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Much debate has revolved around the question of whether the
mode of evolutionary and ecological turnover in the fossil record
of African mammals was continuous or pulsed, and the degree to
which faunal turnover tracked changes in global climate. Here, we
assembled and analyzed large specimen databases of the fossil
record of eastern African Bovidae (antelopes) and Turkana Basin
large mammals. Our results indicate that speciation and extinction
proceeded continuously throughout the Pliocene and Pleistocene,
as did increases in the relative abundance of arid-adapted bovids,
and in bovid body mass. Species durations were similar among
clades with different ecological attributes. Occupancy patterns
were unimodal, with long and nearly symmetrical origination and
extinction phases. A single origination pulse may be present at
2.0–1.75 Ma, but besides this, there is no evidence that evolution-
ary or ecological changes in the eastern African record tracked
rapid, 100,000-y-scale changes in global climate. Rather, eastern
African large mammal evolution tracked global or regional climatic
trends at long (million year) time scales, while local, basin-scale
changes (e.g., tectonic or hydrographic) and biotic interactions
ruled at shorter timescales.
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Modern faunal communities are the products of millions of
years of evolutionary and ecological turnover, shaped by

species origination, extinction, and migration. The primary driver
of turnover at geological time scales is generally taken to be
physical environmental change, but the importance of biotic in-
teractions in modulating turnover is increasingly evident (1–5).
Related to this has been a debate on whether faunal turnover is
continuous or pulsed in mode. Building on Mayr’s (6) allopatric
speciation model, and Eldredge and Gould’s (7) hypothesis of
punctuated equilibrium, Vrba (8–11) proposed the turnover
pulse hypothesis, which predicts that most faunal turnover is
concentrated in pulses that are correlated with rapid environ-
mental changes (see ref. 1 for a review of similar ideas). Outside of
mass extinctions (these may be seen as extreme but uncommon
turnover pulse events), several studies have found support for the
turnover pulse hypothesis as a dominant mode of turnover (12–
14). Other studies—including many of the African record—have
concluded that the dominant mode of turnover was continuous,
with limited or no evidence for turnover pulses (15–20). Some of
these studies argued for an important role for biotic interactions
(e.g., competition, predation) in shaping the often unpredictable
responses of faunal communities to environmental change. More-
direct evidence for the long-term influence of biotic interactions
on turnover in the fossil record has been presented in the form of
constant extinction likelihoods (21, 22) and symmetric wax−wane
occupancy curves at several taxonomic levels (23–26). These
findings suggest that biotic interactions can strongly determine the
outcomes of the turnover process, even if physical environmental
changes are important in initiating turnover under the allopatric
speciation model (8, 10).
We here revisit the tempo and mode of evolutionary and

ecological change in the eastern African Plio-Pleistocene large-
mammal fossil record using updated data and approaches.

Eastern Africa (here including Eritrea, Ethiopia, Kenya, Tanza-
nia, and Uganda) today encompasses primarily a single vegeta-
tional zone [Somalia-Masai (27)], and constitutes a reasonable
subcontinental scale at which to examine turnover (1). We ex-
amine the fossil record for the occurrence of pulsed evolutionary
events (here large-scale and rapid changes in turnover rates, rel-
ative abundances, or body size) based on expectations from
changes in global climate. In particular, there are two temporal
intervals during which elevated mammalian speciation rates have
been reported in close timing with major global climatic changes,
at 3–2.5 Ma (28, 29) and 2–1.5 Ma (reviewed in ref. 30). The first
putative peak coincides with rapid global cooling and African
aridification, and the second coincides with the inception of
Walker Circulation above the Pacific (28–32). Further attention is
drawn to these temporal windows given major developments in the
hominid clade, including the appearance of Homo, Paranthropus,
and Oldowan stone tools during the first, and the development of
Achulean technology and the dispersal of Homo erectus from
Africa in the second (30, 33).
We compiled and analyzed updated fossil specimen datasets of

eastern African bovids (antelopes and relatives) and of Turkana
Basin large mammals (see SI Text for full details). Older datasets
have been used to investigate modes of turnover in African
mammals, with often contradictory results (17, 29).

