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Scientists are frequently faced with the important decision to start
or terminate a creative partnership. This process can be influenced
by strategic motivations, as early career researchers are pursuers,
whereas senior researchers are typically attractors, of new collab-
orative opportunities. Focusing on the longitudinal aspects of
scientific collaboration, we analyzed 473 collaboration profiles using
an egocentric perspective that accounts for researcher-specific char-
acteristics and provides insight into a range of topics, from career
achievement and sustainability to team dynamics and efficiency.
From more than 166,000 collaboration records, we quantify the
frequency distributions of collaboration duration and tie strength,
showing that collaboration networks are dominated by weak ties
characterized by high turnover rates. We use analytic extreme value
thresholds to identify a new class of indispensable super ties, the
strongest of which commonly exhibit >50% publication overlap
with the central scientist. The prevalence of super ties suggests
that they arise from career strategies based upon cost, risk, and
reward sharing and complementary skill matching. We then use a
combination of descriptive and panel regression methods to com-
pare the subset of publications coauthored with a super tie to the
subset without one, controlling for pertinent features such as ca-
reer age, prestige, team size, and prior group experience. We find
that super ties contribute to above-average productivity and a 17%
citation increase per publication, thus identifying these partner-
ships—the analog of life partners—as a major factor in science
career development.
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Science operates at multiple scales, ranging from the global
and institutional scale down to the level of groups and in-

dividuals (1). Integrating this system are multiscale social networks
that are ripe with structural, social, economic, and behavioral
complexity (2). A subset of this multiplex is the scientific collab-
oration network, which forms the structural foundation for social
capital investment, knowledge diffusion, reputation signaling, and
important mentoring relations (3–8).
Here we focus on collaborative endeavors that result in scien-

tific publication, a process that draws on various aspects of social
ties, e.g., colocation, disciplinary identity, competition, mentoring,
and knowledge flow (9). The dichotomy between strong and weak
ties is a longstanding point of research (10). However, in “science
of science” research, most studies have analyzed macroscopic
collaboration networks aggregated across time, discipline, and
individuals (11–21). Hence, despite these significant efforts, we
know little about how properties of the local social network affect
scientists’ strategic career decisions. For example, how might
creative opportunities in the local collaboration network impact
a researcher’s decision to explore new avenues versus exploiting
old partnerships, and what may be the career tradeoffs in the
short versus the long term, especially considering that academia
is driven by dynamic knowledge frontiers (22, 23).
Against this background, we develop a quantitative approach

for improving our understanding of the role of weak and strong
ties, meanwhile uncovering a third classification—the super tie—
which we find to occur rather frequently. We analyzed longitu-

dinal career data for researchers from cell biology and physics,
together comprising a set of 473 researcher profiles spanning
more than 15,000 career years, 94,000 publications, and 166,000
collaborators. To account for prestige effects, we define two
groups within each discipline set, facilitating a comparison of top-
cited scientists with scientists who are more representative of the
entire researcher population (henceforth referred to as “Other”).
From the Ni publication records spanning the first Ti career years
of each central scientists i, we constructed longitudinal represen-
tations of each scientist’s coauthorship history.
We adopt an egocentric perspective to track research careers

from their inception along their longitudinal growth trajectory.
By using a local perspective, we control for the heterogeneity in
collaboration patterns that exists both between and within dis-
ciplines. We also control for other career-specific collaboration
and productivity differences that would otherwise be averaged out
by aggregate cross-sectional methods. Thus, by simultaneously
leveraging multiple features of the data—resolved over the di-
mensions of time, individuals, productivity, and citation impact—
our analysis contributes to the literature on science careers as well
as team activities characterized by dynamic entry and exit of
human, social, and creative capital. Given that collaborations
in business, industry, and academia are increasingly operational-
ized via team structures, our findings provide relevant quantitative
insights into the mechanisms of team formation (15), efficiency
(24), and performance (25, 26).
The organization of our study is structured as follows. The

