one of many factors in the platelet regulatory pathway, a 

general appreciation of the role of cAMP is essential to understanding how prostaglandins, 

including PGE2, modulate platelet activity. cAMP was shown to mediate the stronger 

antiplatelet effect of TxA2 synthase inhibitors observed in pathologies associated with in 

vivo platelet activation [46]. An increase in cAMP is associated with platelet inhibition, and 

a decrease in cAMP promotes platelet aggregation induced by calcium mobilization[43] 

[47]. cAMP levels can be regulated by agents that either enhance production via adenylate 

cyclase or decrease its metabolism via cAMP phosphodiesterases. In general, Gs-coupled 

receptors stimulate adenylate cyclase, raising cAMP and inhibiting platelet function. For 

example, PGI2 inhibits platelet aggregation by increasing intracellular cAMP via activation 

of its Gs-coupled IP receptor. In contrast, Gi-coupled receptors, such as the ADP receptor, 

P2Y12, inhibit adenylate cyclase, decrease cAMP, and facilitate platelet aggregation. 

Importantly, Gi receptor stimulation alone does not directly induce platelet aggregation, but 

acts synergistically with other receptors that induce mobilization of intracellular calcium, 

such as the Gq-coupled thromboxane receptor, TP [48, 49]

PGE2 acts via multiple receptors

Initially it was thought that PGE2 may act via the PGI2 / IP receptor; however, it was later 

determined that PGE2 preferably activates its own specific receptors [50]. PGE2 has four 

receptor subtypes that were identified and subsequently cloned [51-53], termed EP1, EP2, 

EP3 and EP4. The EP receptors are present in numerous tissues, and the distribution of EP 

receptor subtypes varies among different tissues [54]. Eggerman et al. first showed that 

PGE2 has a receptor on human platelets that is distinct from prostacyclin's receptor [50]. 

Using RT-PCR and Southern blot, Paul et al. showed that the EP3 and EP4 receptors are 

much more prominent in human platelets than the EP2 receptor [55]. The EP1 receptor is 

sparse in most tissues compared to the other EP receptor subtypes [54], and it has not been 

detected in human platelets thus far. These G protein coupled receptors differ in structure 

and signal transduction coupling (Figure 2). In order to understand the role of PGE2 in 

regulating platelet activity, it is necessary to delve into the specific function of the different 

EP receptor subtypes.
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Elucidating EP receptor function with specific agonists/antagonists—Much 

research on the role of PGE2 in platelet function has focused on the use of EP receptor 

subtype-selective agonists and antagonists. Frequently used selective EP receptor agonists 

include butaprost (EP2) [56], sulprostone (EP3) [57], and PGE1-OH (EP4) [57]. Iloprost is 

an EP1 agonist, but is poorly selective [57]. Newer synthetic EP receptor agonists include 

ONO-DI-004 (EP1) [58], ONO-AE1-259 (EP2) [58, 59], ONO-AE-248 (EP3) [60], and 

ONO-AE1-329 (EP4) [60]. Novel EP receptor antagonists include ONO-8713 (EP1) [58], 

ONO-AE3-240 (EP3) [61], DG-041 (EP3) [62], ONO-AE208 (EP4) [63], and MF-191 

(EP4) [56].

EP1 Receptor Biochemistry and Function—The EP1 receptor acts predominantly via 

Gq, activating phospholipase C, protein kinase C, and releasing intracellular calcium [54]. 

However, it does not seem that EP1 is expressed in human platelets, as neither the selective 

EP1 agonist ONO-DI-004 nor the EP1 antagonist ONO-8713 have any effect on platelet 

aggregation induced by platelet activating factor (PAF) [58].

EP2 Receptor Biochemistry and Function—The EP2 receptor couples to Gs, leading 

to increased production of cAMP. Thus, EP2 stimulation leads to inhibition of platelet 

aggregation. The selective EP2 agonist ONO-AE1-259 inhibits platelet aggregation [58, 59]. 

This inhibitory effect is also seen with the EP2 agonist butaprost [56].