Turnover in Eastern African Plio-Pleistocene Mammals
Although we included sites from late Miocene to Holocene age in
our data compilation, we focus our turnover analyses on the pe-
riod between 3.75 Ma and 1.25 Ma (late Pliocene−early Pleisto-
cene) because sample sizes and sampling completeness are too
poor outside this interval and edge effects become prevalent when
including older and younger bins (see SI Text and Figs. S1 and S2).
In both the bovid and Turkana datasets, we find that speciation
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and extinction rates were highly variable through time (Fig. 1). We
used 250-ka time bins, but results for 100-, 300-, and 500-ka bins
are similar (Fig. S3). Elevated turnover rates are recorded at 3.25–
2.75 Ma in the bovid data, and at 2.0–1.75 Ma in both the bovid
and Turkana data. Only the origination peak in the Turkana data
at 2.0–1.75 Ma is of statistically significant magnitude (more than
1.5 times outside the interquartile range). Two-timer counts (34)
provide similar results, and subsampled species richness also in-
dicates increases at 2.0–1.75 Ma in both datasets (Figs. S1 and S2).
Vrba (29) found evidence for statistically significant origina-

tion (and possibly extinction) pulses at 3.6 Ma, 2.7–2.5 Ma, and
1.8 Ma. A highly discontinuous fossil record before 3.75 Ma
means we are unable to properly assess the record older than
3.5 Ma. However, we find no evidence for origination or ex-
tinction pulses anytime between 3.0 Ma and 2.5 Ma. Two main
differences between our study and Vrba’s are the exclusion of the
North and South African records and the exclusion of single-
interval species in our study. The North and South African records
are sparse but include a large number of sites dated between 3 Ma
and 2.5 Ma (29), potentially inflating turnover counts at this time.
Additionally, Vrba’s (29) original first appearance datum (FAD)
pulse at 2.7–2.5 Ma included a large number of single-interval
species (also found here; Fig. S1). Vrba (35) argued that single-
interval taxa are important because environmental perturbations
are expected to produce a large number of rare and short-lived
species. However, simulations show that single-interval taxa are
especially sensitive to preservational biases and lead to spurious
correlations between origination and extinction rates (16, 36). No
similar peak in single-interval taxa is seen in the Turkana Basin
large-mammal record (Fig. S2; see also refs. 17, 37), nor in range
compilations that retain singletons such as for suids (15, 38),
carnivores (19, 39), or cercopithecids (20). This suggests that the

single-interval taxon peak at 2.75–2.5 Ma, if real, is restricted to
the bovid fossil record.
Subsampled species richness is also more or less stable at 3.25–

2.0 Ma in both the bovid and Turkana datasets (Figs. S1 and S2).
Global cooling and drying between 3 Ma and 2.5 Ma may have
promoted the development of more open habitats and associated
faunal communities (28, 33, 37, 40, 41), but our results indicate
that such evolutionary and ecological changes took place gradually
and without significant increases in turnover rates (42). This would
fit with paleoclimate reconstructions indicating that global cooling
and the end of the Pliocene warm period were not confined to
between 3 Ma and 2.5 Ma but rather occurred gradually over a
protracted time between about 4 Ma and 1.5 Ma (31).
The origination peak recovered here at 2.0–1.75 Ma does match

Vrba’s 1.8 Ma pulse. Elevated origination rates and associated
increases in sampling-standardized species richness shortly after
2 Ma (cf. refs. 43 and 44) coincide with the expansion of C4
grasslands as recorded in Turkana paleosol isotopes (45), Gulf of
Aden pollen and plant biomarker records (40, 46), greater re-
gional aridity through increased wind-borne dust in the Arabian
Sea (32), and increases in open habitat faunal communities in both
eastern and southern Africa around this time (47). These envi-
ronmental and faunal changes may be related to the development
of Walker Circulation above the Pacific Ocean around 1.9 Ma and
resulting precipitation decreases over eastern Africa (31, 46, 48).
Alternately, the origination pulse at 2.0–1.75 Ma may be an arti-
fact of the record, because very few sites are known from the
preceding interval, and the eastern African 2.5–2.0 Ma record is
almost entirely dominated by the Shungura Formation. Removal
of the Shungura Formation sharply reduces the origination pulse
in the eastern African bovid data, but not the Turkana large
mammals, suggesting the pulse may be even less prominent out-
side the Turkana Basin (Figs. S1 and S2). Further testing will
require the improvement of the 2.5–1.5 Ma fossil record from
outside the Turkana Basin (e.g., in the Afar).
Besides a possible origination pulse at 2.0–1.75 Ma, we find that