longitudinal nature of a career requires that we start by quanti-
fying the tie strength between two collaborators from two dif-
ferent perspectives: duration and strength. First we analyze the
collaboration duration, Lij, defined as the time period between
the first and last publication between two researchers i and j. Our
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results indicate that the “invisible college” defined by collabo-
rative research activities (i.e., excluding informal communication
channels and arm’s-length associations) is surprisingly domi-
nated by high-frequency interactions lasting only a few years. We
then focus our analysis on the collaborative tie strength, Kij,
defined as the cumulative number of publications coauthored by
i and j during the Lij years of activity.
From the entire set of collaborators, we then identify a subset

of super tie coauthors—those j with Kij values that are statisti-
cally unlikely according to an author-specific extreme value
criteria. Because almost all of the researchers we analyzed have
more than one super tie, and roughly half of the publications we
analyzed include at least one super tie coauthor, we were able to
quantify the added value of super ties—for both productivity
and citation impact—in two ways: (i) using descriptive measures
and (ii) implementing a fixed-effects regression model. Con-
trolling for author-specific features, we find that super ties
are associated with increased publication rates and increased
citation rates.
We term this finding the “apostle effect,” signifying the divi-

dends generated by extremely strong social ties based upon mutual
trust, conviction, and commitment. This term borrows from bib-
lical context, where an apostle represents a distinguished partner
selected according to his/her noteworthy attributes from among a
large pool of candidates. What we do not connote is any particular
power relation (hierarchy) between i and the super tie coauthors,
which is beyond the scope of this study. Also, because the per-
spective is centered around i, our super tie definition is not sym-
metric, i.e., if j is a super tie of i, i is not necessarily a super tie of j.
Because super ties have significant long-term impact on pro-

ductivity and citations, our results are important from a career
development perspective, reflecting the strategic benefits of cost,
risk, and reward sharing via long-term partnership. The impli-
cations of research partnerships will become increasingly rele-
vant as more careers become inextricably embedded in team
science environments, wherein it can be difficult to identify con-
tributions, signal achievement, and distribute credit. The credit
distribution problem has received recent attention from the per-
spectives of institutional policy (8), team ethics (7), and practical
implementation (27–29).

Methods
Our study implements an ego network perspective, centered around each
researcher career i, with weighted links connecting the central scientist to
the peripheral nodes representing his/her collaborators (indexed by j). We
constructed each ego network using longitudinal publication data from
Thompson Reuters Web of Knowledge (TRWOK), comprising 193 biology and
280 physics careers in total. Each career profile is constructed by aggregating
the publication, citation, and collaboration metadata over the first t = 1 . . . Ti
years of his/her career. We downloaded the TRWOK data in calendar year Yi,
which is the citation count census year. Each disciplinary set includes a subset
of 100 highly cited scientists (hereafter referred to as “Top”), selected using a
ranking of the top-cited researchers in the high-impact journals Physical Re-
view Letters and Cell. The rest of the researcher profiles (Other) are aggre-
gated across physics and cell biology, with subsets that are specifically active in
the domains of graphene, neuroscience, molecular biology, and genomics. The
Other dataset only includes i with at least as many publications as the smallest
Ni among the top-cited researchers: As such, Ni ≥ 52 for biology and Ni ≥ 46 for
physics. This facilitates a reasonable comparison between Top and Other,
possibly identifying differences attributable to innate success factors. See SI
Text for further details on the data methods and selection.

This longitudinal approach leverages author-specific factors, revealing how
career paths are affected by idiosyncratic events. To motivate this point, Fig. 1
illustrates the career trajectory of A. Geim, cowinner of the 2010 Nobel Prize
in Physics. This schematic highlights three fundamental dimensions of collab-
oration ties—duration, strength, and impact: (i) each horizontal line indicates

the collaboration of length Lij ≡ tfij − t0ij + 1 between i and coauthor j, beginning
with their first joint publication in year t0ij and ending with their last observed
joint publication in year tfij; (ii) the circle color indicates the total number of
joint publications, Kij, representing our quantitative measure of tie strength;

and (iii) the circle size indicates the net citations Cij =
P

pcj,p in Yi, summed over

the citations cj,p all publications p that include i and j.
This method of representing a science career, as illustrated in Figs. S1–S3,

highlights the variability in collaboration strengths, both between and
within career profiles. It is also worth mentioning that because multiple j
may contribute to the same p, it is possible for coauthor measures to covary.
However, for the remainder of the analysis, we focus on the dyadic relations
between only i and j, leaving the triadic and higher-order team structures as
an avenue for future work. For example, it would be interesting to know the
likelihood of triadic closure between any two super ties of i, signaling co-
ordinated cooperation; or, contrariwise, low triadic closure rates may in-
dicate hierarchical organization around i.