EP3 Receptor Biochemistry and Function—The EP3 receptor is more complex than 

the other EP receptors, such that six isoforms have been identified [53, 64-66]. These 

isoforms result from alternative mRNA splicing, which alters the cytoplasmic domain and 

signal transduction pathways. Although EP3 was originally described to couple to Gi leading 

to reduction of intracellular cAMP [67], subsequent evidence suggests that different 

isoforms can variably increase cAMP via Gs or IP3 via Gq [68, 69]. Recent evidence shows 

that EP3 also can couple to Gαz [70, 71].

Stimulation of EP3 via the EP3-specific agonist sulprostone does not directly lead to platelet 

aggregation, but potentiates aggregation in response to agonists such as ADP and U46,619 

in human [38, 56, 62, 72] and murine [73] platelet rich plasma. Additionally, PGE2-

mediated stimulation of EP3 decreased cAMP, consistent with its primary signaling in 

platelets being coupled to Gi [73]. The selective EP3 antagonist DG-041 abolishes the pro-

aggregatory effects of both sulprostone [58] and low concentrations of PGE2 [56, 63, 74].

EP4 Receptor Biochemistry and Function—Similar to the EP2 receptor, the EP4 

receptor was initially characterized as a Gs-coupled receptor, which stimulates adenylate 

cyclase and cAMP production [75]. These cAMP-dependent pathways can involve Protein 

Kinase A (PKA), Epac (i.e. exchange protein activated by cAMP), and AMP Kinase 

(AMPK) [75-77]. Subsequent studies by Fujino and Regan have shown that stimulation of 

EP4 evokes coupling to a pertussis toxin-sensitive Gαi/0 leading to PI3-kinase-dependent 

activities [78-80]. Takayama and Libby described a novel EP4 receptor-associated protein 

(EPRAP) that participates in anti-inflammatory signaling in humans [81].
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The EP4 agonist AE1-329 inhibited platelet aggregation induced by platelet activating factor 

(PAF), ADP, and collagen [58, 59, 82]. AE1-329 also prevented platelets from binding 

fibrinogen through the GPIIb/IIIa receptor [82]. Similarly, we have shown that inhibition of 

EP4 with a selective antagonist MF-191 completely abrogated the effect of PGE2 on 

inhibiting U46,619-induced platelet aggregation [56]. While this inhibitory function is in 

keeping with its known coupling to Gs, other EP4-mediated signaling pathways could 

contribute to PGE2 signaling in platelets. For example, when activated by PGE2, EP4 can 

also recruit arrestins [83], leading to c-Src activation, a signaling pathway independent of G 

protein activation [84]. Interestingly, Arrestin 2 was also shown to regulate the PAR4-

dependent signaling pathway in human platelets [85]. Thus, the complexity of the EP4 

signaling pathways suggests that EP4 might function through both cAMP-dependent and -

independent pathways.

Deciphering the physiologic role of PGE2 in platelets

Early Studies – Conflicting results and biphasic concentration-dependent 
response—Early studies into the role of PGE2 in regulating platelet function in humans 

have produced conflicting results. A consistent theme among studies is the finding that 

PGE2 alone, without an additional agonist, does not lead to platelet aggregation. Thus, 

determining the effects of PGE2 on platelet aggregation must be done with PGE2 in 

combination with other agonists. An early study by Kloeze and colleagues showed that 

PGE2 at concentrations of 5-10 μmol/L inhibited platelet aggregation induced by ADP [86]. 

Shio et al. further characterized two phases of aggregation, an initial phase, followed by a 

plateau, and then a secondary phase. They found that PGE2 (50-200 μg/L = 0.14-0.57 

μmol/L) decreased the primary phase of ADP-induced aggregation in all individuals, while it 

enhanced the secondary phase of aggregation in some individuals [87]. Though the same 

primary phase inhibition with second phase potentiation was also reported by McDonald et 

al. [88], enhancement of the primary phase of aggregation was described by Andersen et al. 

[89].

