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There is evidence that warming leads to greater evapotranspira-
tion and surface drying, thus contributing to increasing intensity
and duration of drought and implying that mitigation would
reduce water stresses. However, understanding the overall impact
of climate change mitigation on water resources requires accounting
for the second part of the equation, i.e., the impact of mitigation-
induced changes in water demands from human activities. By using
integrated, high-resolution models of human and natural system
processes to understand potential synergies and/or constraints
within the climate–energy–water nexus, we show that in the
United States, over the course of the 21st century and under one
set of consistent socioeconomics, the reductions in water stress
from slower rates of climate change resulting from emission mitiga-
tion are overwhelmed by the increased water stress from the emis-
sions mitigation itself. The finding that the human dimension
outpaces the benefits from mitigating climate change is contradictory
to the general perception that climate change mitigation improves
water conditions. This research shows the potential for unintended
and negative consequences of climate change mitigation.

climate change | mitigation | water deficit | Earth system model |
integrated assessment

Earlier work addressing the impact of emissions mitigation on
water supply and demand has produced conflicting results

(1–5). The reasons are complex. Earth system models (ESMs)
and climate models are generally in agreement that a lack of
climate change mitigation would lead to greater warming and
intensification of the global water cycle (6), increasing pre-
cipitation intensity (7), changes in runoff that amplify the existing
wet/dry patterns (8), and increasing flood risk (9) as well as
aridity (10). However, changes in seasonal patterns and the in-
creasing probability of extreme events may complicate the gen-
eral patterns of wet/dry trends (11). Additionally, changes in
water demands caused by socioeconomic drivers alone may
surpass the effects of climate change on water availability (12).
Several studies (1–5) have assessed the consequences of miti-
gation on some measure of water deficit. Each study used its own
integrated assessment and global hydrologic models, generally
with varying underlying socioeconomic and technological as-
sumptions, climate inputs, measures of water deficit, and a wide
range of spatial and temporal resolutions. A key distinction of
the study presented here is its coupling of regional ESMs and
human systems models using finer spatial and/or temporal res-
olutions than previous efforts.
Extending the work of Hejazi et al. (4) and Voisin et al. (13),

integrated regional models of human and natural systems with
enhanced capabilities are used at high temporal and spatial
resolution while maintaining consistency with regional and global
climate and economic modeling. In this modeling framework, a
regional integrated assessment model (IAM) simulates water

demand for both irrigation and nonirrigation sectors (a result of
its equilibrium modeling of markets for energy, agriculture, and
land); a regional ESM projects regional climate change; and a
coupled system of land surface, river routing, and water-man-
agement models simulates natural and regulated flow, water
supply, and deficits on a daily basis. The integrated system pro-
vides a telescoping focus over the conterminous United States at
a resolution of one-eighth of a degree (∼12 km2) to project and
compare water deficits under two scenarios: the baseline emis-
sions scenario of the Representative Concentration Pathways
(scenario RCP8.5) (14, 15) and a mitigation scenario in which a
global carbon price is implemented to stabilize global radiative
forcing by the year 2100 at 4.5 W/m2 (scenario RCP4.5) (14, 16).
Given our scenario assumptions (16), the results clearly show
that climate change mitigation (i.e., scenario RCP4.5) exacer-
bates total water deficits in the United States compared with no
mitigation (scenario RCP8.5). As will be shown, the primary
driver is the increased demand for irrigation water for bioenergy
crops that results from the increased demand for bioenergy
production under carbon pricing.
First we present the results for each scenario spatially, showing

the simulated change in average annual water deficits, followed
by basin-specific results for the share of the deficit experienced
by the irrigation versus nonirrigation sectors and the distribution
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and trend (in size and severity) of water-deficit hotspots (defined
below), followed by a comparison of these results with previous
studies.