Results
Quantifying the Collaboration Lifetime Distribution. We use Lij to
measure the duration of the productive interaction between i and
j. Across researcher profiles, we find that a remarkable 60−80% of
the collaborations have Lij = 1 year (see Fig. S4). Considering the
overwhelming dominance of the Lij = 1 events, in this subsection,
we concentrate our analysis on the subset of repeat collaborations
with Lij > 1 that produced two or more publications. Furthermore,
due to censoring bias, Lij values estimated for j who are active
around the final career year of the data (Ti) may be biased toward
small values. To account for this bias, in this subsection, we also
exclude those collaborations that were active within the final
Lc
i -year period, defining Lc

i as an initial average Lij value calcu-
lated across all j for each i. Then, we calculate a second repre-
sentative mean value, hLii, which is calculated excluding the j with

Fig. 1. Visualizing the embedding of academic careers in dynamic social
networks. A career schematic showing A. Geim’s collaborations, ordered by
entry year. Notable career events include the first publication in 2000 with
K. S. Novoselov (cowinner of the 2010 Nobel Prize in Physics) and their first
graphene publication in 2004. An interesting network reorganization ac-
companies Geim’s institutional move from Radboud University Nijmegen (The
Netherlands) to University of Manchester (United Kingdom) in 2001. More-
over, the rapid accumulation of coauthors following the 2004 graphene
discovery signals the new opportunities that accompany reputation growth.
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Lij = 1 and the j active in the final Lc
i -year period. Fig. 2A shows

the probability distribution PðhLiiÞ, with mean values ranging from
4 y to 6 y, consistent with the typical duration of an early career
position (e.g., PhD or postdoctoral fellow, assistant professor).
Establishing statistical regularities across research profiles re-

quires the use of a normalized duration measure, Δij ≡Lij=hLii,
which controls for author-specific collaboration patterns by mea-
suring time in units of hLii. The empirical distributions are right-
skewed, with approximately 63% of the data with Lij < hLii (cor-
responding to Δij < 1). Nevertheless, ∼1% of collaborations last
longer than 4hLii≈ 15−20 y. Moreover, Fig. 2A shows that the
log-logistic probability density function (pdf),

PðΔÞ= ðb=aÞðΔ=aÞb−1�
1+ ðΔ=aÞb

�2, [1]

provides a good fit to the empirical data over the entire range of
Δij. The log-logistic (Fisk) pdf is a well-known survival analysis
distribution with property MedianðΔÞ= a. By construction, the
mean value hΔi≡ 1, which reduces our parameter space to just b
as a= sinðπ=bÞ=ðπ=bÞ. For each dataset, we calculate b≥ 2.6, es-
timating the parameter using ordinary least squares. Associated
with each PðΔÞ is a hazard function representing the likelihood
that a collaboration terminates for a given Δij. Because b> 1, the
hazard function is unimodal, with a maximum value occurring
at Δc = aðb− 1Þ1=b with bounds Δc > a for b> 2 and Δc > 1 for
b> 2.83...; using the best-fit a and b values, we estimate Δc ≈ 0.94
(Top biology), 1.11 (Other biology), 0.77 (Top physics), and 1.08
(Other physics). Thus, Δc represents a tipping point in the sus-
tainability of a collaboration, because the likelihood that a col-
laboration terminates peaks at Δc and then decreases mono-
tonically for Δij >Δc. This observation lends further significance
to the author-specific time scale hLii. The log-logistic pdf is also

characterized by asymptotic power-law behavior PðΔÞ≈Δ−ðb+1Þ
for large Δij.
To determine how the Δij values are distributed across the

career, we calculated the mean duration hΔjti using a 5-y (sliding
window) moving average centered around career age t. If the Δij
values were distributed independent of t, then hΔjti≈ 1. Instead,
Fig. 2B shows a negative trend for each dataset. Interestingly,
the hΔjti values are consistently larger for the Top scientists,
indicating that the relatively short Lij are more concentrated at
larger t. This pattern of increasing access to short-term collab-
oration opportunities points to an additional positive feedback
mechanism contributing to cumulative advantage (30, 31).