Whereas early investigations into the effects of low concentrations of PGE2 on platelet 

aggregation were conflicting, studies using higher doses produced more consistent results. 

Heptinstall and Gray described a bimodal effect of human platelets to PGE2, whereby it 

potentiated platelet aggregation at lower concentrations (0.1-10 μmol/L) and inhibited 

aggregation at a much higher concentration (100 μmol/L) [90, 91]. Such a biphasic effect of 

PGE2 was demonstrated in multiple other studies [87, 92-94]. This biphasic response was 

hypothesized to be due to inhibition of cAMP production at low concentrations and 

stimulation of cAMP production at higher concentrations. Indeed, Robison et al. showed 

that cAMP levels were raised in human platelet rich plasma when PGE2 was delivered at a 

high concentration known to inhibit ADP-induced platelet aggregation [95]. The studies of 

Ashby demonstrated that low dose PGE2-mediated platelet aggregation was associated with 

decreased levels of cAMP [96]. Thus, well before the EP receptors were discovered, it was 

postulated that PGE2 may act through multiple receptors that have opposing effects. It was 

thought that low concentrations of PGE2 acted via a Gi-coupled receptor, and higher 

concentrations bound to a Gs-coupled receptor, such as the PGI2 receptor [90].

Friedman et al. Page 7

Thromb Res. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



High doses of PGE2 bind the PGD2 Receptor—Both the PGI2 receptor (IP) and 

PGD2 receptor (DP1) mediate platelet inhibition, and it was hypothesized that high 

concentrations of PGE2 could interact with one of these receptors. PGE2 has a relatively low 

affinity for IP in humans, and selective inhibition of IP does not prevent the inhibitory 

effects of PGE2 [58]. PGE2 does act, however, on the DP1 receptor [2]. The affinity of 

PGE2 for DP1 has been shown to be at a Ki of 307 +/− 106 nmol/L [97]. This Ki predicts 

that PGE2 concentrations above 500 nmol/L will activate DP1.

Studies in mice – important data, but limited translation to humans—In part 

because of the high variability in the response of human platelets to PGE2, particularly at 

low doses, investigators extensively studied the effect of PGE2 on platelets using mice. In 

contrast to humans, low concentrations of PGE2 consistently have a pro-aggregatory effect 

in mice. Concentrations of PGE2 up to 100 μmol/L potentiate platelet aggregation induced 

by sub-efficacious concentrations of a thromboxane receptor agonist, U46,619, and by 

collagen (18-21).

Within many tissue types, including platelets, the presence of the EP receptors differs in 

mice compared to humans. In murine platelets, EP1 is essentially absent, and the expression 

levels of EP3 are over 200-fold higher than EP4 and over 1000-fold higher than EP2 [98]. 

Therefore, the relative contribution of EP2 and EP4 pathways to PGE2 effects on platelets is 

negligible in mice. For example, the dose of the EP2 specific agonist butaprost required for 

platelet inhibition is much higher in mice than humans [IC50 87 ± 3 μmol/L vs. 2.57 ± 0.82 

μmol/L, respectively) [58] [59]. Likewise, the EP4 agonist AE1-329 had a much less robust 

inhibitory effect in mouse platelets compared to human platelets [58, 59, 82]. EP3 activation 

almost entirely drives the effect of PGE2 in mice, explaining why PGE2 has no detectable 

effect on platelets in EP3 −/− knockout mice [73].

Similar to humans, very high doses of PGE2 (greater than 1 μmol/L) in mice inhibit platelets 

[73]. However, in mice, this inhibitory effect is not mediated by PGE2 binding of DP1, as 

this receptor is not present in murine platelets [99]. Rather, high doses of PGE2 bind the 

murine prostacyclin receptor IP [73]. Thus, for numerous reasons the findings in mice 

cannot be extrapolated directly to humans.