Projected Water Deficits in the United States
A water-deficit event occurs when the surface water available
from either the locally generated runoff or accessible neighbor-
ing stream or reservoirs is insufficient to meet the required water
demand on a given day. Fig. 1 shows the spatial distribution (on a
county scale aggregated from results determined at a resolution
of one-eighth of a degree) of average annual water deficits as a
fraction of total water demand over the historical period and its
relative change in three time periods under each RCP. Areas of
historical surface-water deficit are predominately in the western
United States and generally coincide with areas with significant
irrigation or areas around urban regions. This figure also high-
lights the dependence of counties with large surface-water deficits
on groundwater pumping and nonrenewable freshwater sources to
meet their historical demands. Regions with clearly worse deficits
on an average annual basis under RCP4.5 include the Great Plains
region as shown in Fig. 1. As also shown, the increase in average
annual water deficits in the later part of the century (Fig. 1, 2080s)
is greater under the mitigation scenario (RCP4.5) than with no
mitigation (RCP8.5).
Because our approach tracks the water deficit for each water-

demand sector, we can investigate how different water-demand
sectors are impacted by the growing deficit and how the mix
would change under mitigation vs. no mitigation scenarios. The
water-demand sectors are aggregated to irrigation and non-
irrigation (primarily energy and domestic) sectors. Fig. 2 shows
the temporal evolution of water deficit at the annual scale for
each of the water-resource regions in the United States broken
into the two major categories of water-use sectors. Results
clearly show that the agricultural sector will experience the ma-
jority of the deficit in total and in most basins. The nonirrigation
sector dominates only in regions where there is extensive de-
mand for power plant cooling technologies, dense population,
and little irrigation requirement—primarily in the humid
Northeast and parts of the Midwest.

Projected Water-Deficit Hotspots by Major Water Basin in
the United States
We define future water-deficit hotspots in each basin based on
spatial and volumetric thresholds derived from the historical
simulation. First, we aggregate our daily results to the monthly
scale and identify grid cells with historical monthly water deficits

equaling at least 10% of demand. From these grid cells, we then
identify the historical 95th-percentile deficit amount as the vol-
umetric threshold for each basin’s hotspots. This basin-specific
95th percentile value is used to identify future hotspots as grid
cell clusters where the deficit of each cell is greater than the 95th
percentile (see SI Materials and Methods for the detailed defi-
nition of a hotspot and for an example that shows a map of
hotspots for the month of August in years 1990 and 2068 in
Georgia.)
Fig. 3 shows the impact of the mitigation scenario on the

volume distribution of water-deficit hotpots in each major water
basin of the United States, using the high-resolution temporal
(daily) and spatial (∼12 km2) outputs from our modeling system.
We focus on water-deficit hotspots in August, using basin-spe-
cific 95th percentiles from August months in the historical pe-
riod, because a majority of deficits peak during that time. August
also is the end of the reservoir operations season for water supply
and highlights the interannual variability in water storage at the
end of snowmelt, shift in seasonal flow climatology, and total
water demand over the summer. Fig. 3 shows a clear shift to the
right of the cumulative density functions of the total deficit in all
hotspots within each basin from the RCP8.5 to RCP4.5 scenarios
from 2005 to 2095, suggesting that water deficits may become
more severe (by volume) with mitigation. To reveal the main
drivers of this deficit increase, we also present the change in
water demand and supply (natural runoff) for all of the grid cells
that are classified as hotspot deficits during August. Both supply
and demand increase under mitigation (Fig. 3), with the latter
dominating as the key driver of the increased deficits under
RCP4.5 compared with RCP8.5. Water demands generally in-
crease over time in both scenarios because of population growth
and demands for food and energy and other services with con-
sumptive use, but, as mentioned above, there is a large increase
in water demands for irrigation of bioenergy crops in RCP4.5.