most faunal change in the late Pliocene and early Pleistocene
took place under variable turnover without unequivocal pulses.
Although differing in taxonomic scope and geographic scale, the
bovid and Turkana large-mammal datasets provide very similar
results, and these furthermore match those of numerous studies
cited above. All these studies, however, are heavily dependent on
the Turkana Basin record, and further fossil data outside this basin
is needed to be more certain that the pattern seen reflects a re-
gional (if not continental) scale.

Species Duration and Occupancy Patterns
We examined whether the probability of extinction, measured
through mean species durations (or residence times), varied
among clades of varying ecological attributes. In particular,
mammalian resource-use specialists, i.e., species dependent on a
narrow range of environments (8, 49, 50), and herbivores (51)
have been shown to have higher diversification rates than re-
source-use generalists and carnivores, respectively. Specialists
and herbivores might therefore be expected to have shorter
species durations if their ecological requirements left them more
susceptible to abrupt environmental changes.
We find mean species duration of 1.4 ± 0.9 my (median = 1.2 My)

for both eastern African bovids and Turkana Basin large mammals
(Fig. 2). This is similar to the 1.3-My mean species duration of
Neogene African large mammals (52) and the 1.5-My median
species duration for North American Cenozoic mammals (16).
Pairwise comparisons indicate that species durations are statisti-
cally indistinguishable among aepycerotin, alcelaphin, bovin,
reduncin, and tragelaphin bovids (pairwise Wilcoxon, P > 0.1).
Among Turkana large mammal families, species durations are
statistically indistinguishable among bovids, cercopithecids,
equids, felids, hyaenids, suids, and hippopotamids (P > 0.09). This
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Fig. 1. Sampling-standardized origination and extinction rates in (A) east-
ern African Bovidae and (B) Turkana Basin large mammals. Older origination
and younger extinction rates are increased by edge effects, and the oldest
and youngest points, respectively, are omitted. Elevated turnover is recorded
at 3.25–3.0 Ma (bovids) and 2.0–1.75 Ma (both). Turnover is low between
3 Ma and 2 Ma. (Error bars, 1 SD of 100 subsampling trials in each direction.)
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implies that similar probabilities of species persistence and ex-
tinction apply across large mammal communities, regardless of
habitat (woodland vs. grassland) or dietary (herbivory vs. carni-
vory) preferences, and fits expectations for continuous turnover in
interconnected biotic networks (e.g., food webs).
Significantly (P < 0.05) longer species durations were found

for antilopins, elephantids, and giraffids and shorter durations in
hominids, but these signals are likely to be artifacts of taxonomic
practices rather than true biological differences. In particular,
hominid species are highly susceptible to taxonomic splitting
(53), especially in the current dataset. The inverse is probably
true of antilopins, giraffids, and elephantids, which are rare and/
or not well studied in the current datasets.
Additionally, we examined species occupancy, the number of sites

at which a fossil species is recorded over its duration (e.g., Hadar,
Omo, Kanapoi, Laetoli; see SI Text). Under continuous origina-
tion and extinction, species occupancy should show roughly sym-
metrical increase and decline phases (24–26, 54, 55). Pulsed
extinction dynamics would be expected to produce asymmetrical
patterns, with rapid truncations of species increase, equilibrial, or
decline phases (25).
The occupancy trajectories we calculated (Fig. 3) show that, on

average, species display a unimodal wax-and-wane pattern with
long growth and decline phases, and no signs of long-term equi-
librium or stasis (bovids do not differ from normal, Shapiro−Wilk
test P = 0.23, but Turkana data do, P = 0.046). The decline phase
is slightly longer than the growth phase, as also found for marine
microfossils (55). Vrba and DeGusta (56) showed that newly
originating African mammal species gradually increased their oc-
cupancy (over about 1 Ma), but they did not examine the mode of
species decline. Our findings establish the presence of unimodal
occupancy curves with long and gradual origination and extinction
phases. Even a model in which the initiating causes of origination
and extinction require physical environmental change (8, 10, 28)