As PGE2 mediates in vitro platelet aggregation in mice via EP3, investigators explored how 

modulating EP3 may contribute to in vivo thrombosis. Mice deficient in EP3 had decreased 

susceptibility to atherothrombosis triggered by intravenous arachidonic acid infusion [98] or 

mechanical plaque rupture [39]. Tilly et al showed that blocking EP3 in mice with the EP3 

antagonist DG-041 inhibited atherothrombosis in vivo caused by ferric chloride or 

arachidonic acid exposure followed by mechanical plaque disruption [100]. Whereas mice 

that completely lack functional EP3 demonstrate increased in vivo bleeding times [98], mice 

treated with DG-041 have preserved hemostasis [100, 101].

Biased agonism – PGE2 and EP specific agonists may have different effects—
Early studies in humans were done without the understanding that human platelets express 

three different PGE2 receptors. The discovery of the EP receptor subtypes launched a 

number of investigations into how the diverse effects of each receptor mediate the overall 
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response to PGE2. Most of these studies were performed using EP receptor specific agonists, 

and the results were extrapolated to determine the effects of PGE2 itself. However, our data 

suggest that activation of EP2 in human platelets by its selective agonist butaprost or by 

PGE2 itself may have different effects: although butaprost inhibits platelet aggregation 

induced by U46,619, PGE2 does not affect platelet aggregation when both EP3 and EP4 are 

blocked with their respective antagonists (DG-041 and MF-191) [56]. These results are in 

keeping with the growing evidence suggesting that synthetic ligands of a target GPCR may 

activate distinct pathways, leading to coupling of the receptor to different intracellular 

effectors [102, 103] in a process termed “biased agonism” [104, 105]. Similar to EP2, 

differences based on “biased agonism” have recently been illustrated with subtype selective 

ligands of EP4 [106].

Current understanding - PGE2 response is determined by a relative effect of 
EP receptor activation—In 2010, we and others reported that the net effect of PGE2 in 

human platelets reflects a balance between the potentiating effects mediated by EP3 and the 

inhibitory effects mediated by EP4 [56, 58, 59, 107]. These data suggest that PGE2 may 

contribute to platelet homeostasis by modulating the overall response to other activators and 

inhibitors. The following section will discuss how inter-individual phenotypic differences in 

the effects of low dose PGE2 initially hindered the field, but eventually led to an improved 

understanding of the role of PGE2.

Phenotypic differences in PGE2 effect on human platelets—Despite the 

conclusion by many investigators that low dose PGE2 promotes aggregation, a number of 

studies have noted variable responses among human subjects [72, 87, 91, 108, 109]. In the 

study by Shio et al., certain subjects seemed to lack the second phase of potentiation, such 

that the overall response to PGE2 was only inhibition [87]. Gresele et al. showed that PGE2 

promoted platelet aggregation to arachidonic acid in patients deemed “nonresponders” to 

thromboxane synthase inhibitors, but inhibited aggregation in those termed “responders” 

[109]. At that time, there was significant interest in the development of thromboxane 

synthase inhibitors, and several other investigators described the phenomenon of responders 

and non-responders to these drugs [110-113]. Matthews et al. showed that PGE2 (0.01-5 

μmol/L) inhibited aggregation in response to ADP in 2 out of 8 blood donors and potentiated 

aggregation in the other 6 donors [72]. This inter-individual variability in humans remained 

unexplained, but was suggested to be due to the differential “response of their adenylate 

cyclase to PGE2” [109] or variation in the ratio of PGD2 to TxA2 + PGE2 produced [112].

Our group first described in 2010 that the effects of PGE2 at low concentration (100 nmol/L) 

on human platelets segregates into different phenotypic groups [56]. Since then, we have 

refined our characterization of these groups and clarified the terminology. The phenotypic 

groups are: inhibitory (PGE2 inhibits platelet aggregation), and potentiating (PGE2 permits 

or potentiates aggregation) (Figure 3). Testing 104 healthy volunteers revealed that 45% 

have the inhibitory phenotype and 55% have the potentiating phenotype. This variable PGE2 

effect was lost when platelets were activated with higher concentrations of agonist that elicit 

full activation [56]. Importantly, the volunteers have been tested on multiple occasions over 

several years without variation in the phenotypic group assignment, demonstrating 
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reproducibility and suggesting independence from environmental factors. We have also 

analyzed patients with coronary artery disease who are receiving dual antiplatelet therapy 

(aspirin and P2Y12 inhibitors) and have shown that this treatment does not affect phenotypic 

determination.