Quantifying the Collaboration Life Cycle. The PðΔÞ distribution
points to the variability of time scales in the scientific collabo-
ration network—although a small number of collaborations last
a lifetime, the remainder decay quite quickly in a collaboration
environment characterized by a remarkably high churn rate.
Because it is possible that a relatively long Lij corresponds to just
the minimum two publications, it is also important to analyze
the collaboration rate. To this end, we quantify the patterns of
growth and decay in tie strength using the more than 166,000
dyadic ðijÞ collaboration records: KijðtÞ is the cumulative number
of coauthored publications between i and j up to year t, and
ΔKijðtÞ=KijðtÞ−Kijðt− 1Þ is the annual publication rate.
To define a collaboration trajectory that is better suited for

averaging, we normalize each individual ΔKijðτÞ by its peak value,

ΔK′ijðτÞ≡ΔKijðτÞ
�
Max

�
ΔKijðτÞ

�
. [2]

Here τ≡ τij = t− t0ij + 1 is the number of years since the initiation
of a given collaboration. This normalization procedure is useful
for comparing and averaging time series that are characterized
by just a single peak.

Fig. 2. Log-logistic distribution of collaboration dura-
tion. (A) The probability distribution PðΔÞ is right-skewed
and well fit by the log-logistic pdf defined in Eq. 1. (In-
sets) The probability distribution PðhLiiÞ shows that the
characteristic collaboration length in physics and biology
is typically between 2 y and 6 y. (B) The decrease in the
typical collaboration timescale, hΔjti, reflects how careers
transition from being pursuers of collaboration oppor-
tunities to attractors of collaboration opportunities.
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Expecting that the collaboration trajectories depend on the tie
strength, we grouped the individual ΔK ′ijðτÞ according to the
normalized coauthor strength, xij ≡Kij=hKii. The normalization
factor hKii= S−1i

PSi
j=1Kij is calculated across the Si distinct col-

laborators (the collaboration radius of i), and represents an in-
trinsic collaboration scale that grows in proportion to both an
author’s typical collaboration size and his/her publication rate.
We then aggregated the Nfxg trajectories in each fxg group and
calculated the average trajectory,

D
ΔK′ijðτjxÞ

E
≡N−1

fxg
X
fxg

ΔK′ijðτjxÞ. [3]

Indeed, Fig. 3 shows that the collaboration life cycle ΔKijðτjxÞ
depends strongly on the relative tie strength xij ≡Kij=hKii. The
trajectories with xij > 12.0 decay over a relatively long time scale,
maintaining a value approximately 0.2Max½ΔKijðτÞ� even 20 y
after initiation, reminiscent of a “research life partner.” The tra-
jectories with xij ∈ ½0.9, 1.4� represent common collaborations that
decay exponentially over the characteristic time scale hLii. A
mathematical side note, useful as a modeling benchmark, is the
linear decay when plotted on log-linear axes, suggesting a func-
tional form that is exponential for large τ, hΔK ′

ijðτjxÞi≈ exp½−τ=τ�.
We further emphasize the ramifications of the life cycle vari-

ation by quantifying the relation between xij and the collabora-
tion’s half-life τ1=2, defined as the number of years to reach half
of the total collaborative output according to the relation
Kijðt= τ1=2Þ=Kij=2. We observe a scaling relation for the average
half life, hτ1=2i≈ xζ with ζ values ranging from 0.4 to 0.5. Sub-
linear values (ζ< 1) indicate that a collaboration with twice the
strength is likely to have a corresponding τ1=2 that is less than
doubled. This feature captures the burstiness of collaborative
activities, which likely arises from the heterogenous overlapping
of multiple timescales, e.g., the variable contract lengths in sci-
ence ranging from single-year contracts to lifetime tenure, the
overlapping of multiple age cohorts, and the projects and grants
themselves, which are typically characterized by relatively short
terms. Nevertheless, dx=dτ1=2 ≈ τð1−ζÞ=ζ1=2 is increasing function for
ζ< 1, indicating an increasing marginal returns with increasing
τ1=2, further signaling the productivity benefits of long-term
collaborations characterized by formalized roles, mutual trust,
experience, and group learning which together can facilitate
efficient interactions.