Fig. 1. Average total annual water deficit as a fraction of demand (county
scale) for the historical period and the deficit difference from historical
under RCP4.5 and RCP8.5 in the 2020s, 2050s, and 2080s.
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Fig. 2. Water deficit attributed to irrigation and nonirrigation sectors for
each of the 18 basins under RCP4.5 and RCP8.5.
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The projected increase in water demand for bioenergy pro-
duction is in agreement with other studies that found significant
impacts from irrigated bioenergy crops on freshwater systems
(17, 18). King et al. (19) found that water use for irrigating
bioenergy crops could increase from 2% of total water con-
sumption in 2005 to 9% in 2030 in the United States. The In-
ternational Energy Agency’s Alternative Policy Scenario, which
has bioenergy production increasing to 71 exajoules (EJ) in 2030,

projected that the global consumptive irrigation water use for
bioenergy production would increase from 0.5% of global re-
newable water resources in 2005 to 5.5% in 2030 (17).
Fig. 4 provides additional insight into the results by showing

the August trend over time in terms of hotspot extent, that is, the
total area of grid cells that are classified as hotspots. Both hot-
spot extent and number increase over time under both RCPs, but
the mitigation scenario leads to greater spatial coverage of areas

Fig. 3. Empirical cumulative density function (CDF) of total regional hotspot deficit (106 m3) (top three rows) and total regional demand (solid circles) and
supply (empty circles) (106 m3/y) to areas categorized as deficit hotspots (bottom three rows) during the month of August for RCP 4.5 (maroon) and RCP 8.5
(green) over the period 2005–2095.

Fig. 4. Total hotspot area (100,000 ha) in August over the time period 1985–2095 for RCP 4.5 (maroon) and RCP 8.5 (green). The size of each point is equal to
the area (100,000 ha) of the largest hotspot in August of the corresponding year. The shade of the color indicates the number of hotspots in August of the
corresponding year. The dashed vertical line marks the end of the historical period, 1985–2004. Trend lines were fit using LOESS.
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affected by water deficit. The shape of the trend lines peaking or
leveling off after midcentury is consistent with the population
projection (which is the same for both scenarios), but the di-
vergence between the two RCPs at midcentury is attributed pri-
marily to the expansion of bioenergy crop production. When the
data in Figs. 3 and 4 are combined, not only do the spatial extent
and magnitude of hotspots increase under RCP4.5; both the
number of occurrences and the size of the largest event also tend
to increase with mitigation.

Contrast with Other Research Results. Our result showing that a
mitigation scenario increases water deficits appears to contradict
other studies such as Blanc et al. (5), Hanasaki et al. (3), and
Arnell et al. (1). Aside from the work of Blanc et al. (5), which
focused on the United States, all other studies provided global
estimates, and several hinted about regional differences. Blanc
et al. (5) concluded that adopting a climate change mitigation
policy would be effective in reducing water stress for most basins
in the United States, although the beneficial effect is small, and
that climate policies would worsen water stress in three basins
(Gila, Little Colorado, and Upper Pecos). Hanasaki et al. (3)
performed a comprehensive global analysis of the effects of cli-
mate change under the various RCP scenarios and shared so-
cioeconomic scenarios. Arnell et al. (1) also investigated the
potential effect of climate policy on the impacts of climate change
on exposure to water resources stress globally. They found that
their mitigation policy scenario (CO2 stabilized to 450 ppm by
2100) would reduce the population exposed to water stress by
5–21% in 2050, by 13–40% in 2080, and by 15–47% in 2100. Thus,
they concluded that climate policy could prevent less than half of
the potential impacts of climate change, with little effect before
the middle of the 21st century. The opposing results can be at-
tributed to differences in the underlying assumptions pertaining to
the water-demand sectors, input climate information, the hydro-
logic model used and the structural differences in models, the
spatial and temporal resolutions of the modeling and analysis, and
the adopted mitigation options, among others.
To investigate the implications of spatial and temporal reso-

lutions (a distinguishing feature of our modeling) on the water-
deficit results, we have reassessed the total annual deficit at
multiple spatial and temporal scales for each of the two RCPs.
More specifically, we compared the evolution of the annual
deficit by aggregating the natural streamflow and demands from