PGE2 has the same inhibitory or potentiating effect on platelet aggregation whether in the 

presence of agonist for the thromboxane receptor [56] or the thrombin receptor protease 

activated receptor type 4 (PAR4) (Figure 4). In contrast, PGE2 has no effect on platelets 

activated with a protease activated receptor type 1 (PAR1) specific agonist peptide (Figure 

4). Of note, MacIntyre and Gordon showed that PGE2 had no effect on platelet aggregation 

induced by collagen in citrated platelet rich plasma [114], results that we reproduced (data 

not shown). These data outline the complexity of the regulation of platelet aggregation by 

PGE2 and reinforce the need to better understand the mechanism responsible for the two 

phenoptypes.

We observed that all individuals express EP2, EP3, and EP4, and that these receptors 

respond similarly to their specific agonists butaprost, sulprostone, and PGE1-OH, 

respectively [56]. However, the net result of activation of these three receptors by their 

endogenous agonist, PGE2, leads to the different phenotypes, suggesting that there are 

differences in specific signaling pathways. Importantly, our data showed that an EP3 

antagonist, DG-041, converts subjects from the potentiating to the inhibitory phenotype [56] 

(Figure 5). Further work is necessary to determine the signaling mechanisms by which PGE2 

affects platelet aggregation in each phenotypic group.

Several reasons may explain why the two different PGE2 response phenotypes were not 

recognized and characterized earlier: 1) The presence of the different EP receptor subtypes 

in human platelets was not initially appreciated; 2) Much of the data was obtained using 

murine models, in which the PGE2 response results entirely from EP3 activation; 3) Many 

experiments have been conducted with higher concentrations of agonists that cause full 

platelet activation, a condition in which PGE2 has no effect; and 4) Most recent experiments 

with human platelets have been performed using EP-specific agonists, rather than PGE2, 

possibly leading to “biased agonist” effects.

Clinical Implications

Risk for cardiovascular events—It is understood that vascular injury stimulates platelet 

adhesion in part via activation of platelet glycoproteins, followed by release of chemical 

mediators, such as thrombin, ADP, TxA2, and norepinephrine that recruit more platelets to 

the site of the wound. However, a gradient of agonist forms around the thrombus, and 

platelets circulating in the low concentration part of the gradient may not be recruited to the 

wound, but would be partially activated, making them more “sticky.” These “sticky” 

platelets express adhesion molecules at their surface and may contribute to pathologic 

thrombus formation [115]. PGE2 may be an underappreciated mediator, generated from the 

macrophages in atherosclerotic plaques and activated platelets, that plays a role in regulation 

of platelet reactivity. We have shown that low concentrations of PGE2, such as those 

generated locally by activated platelets, can exert either inhibitory or potentiating effects. In 

individuals with the inhibitory phenotype, the local PGE2 could slow the growth of the 
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associated thrombus by increasing the threshold for activation of circulating platelets in the 

proximity of the atheroma (Figure 5). This inhibition would be mediated by the effects of 

PGE2 on EP4. In contrast, in individuals with the potentiating phenotype, platelet 

aggregation may be enhanced via the potentiating EP3 receptors without effective inhibition 

through EP4 receptors. Thus, we would postulate that in the setting of atherosclerotic plaque 

rupture, individuals with the potentiating phenotype might be at higher risk of thrombotic 

cardiovascular events including myocardial infarction or stroke. We further would postulate 

that phenotyping individuals for their platelet responses to PGE2 could serve as a risk 

prediction tool that might also guide treatment selectively for those at higher risk.

Potential for novel therapeutic options—Increasing platelets threshold to agonist 

stimulation could constitute an appealing new therapeutic approach in the management of 

cardiovascular thrombotic events [115], as it might inhibit thrombosis without affecting 

hemostasis. Proposed targets for intervention include the EP3 and EP4 receptors via EP3 

antagonists and EP4 agonists.