Quantifying the Tie Strength Distribution. Here we focus on the
cross-sectional distribution of tie strengths within the ego net-
work. We use the final tie strength value Kij to distinguish the
strong ties (Kij ≥ hKii) from the weak ties (Kij < hKii). Fig. 4A
shows the cumulative distribution Pð≤hKiiÞ of the mean tie
strength hKii, which can vary over a wide range depending on a
researcher’s involvement in large-team science activities. We also
quantify the concentration of tie strength using the Gini index Gi
calculated from each researcher’s Kij values; the distribution
Pð≤GiÞ is shown in Fig. 4B. Together, these two measures capture
the variability in collaboration strengths across and within disci-
plines, with physics exhibiting larger hKii and Gi values.
Another important author-specific variable is the publication

overlap between each researcher and his/her top collaborator.
This measure is defined as the fraction of a researcher’s Ni pub-
lications including his/her top collaborator, fK ,i =Maxj½Kij�=Ni. We
observe surprisingly large variation in fK ,i, with mean and SD in
the range of 0.16± 0.14 for the Top scientists and 0.36± 0.23 for
the Other scientists. Across all profiles, the min and max fK ,i values
are 0.03 and 0.99, respectively, representing nearly the maximum
possible variation in observed publication overlap. An example of
this limiting scenario is shown in Fig. S2, highlighting the “dynamic
duo” of J. L. Goldstein andM. S. Brown, winners of the 1985 Nobel
Prize in Physiology or Medicine; Goldstein and Brown published
more than 450 publications each, with roughly 100× fK ,i ≈ 95%
coauthored together. Remarkably, we find that overlaps larger than
50% are not uncommon, observing 100PðfK ≥ 0.5Þ≈ 9% (biology)
and 100PðfK ≥ 0.5Þ≈ 20% (physics) of i having more than half of
their publications with their strongest collaborator.
However, within a researcher profile, it is likely that more than

just the top collaborator was central to his/her career. Indeed,
key to our investigation is the identification of the extremely
strong collaborators—super ties—that are distinguished within
the subset of strong ties. Hence, using the empirical information
contained within each researcher’s tie strength distribution,
PðKijÞ, we develop an objective super tie criteria that is author
specific. First, to gain a better understanding of the statistical
distribution of Kij, we aggregated the tie strength data across all
research profiles, using the normalized collaboration strength xij.
Fig. 4 C and D shows the cumulative distribution Pð≥ xÞ for each
discipline. Each Pð≥ xÞ is in good agreement with the exponential
distribution exp½−x� (with mean value hxi= 1 by construction),
with the exception in the tail, Pð≥ xÞK 10−3, which is home to
extreme collaborator outliers. Thus, by a second means in ad-
dition to the result for Lij, we find that roughly 2/3 of the ties we

Fig. 3. Growth and decay of collaboration ties for
(A and C) Top biology and (B and D) Top physics.
(A and B) Average collaboration intensity, normal-
ized to peak value, measured τij years after the ini-
tiation of the collaboration tie. (Insets) On log-linear
axes, the decay appears as linear, corresponding to
an exponential form. (C and D) For each fxg group,
we show the average and SD (error bar) of τ1=2; we
use logarithmically spaced fxg groups that corre-
spond by color to the same fxg as in A and B. The ζ
value quantifies the scaling of hτ1=2i as a function of
the normalized coauthor strength xij ≡Kij=hKii. The
sublinear (ζ< 1) values indicate that collaborations
are distributed over a timescale that grows slower
than proportional to x; conversely, this means that
longer collaborations are relatively more productive,
being characterized by increasing marginal returns
(1=ζ> 1). Fig. S3 shows the analogous plot for the
Other physics and biology datasets; all four datasets
exhibit similar features.
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analyzed are weak (i.e., the fraction of observations with xij < 1 is
given by 1− 1=e≈ 0.63).
Based upon this empirical evidence, we use the discrete expo-

nential distribution as our baseline model, PðKijÞ∝ expð−κiKijÞ.
We then use extreme statistics arguments to precisely define the
author-specific super tie threshold Kc

i . The extreme statistic cri-
terion posits that, out of the Si empirical observations, there
should be just a single observation with Kij >Kc

i . The threshold Kc
i

is operationalized by integrating the tail of PðKijÞ according to the
equation 1=Si =