would then have to allow for turnover under conditions of in-
cremental and continuous (background-level) landscape change.
Most turnover in the eastern African Plio-Pleistocene would have
occurred at these background rates. Such wax−wane patterns also
implicate biotic interactions in generating diversity-dependent
turnover (23–25). Combining biotic interactions with continuous
landscape change provides a powerful mechanism for species
turnover, because even small environmental changes could have
profound ecological consequences when amplified through food
webs (57).

Relative Abundance of Arid-Adapted Bovids
In modern African ecosystems, the relative abundances of mono-
phyletic bovid tribes vary according to habitat (58), reflecting pri-
mary climatic variables such as temperature and precipitation (59).
In particular, the relative abundance of specimens of Alcelaphini
plus Antilopini (AA) among all bovids serves as a relative measure
of aridity or open habitats at African fossil sites (58, 60). Vrba
found that the proportions of AA bovids in the African record
increased significantly after ∼2.5 Ma, signaling a shift to more arid
and open conditions (28, 58, 61). Later studies indicated that this
trend extended to between 3.5 Ma and 1 Ma, with changes at
different times in different areas (44, 47, 62).
An expanded compilation of AA data (Fig. 4) indicates a sig-

nificant long-term increase across eastern Africa since at least the
late Miocene (P < 0.001). When broken down by site, the trend is
significant in the Omo (P = 0.01), West Turkana (P = 0.002), and
southern Kenya and northern Tanzania (P = 0.02). Except per-
haps for the Afar, there is no evidence for a pulsed increase in AA
associated with rapid global cooling between 3 Ma and 2.5 Ma.
Rather, increases in AA bovids are part of a long-term trend that
may be correlated with global or regional climatic changes such as
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Fig. 3. Geographic occupancy curves of extinct species scaled from origina-
tion (0) to extinction (1) for (A) bovids and (B) Turkana Basin large mammals.
Occupancy was measured as the proportion of sites where a species has been
encountered and is scaled to the maximum occupancy for each species. (Error
bars, 1 SD in each direction for 1,000 bootstrap replicates.)
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decreasing mean global temperatures (63) or regional drying
through continental uplift/rifting (64) since the late Miocene.
Differences in the rate and directionality of change in AA from
one area to another, however, implicate local environmental fac-
tors (e.g., tectonic−hydrological) in modulating the timing and
rate of local landscape change at any point in time (65, 66). Ad-
ditionally, a consistently higher proportion of AA in southern
Kenyan and northern Tanzanian sites reflects a long-term lack of
perennial water sources there (e.g., ref. 67), as opposed to the
more stable Omo and Awash rivers to the north. The same might
be said of the predominantly karstic South African record as well,
where greater than 50% of the bovid assemblages at sites like
Langebaanweg (∼5 Ma) and Sterkforntein (2.5 Ma) are made up
of alcelaphins and antilopins (60, 68, 69). The most interesting AA
record comes from the Afar Basin. In contrast to all other areas,
there is a rapid increase between 3 Ma and 2.5 Ma that is followed
by a reversal to lower values (better watered habitats) in the early
and mid Pleistocene. In the Afar Basin at least, local hydrological
changes appear to have been more important than global climate
in modulating the timing and rate of local landscape change (65).

Changes in Bovid Body Mass
Citing Bergmann’s Rule, Vrba (29, 70, 71) proposed that a sig-
nificant number of large-bodied bovid species appeared in Africa
between 3 Ma and 2.5 Ma in response to pronounced global
cooling. We find that the mean body mass of eastern African
Plio-Pleistocene bovid species increased gradually through time
(P = 0.048) but with large scatter (Fig. 5). Comparisons of me-
dian body size across a moving breakpoint indicates that species
originating earlier than 3.75 Ma, 3.5 Ma, 3.25 Ma, or 3.0 Ma are
significantly (P < 0.05) smaller than those appearing later, but
the comparison is no longer significant at or after 2.75 Ma (up to
1.25 Ma, P > 0.05). Therefore, whereas our methods differ from
those of Vrba (71) and do not consider within-species increases,
we do not see a disproportionate number of first appearances of
large-bodied bovid species between 3 Ma and 2.5 Ma.
Furthermore, when broken down by tribe, only Reduncini