Based on encouraging preclinical studies in mice [100, 101], the in vivo effects of EP3 

antagonism have been investigated in human subjects. Tilly et al. treated 10 healthy 

volunteers with DG-041 for 7 days and found that the drug reduced platelet aggregation to 

collagen, while not affecting cutaneous bleeding time [100]. In a separate study by Fox et 

al., healthy volunteers were given DG-041 alone or in various combinations with 

clopidogrel and aspirin [116]. The study showed that DG-041 neither increased bleeding 

time alone nor further increased bleeding time to clopidogrel. At the same time, the effect of 

DG-041 further decreased platelet aggregation. In 2006, deCODE Genetics (Reykjavik, 

Iceland) began a Phase IIa randomized, placebo-controlled clinical trial of DG-041 in 144 

patients with peripheral arterial disease, examining the safety and tolerability of the drug and 

its effect on various markers of disease severity. While the results have not been published, 

the company internally reported no serious adverse events and favorable effects on 

inflammatory biomarkers, such as c-reactive protein and monocyte chemotactic protein 1, as 

well as ankle-brachial index measurements [117].

While these studies are very promising, Schober et al. cautioned that the concentration of 

PGE2 in human atherosclerotic plaques is low, which may render the effects of PGE2 in 

vessels minimal. In their study PGE2 from plaque homogenates had no effect on platelet 

aggregation [38]. Furthermore, the EP3 antagonists AE5-599 and AE3-240 did not prevent 

platelet aggregation, dense granule release, or GP IIb/IIIa exposure induced by plaque 

homogenates. These results are important as they indicate that more studies are needed to 

understand fully the effect of PGE2 on atherothrombosis in humans. However, our data 

predict that plaque homogenates should not be used as platelet agonist: 1) plaque 

homogenate contains collagen and thrombin and other agonists that are not regulated by 

PGE2. Moreover, the concentration of these agonists in the assay must have elicited full 

platelet activation, a condition in which PGE2 has no effect. 2) The platelet donor must be 

phenotyped for PGE2 response prior to doing the experiment to make sure that the data can 

be interpreted correctly: a donor with the potentiating phenotype would fail to show platelet 

inhibition. 3) PGE2 half-life in biological milieu such as blood or plasma is in the minute 

range, and the cellular machinery generating it in plaques is disturbed during 
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homogenization, suggesting that there might have been no native PGE2 left in the 

homogenate. In studying the complex downstream effects of PGE2, it is essential to have a 

precise and sophisticated experimental design, which takes into account the concentration-

sensitive effects of the molecule and the interplay with the variable characteristics of the 

donor platelets.

In addition to the clinical use of an EP3 receptor antagonist, a selective EP4 receptor agonist 

has been proposed to be of clinical utility. Apart from its effects on platelet aggregation, 

PGE2 via EP4 may have beneficial effects on reducing inflammation and myocardial injury 

in the setting of ischemia [118, 119]. In vitro antithrombotic effects of the EP4 agonist 

AE1-329 have been seen using platelet aggregation assays [58, 59, 82] and flow chamber 

experiments that studied thrombus formation in human blood passed over a collagen column 

[82]. Indeed, platelet inhibition to AE1-329 was similar to the effects of aspirin and was 

synergistic in combination [82]. Whether the EP4 agonist increases bleeding time is not 

known, and in vivo studies in mice cannot be relied upon to predict effects in humans for the 

reasons described above. Additionally, as the EP4 receptor plays a regulatory role in 

numerous tissues, the non-platelet effects of systemic administration would need to be 

closely monitored. For example, in an animal model of type 1 diabetes, an EP4 agonist 

exerted negative pro-inflammatory effects on the kidney leading to fibrosis and albuminuria 

[120]. EP4 agonists also may promote tumor progression and metastasis in various 

malignancies [121-123]. Nevertheless, an EP4 agonist was explored as a potential therapy 

for ulcerative colitis in a phase II clinical trial, and the safety profile was favorable [124].