the daily scale and a resolution of one-eighth of a degree against
four alternative methods: (i) aggregating from daily to monthly
to compute monthly deficits aggregated to annual at a resolution
of one-eighth of a degree; (ii) aggregating to an annual scale to
compute annual deficits directly at a resolution of one-eighth of
a degree; (iii) as in the first method, but aggregating to a reso-
lution of one-half of a degree; and (iv) as in the second method
but aggregating to a resolution of one-half of a degree. All re-
sults then are compiled for the whole United States by summing
up the total annual deficits from all grids. Fig. 5 clearly shows
that by computing deficits at coarser spatial and temporal scales
we significantly underestimate the amount of deficits, simply
because of the averaging effect of the inherent spatial and
temporal variability of natural streamflow and water demands.
The results also clearly show the divergence between the two
RCP scenarios around midcentury. However, that difference (or
signal) tends to diminish as we move to coarser temporal and
spatial scales. Fig. 5 also shows that the signal-to-noise ratio
diminishes at coarser scales during 2065–2094, perhaps ex-
plaining the mixed results in previous studies. For example,
Arnell et al. (1) and Hejazi et al. (4) computed water scarcity at
the annual scale and at a spatial resolution of one-half of a de-
gree. Akimoto et al. (2) computed water scarcity at the annual
scale and at a spatial resolution of one-fourth of a degree.
Hanasaki et al. (3) performed a daily assessment of water deficit
at a spatial resolution of one-half of a degree. Blanc et al. (5)
calculated water deficit at the monthly and annual scales with a
relatively coarse spatial resolution of 2 × 2.5 degrees and
mapped to the basin scale.
Our study also takes advantage of a global assessment model

that is extended to model the economic decisions at much finer
spatial scales (states) than most other IAMs and is coupled to a
high-resolution regional ESM with state-of-the-art river routing
(20) and reservoir operations models (21). Akimoto et al. (2) and
Hejazi et al. (4) did not include representations of reservoirs or
river routing. Blanc et al. (5) allocated water using a single vir-
tual reservoir for each basin and routed water laterally by as-
suming that unused upstream water is made available to the
basin directly downstream. Hanasaki et al. (3) included only the
largest 507 reservoirs globally, compared with the 1,848 reser-
voirs in the United States used in our study. Also, most previous
studies used IAMs that treat the whole United States as a single
region, thus losing important details about regional differences.
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Fig. 5. (Left) The difference in total annual water deficit between the two RCP scenarios (RCP4.5 minus RCP8.5) using multiple methods of aggregations both
spatially and temporally; shaded areas represent the 95% confidence band on the mean trend. (Right) A comparison of signal-to-noise ratios across the five
aggregation methods and the future time period of 2065–2094.
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This study relies on a single global and regional climate model,
a single regional IAM, and a single socioeconomic pathway to
achieve the mitigation target. However, the seasonal and spatial
patterns of wet/dry trends from the global and regional models
are broadly consistent with the Coupled Model Intercomparison
Project Phase 5 (CMIP5) multimodel ensemble (22). The study
also assumes that all water demands are abstracted from in-
ternally generated runoff, neighboring rivers, and reservoirs, thus
excluding groundwater sources. This assumption does not alter
the conclusion that water deficits are more pronounced under
mitigation. This study also uses the same shared socioeconomic
pathway (SSP) assumptions (i.e., SSP5) under RCP4.5 and RCP8.5
to ensure a consistent comparison between the two RCP sce-
narios and because RCP8.5 is unachievable under the other four
SSPs. The fact that there are multiple socioeconomic pathways
(23) to stabilize at 4.5 W/m2 does not alter the conclusion that
when the socioeconomic inputs are kept constant between the
two RCPs, climate change mitigation exacerbates water stress.
Future research should investigate the reproducibility of the re-
sults when using other regional ESMs, regional IAMs, and SSPs.
Replicating the two RCP scenarios with a prescribed low