show an increasing trend (P < 0.01, R = 0.15). Removal of
Reduncini removes the trend for all bovids as well. Large body
size confers dietary, not to mention defensive, advantages to
open grassland ungulates (72), so one might have expected Plio-
Pleistocene increases in body size to have been greatest among
inhabitants of open grasslands (e.g., Alcelaphini, Antilopini).

Observed increases were therefore lineage specific, were not
determined by the expansion of open habitats or rapid global
temperature changes, and are probably indistinguishable from
broader phenomena grouped under Cope’s Rule, which has
many possible explanations (e.g., ref. 73).

Conclusions
We originally set out to test whether faunal change in eastern
Africa was pulsed and timed with major global climate change
events. Instead, our results show that species turnover was
mainly continuous. The only exception may be an origination
pulse shortly after 2.0 Ma (29), which might be associated with
the inception of Walker Circulation above the southern Pacific
(30, 31). This should be further tested through the recovery of
more fossil assemblages in the 2.5–1.5 Ma interval, particularly
from outside the Turkana Basin.
In the paleontological record, continuous turnover, consistent

species durations, and nearly symmetrical wax−wane patterns of
geographic occupancy most likely reflect a continuum of physical
and biotic processes acting at multiple scales (1, 5, 55). The ini-
tiation of turnover might always require changes in the physical
environment (10), but it seems that continuous (background-level)
environmental changes may have been sufficient for this. Physical
changes probably acted through biotic networks, and even small
changes to a taxon’s physical environment may have been ampli-
fied or attenuated through the responses of the other species
around it (4, 5). The Rift Valley is a tectonically dynamic envi-
ronment, and this serves to produce a diverse patchwork of hab-
itats within close proximity. From the point of view of the Red
Queen’s hypothesis, which predicts the constant deterioration of
an organism’s effective environment (21), environmental dynamics
within the African Rift should promote constant taxonomic shifts,
and increase the potential for population fragmentation leading to
allopatric or peripatric speciation.
We conclude that global climate drove large mammal evolu-

tion at the million-year timescale, whereas local environmental
changes and biotic interactions ruled at 100-ka and smaller
scales. Much work during the last decades has (rightly) focused
on the initiating role of physical drivers on the evolution of Af-
rican mammals. As the fossil record continues to improve in both
taxonomic and chronological resolution, the modulating role of
biotic drivers should be increasingly investigated and integrated
into the broader picture of community turnover.
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Materials and Methods
The eastern African bovid and Turkana Basin large-mammal specimen
databases were assembled from numerous sources, with the largest con-
tributions from the Turkana Public Database (74), the International Omo
Research Expedition and Omo Group Research Expedition databases (both
courtesy of J.-R. Boisserie), and Middle Awash (courtesy of T. White), and
data from the literature (e.g., Hadar, Laetoli, Olduvai; see SI Text), with
many updates based on specimen study by F.B. In total, these comprise 134
bovid species (77 non-single-interval taxa) (Dataset S1) and 172 Turkana
large mammal species (130 nonsingletons) (Dataset S2). Turnover analyses
used repeated specimen-based subsampling (rarefaction) and equal-cov-
erage shareholder quorum methods (76) to standardize sample sizes
among time bins. Calculations of turnover rates followed Foote (36), and
those of two-timer and shareholder quorum counts followed Alroy (34, 75,
76). Calculation of species occupancy followed Foote (54). Each species

duration was rescaled to 0 (origin) and 1 (extinction) and binned into 40
intervals of equal duration. Occupancy was measured as the proportion of
fossiliferous sites in which the species was encountered and also scaled
between 0 (minimum occupancy) and 1 (maximum). Species durations and
AA counts were calculated on raw data. Body mass estimates were made
using molar tooth length regressions of Damuth (77) and Janis (78) with
measurement data from the literature or taken by F.B. Full methods are
provided in SI Text.
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