Platelets and Tumor Growth—It is becoming increasingly recognized that there is a 

significant interaction between tumor cells and platelets. Platelet activation in cancer 

patients increases the risk of thrombosis, a major complication of cancer [125]. More recent 

data has shown that platelets may contribute to metastasis by inducing epithelial-

mesenchymal transition, vascular remodeling, endothelial adhdesion, and even immune 

evasion [126-128]. Platelets recently were shown possibly to function as a chemo-attractant 

to cancer cells [129].

Platelets can also induce COX-2 overexpression in cancer cells themselves, demonstrated in 

a colon cancer cell line [130]. Subsequently, in both platelets and tumor cells, PGE2 is 

thought to contribute to a variety of signaling pathways that may ultimately lead to tumor 

growth and metastasis. Inhibition of COX via aspirin or NSAIDs has already been explored 

as agents to inhibit this cascade [131]. Specific antagonists that act on the EP receptors have 

been proposed to be novel anti-tumor agents in colorectal and breast cancer [132-134].

Conclusions

The critical need to elucidate platelet biology has driven over 40 years of research into the 

function of PGE2. PGE2 can have either stimulatory or inhibitory roles in human platelets 

depending on experimental conditions, and individuals segregate into different phenotypic 

groups exhibiting either PGE2-mediated potentiation or inhibition of platelet aggregation. 

The discovery of the EP receptors launched a series of investigations into their effects in 

platelets. Using specific agonists, it was shown that the EP3 receptor promotes platelet 
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aggregation and that the EP4 and EP2 receptors inhibit platelet aggregation. Investigators 

including our group and Heptinstall et al. have shown that the effect of PGE2 on human 

platelets is determined by the net activation of EP4 and EP3 [56, 58]. Since mice 

functionally only express EP3 in platelets, murine studies cannot be expected to predict 

outcomes in humans. In addition, biased agonism must be appreciated as a potential 

confounder when designing experiments with synthetic agonists to study the effect of PGE2. 

Taken together, these considerations demand that we standardize the experimental 

conditions when studying the effect of PGE2 on platelet function (Table 1).

We have made the seminal observation that humans segregate into two distinct platelet 

response phenotypes: 1) inhibitory phenotype, whereby a low concentration of PGE2 

increases the activation threshold for agonists; 2) potentiating phenotype, whereby a low 

concentration of PGE2 decreases the activation threshold for agonists. The presence of these 

phenotypes may explain much of the inter-individual variability in PGE2-mediated 

responses that has been described over the years, including the variable responses to TxA2 

synthase inhibitors. When performing and analyzing human platelet function studies, 

especially those involving prostanoids, platelets with different phenotypes may be best 

studied with slightly different protocols and analyzed separately to avoid confounding 

results.

Finally, persistent on-treatment platelet hyper-reactivity remains a challenge in the 

management of cardiovascular diseases, as it is correlated with adverse clinical outcomes. 

There is great interest in developing novel antiplatelet agents that allow true personalized or 

tailored antiplatelet therapy. Thus far, studies using point-of-care platelet function testing 

have failed to show benefit to this approach. DG-041, an EP3 antagonist, showed promise in 

its ability to inhibit platelet function while not increasing bleeding. The use of an EP3 

receptor antagonist in conjunction with knowledge of the individual's PGE2 response 

phenotype offers a simple and elegant approach to personalize anti-platelet therapy. An EP4 

agonist also may inhibit platelet function, but the effects on bleeding and on normal function 

in other tissues are not known. Further research into the biological properties of the EP 

receptors and their signaling pathways that underlie the inhibitory and potentiating 

phenotypes may create additional options for safe and effective treatment of cardiovascular 

diseases.
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AMPK AMP Kinase

cAMP cyclic adenosine 3'5'-monophosphate

COX Cyclooxygenase
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PAF Platelet activating factor

PG Prostaglandin

DP Prostaglandin D2 receptor

EP Prostaglandin E2 receptor

PKA Protein Kinase A

Tx Thromboxane
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Highlights

Human platelet's response to PGE2 segregates in two phenotypic groups

PGE2 effects on mouse platelets cannot be translated to human platelets

Studies must use PGE2 rather than receptor-specific agonist because of biased agonism

Published data in platelets are inconsistent from lack of standardized protocols

PGE2 receptors could be new targets for antiplatelet drugs that preserve hemostasis
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Fig. 1. Prostanoid Metabolism
Arachidonic acid is released from cellular membrane phospholipids by phospholipase A2. 