bioenergy consumption target in year 2100 (e.g., 45 EJ, the
lowest among six IAMs in the AR5 Scenario Database; https://
secure.iiasa.ac.at/web-apps/ene/AR5DB) and favoring other re-
newables in mitigating emissions to achieve RCP4.5, the annual
water consumption in the United States still increases under
RCP 4.5 as compared with RCP8.5, although the magnitude of
the increase is reduced from 42% to 12%. The lower difference
can be depicted as the lower bound, and, depending on the rate
at which bioenergy consumption increases under mitigation, this
gap is likely to increase when bioenergy is unconstrained. The
lower difference also suggests that the climate benefit of miti-
gation can be realized for temperature and water stress if
designed carefully toward less water-intensive mitigation options.
However, bioenergy is considered a cost-effective mitigation
option, and IAMs generally observe more bioenergy production
under mitigation. For example, in a large intermodel comparison
of 15 IAMs, mitigation is found to increase bioenergy deploy-
ment and reliance in all models (24). Also constraining bioenergy
restricts the opportunity for negative emissions in the long term,
thus requiring more aggressive near-term emissions reductions,
which has implications for mitigation and macroeconomic costs
of climate policies (24). Still, the tendency to introduce more
bioenergy consumption under mitigation than a under a refer-
ence (no policy) scenario is consistent with other IAMs (25). For
example, the rate of increase in bioenergy consumption per unit
of reduced radiative forcing in year 2100 is 21, 17, and 32 EJ·W−1·m−2

for the Global Change Assessment Model (GCAM), the Re-
gional Model of Investments and Development (REMIND),
and the Integrated Model to Assess the Global Environment
(IMAGE), respectively (EMF27 scenario database; https://secure.
iiasa.ac.at/web-apps/ene/AR5DB/). Thus, the use of other IAMs is
unlikely to change the conclusion that water demands increase
under mitigation.
By coupling enhanced, higher-resolution human and natural

systems models, we are able to identify potential interactions and
constraints that could not be seen with earlier modeling systems
and reveal important policy implications. That is, climate change
mitigation policies designed to mitigate greenhouse gas emissions
may exacerbate water stresses across the United States and po-
tentially limit the ability to achieve mitigation goals that rely on
water availability (e.g., to grow bioenergy crops). Understanding
potential synergies and/or constraints for mitigation policy within
the climate–energy–water nexus and fostering water-efficient
technologies in the energy and agricultural sectors remain national
priorities.

Materials and Methods
This research used an integrated regional modeling framework proposed by
Hibbard and Janetos (26) and further described by Kraucunas et al. (27). The
framework, the Platform for Regional Integrated Modeling and Analysis
(PRIMA), integrates a regional ESM with a regional IAM and detailed sector
models using consistent global climate and socioeconomic scenarios. The
framework is executed over a historical period and into the future under the
RCP4.5 and RCP8.5 scenarios. The Regional Earth System Model (RESM)
(28, 29) was applied to a North American domain at 20-km grid resolution
driven by large-scale circulation and sea surface temperature provided by the
Community Earth System Model (CESM) from the CMIP5 archive (22). Down-
scaling was performed for 1975–2004 (historical) and 2005–2100 (future) using
CESM boundary conditions for the historical run and the RCP4.5 and RCP8.5
scenarios. The RESM simulations were postprocessed using bias correction to
provide meteorological forcing for offline simulations using version 4 of the
Community Land Model (CLM) (30) at a resolution of one-eighth of a degree.
The bias correction followed the method described by Wood et al. (31). Data
input to CLM, such as land cover, soil properties, and vegetation phenology,
were retrieved from datasets developed by Ke et al. (29) at a resolution of
0.05° and were aggregated to a resolution of one-eighth of a degree. CLM
was spun up by recycling the meteorological forcing over the historical period
(1975–2004) until all state variables, including soil moisture, soil temperature,
and groundwater table depth, reached equilibrium. Then the model was
forced by the two bias-corrected RESM downscaled climate scenarios, RCP4.5
and RCP8.5, to simulate terrestrial hydrological states and fluxes from 2005–
2100. Runoff is routed spatially using a physically based river-routing model,
the Model for Scale Adaptive River Transport (MOSART). Surface runoff first is
routed across hill slopes and then is discharged along with subsurface runoff
into a “tributary subnetwork” before entering the main channel (20, 32).
A water-management (WM) model is used to allocate water demands and
manage reservoir releases. The WM model relies on generic operating rules
that mimic monthly release patterns based on the objective of the reservoir
(flood control with irrigation and others) (13, 21). The WM model is coupled
to MOSART to route the regulated flow from reservoirs to downstream
channels. CLM, MOSART, and the WM model are all applied at a grid reso-
lution of one-eighth of a degree. Water demands are taken from GCAM for
the United States (GCAM-USA) described below.