Shown here is the metabolism by the cyclic pathway to prostaglandins and thromboxane. 

Leukotrienes are also derived from arachidonic acid by a separate linear pathway (not shown 

for clarity).
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Fig. 2. EP receptors and signaling pathways
PGE2 binds to four receptor subtypes: EP1, EP2, EP3, and EP4. Each receptor has distinct 

signaling pathways depending on the cell type in which it is expressed. All major mediators 

and second messengers are shown for each receptor subtype. The details of these pathways 

continue to be refined.
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Fig. 3. Representative traces of the two phenotypic groups analyzed by light transmission 
aggregometry
Healthy volunteers or patients undergoing PCI were consented following a protocol 

approved by the Vanderbilt Institutional Review Board. Platelet rich plasma (PRP) was 

obtained from citrated blood, and platelet count was adjusted to 250,000 cells per μl with 

autologous platelet poor plasma (PPP). PRP was preincubated with PGE2 100 nmol/L 

(PGE2) or vehicle (control) for 30 s, followed by a sub-maximal concentration of U46,619. 

Aggregation was recorded for 6 min as described by Smith et al [56]. The frequency of each 

phenotypic group is indicated (n=104).
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Fig. 4. Effect of PGE2 on platelet aggregation induced by agonist peptides specific for the two 
thrombin receptors expressed on human platelets
Healthy volunteers were consented following a protocol approved by the Vanderbilt 

Institutional Review Board. PRP was obtained from citrated blood, and platelet count was 

adjusted to 250,000 cells per μl with autologous platelet poor plasma (PPP). 250 μl PRP was 

preincubated with vehicle (−) or with 100 nM PGE2 (+) for 30 s, followed by sub-maximal 

concentrations of agonist peptides specific for PAR1 (PAR1-AP) or PAR4 (PAR4-AP). 

Aggregation was recorded for 6 min as described previously [56]. Values represent mean ± 

S.E.M (n = 3). Statistical significance was evaluated by paired t-test.
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Fig. 5. Effect of PGE2 on platelet activation in humans
The net effect of PGE2 reflects the differential activation of the two receptors EP3 and EP4. 

EP3 antagonists shift phenotype from potentiating to inhibitory.
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Fig. 6. Schematic representation of a blood vessel demonstrating the hypothetical effects of PGE2 
on thrombus growth in inhibitory and potentiating phenotypes
At the site of atherosclerotic plaque rupture, a gradient of agonist is released, and platelets 

are recruited to form an initial plug. PGE2 is produced by macrophages in the plaque as well 

as by activated platelets. The inhibitory phenotype is accompanied by a increased threshold 

for platelet aggregation, preventing platelet hyperreactivity. In contrast, the potentiating 

phenotype is associated with a decreased threshold for platelet aggregation, promoting 

formation of an occlusive thrombus.
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Table 1

Proposed Standardization of PGE2 Platelet Assays

Key Points

• Studies must be performed on human platelets, because the relative expression of EP receptor subtypes in mice is different.

• PGE2 must be utilized rather than EP-specific agonists due to the potential for biased agonism; the contribution of each receptor sub-type can 
be studied by blocking the other sub-types with highly selective antagonists.

• The concentration of PGE2 must not exceed 100-200 nmol/L to ensure that it does not stimulate DP1 receptors.

• The concentration of agonist used to stimulate platelet aggregation must be sub-maximal and determined for each individual by constructing 
a dose-response relationship with and without PGE2.

• Recognition of the presence of two human phenotypic groups should be reflected in the data analysis and its interpretation.
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