This study uses the regionalized version of the GCAM-USA (33, 34) with the
50 states plus the District of Columbia as explicit regions that operate within
the global GCAM model (35). Energy transformation (electricity generation
and refined liquids production) and end-use demands (buildings, trans-
portation, and industry) are modeled at the individual state level. In addi-
tion state-specific characterization is given for renewable energy (wind,
central and rooftop photovoltaic, concentrated solar power, and geo-
thermal) and carbon storage potential. To replicate the RCP4.5 and RCP8.5
scenarios in which radiative forcing stabilizes at 4.5 W/m2 or exceeds 8.5 W/m2

by the end of the century, a modified version of SSP5 (23) was chosen as the
basis for the socioeconomic assumptions. For the GCAM-USA RCP4.5
replication, we started with the same scenario assumptions as for the
RCP8.5 scenario and introduced a carbon policy to meet the mitigation goal.
Although there are multiple shared SSPs (23) to achieve RCP4.5, we used
SSP5 for both RCPs to ensure a fair comparison between the two RCPs.

GCAM-USA accounts for the impacts of climate change on building energy
use and crop yields. The climate change impact on building energy use was
evaluated using a detailed, service-based buildings energy model at the
50-states level (34) nested in the GCAM-USA modeling framework. The
evolution of energy demand in the building sector and its interactions with
climate change were explored by constructing estimates of population-
weighted heating and cooling degree days (HDD/CDDs) for both the RCP4.5
and RCP8.5 scenarios built from the RESM model output. Similarly, to model
climate change impacts on crop yields and agricultural markets globally, we
used the output of a global gridded crop model, the GIS-based Environ-
mental Policy Integrated Climate (GEPIC) model (36), which in turn was
driven by climate data from a global climate model, The Norwegian Earth
System Model (NorESM) (37), for the two emissions pathways analyzed in
this study (8.5 W/m2 and 4.5 W/m2). Climate change impacts on yields are
aggregated to GCAM’s 151 agricultural regions and expanded from the
available crops in GEPIC as documented in Kyle et al. (38) to calculate yield
adjustment factors for each of GCAM’s crops, agricultural regions, and time
periods. These adjustment factors then are applied to the baseline as-
sumptions of agricultural productivity change by crop and region derived
from the Food and Agriculture Organization of the United Nations database
described by Bruinsma (39).

GCAM-USA includes a detailed representation of six water-demand sectors
(irrigation, livestock, municipal, electricity generation, primary energy, and
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manufacturing water demands) and tracks them atmultiple spatial scales and
annual scale (4, 40). A spatial and temporal disaggregation approach was
developed to project the United States annual regional water-demand
simulations into a daily time step and a spatial resolution of one-eighth of a
degree. The downscaled products were used as inputs to CLM-MOSART-WM,
and the work was demonstrated over the United States Midwest region in
Voisin et al. (13). Dependency maps specifying the possible sources of water
for each grid were constructed based on a suite of suitable calipers. The
estimates of water deficits were compiled at a daily scale. When the demand
in a grid at a particular day cannot be met in full by local and remote
sources, the unmet demand amount is denoted as a water deficit. A hotspot
is defined as a minimum of four contiguous grids exhibiting a water deficit

that exceeds 10% of the total water demand. Thus, a hotspot may be much
larger than four grids in spatial extent, and generally many hotspot events
occur in a basin in a given month.
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