P∞
Kij>Kc

i
PðKijÞ= expð−κiKc

i Þ, with the analytic re-
lation hKii=

P∞
Kij=1KijPðKijÞ= eκi=ðeκi − 1Þ≈ 1+ 1=κi for small κi.

In the relatively large Si limit, Kc
i is given by the simple relation

Kc
i = ðhKii− 1Þln Si. [4]

The advantage of this approach is that Kc
i is nonparametric,

depending only on the observables hKii and Si. Thus, the super
tie threshold is proportional to hKii− 1 (the −1 arises because the
minimum Kij value is 1), with a logarithmic factor ln Si reflecting
the sample size dependence. This extreme value criteria is ge-
neric, and can be derived for any data following a baseline dis-
tribution; for a succinct explanation of this analytic method, see
page 17 of ref. 32.
In what follows, we label each coauthor j with Kij >Kc

i a super
tie, with indicator variable Rj ≡ 1. The rest of the ties with Kij ≤Kc

i
have an indicator variable Rj ≡ 0. This method has limitations,
specifically in the case that the collaboration profile does not
follow an exponential PðKijÞ. For example, consider the extreme
case where every Kij = 1, meaning that Kc

i = 0 (independent of Si),
resulting in all coauthors being super ties (Rj = 1 for all j). This
scenario is rare and unlikely to occur for researchers with rela-
tively large Ni and Si, as in our researcher sample.

Quantifying the Prevalence and Impact of Super Ties. How common
are super ties? For each profile, we denote the number of coauthors
that are super ties by SR,i (with complement S!R,i = Si − SR,i). Fig. S4
shows that the distribution of SR,i is rather broad, with mean and SD
SR,i values 18± 13 (Top biology), 16± 13 (Other biology), 7.3± 4.8
(Top physics), and 6.8± 5.1 (Other physics). The super tie coauthor
fraction, fR,i = SR,i=Si, measures the super tie frequency on a per-
collaborator basis, with mean value hfRi≈ 0.04 (i.e., typically one
super tie for every 25 coauthors). Furthermore, Fig. 5A shows that
the distribution Pð≤ fRÞ is common across the four datasets. We

tested the universality of the probability distribution PðfRÞ between
the Top and Other researcher datasets using the Kolmogorov−
Smirnov (K-S) statistic, which tests the null hypothesis that the data
come from the same underlying pdf. The smallest pairwise K-S test
P value between any two PðfRÞ is p= 0.21, indicating that we fail to
reject the null hypothesis that the distributions are equal, high-
lighting that the four datasets are remarkably well matched with
respect to the distribution of fR,i.
On a per-paper basis, Fig. 5B shows that the fraction of a

researcher’s portfolio coauthored with at least one super tie, fN,i,
can vary over the entire range of possibilities, with mean and SD
0.50± 0.18 (Top biology), 0.74± 0.13 (Other biology), 0.42± 0.19
(Top physics), and 0.58± 0.23 (Other physics). Furthermore, we
found that 41% of the Top scientists have fN,i ≥ 0.5. Interestingly,
the distributions of fK ,i and fN,i indicate that top scientists have
lower levels of super tie dependency than their counterparts.
We also analyzed the arrival rate of super ties. For each profile,

we tracked the number of super ties initiated in year t and nor-
malized this number by the total number of new collaborations
initiated in the same year. This ratio, λR,iðtÞ, estimates the like-
lihood that a new collaboration eventually becomes a super tie as
a function of career age t. For example, using the set of collabo-
rations initiated in each scientist’s first year, we estimate the
likelihood that a first-year collaborator (mentor) becomes a super
tie at λRðt= 1Þ= 8% (Top biology), 16% (Other biology), 14%
(Top physics), and 15% (Other physics). Fig. 5D shows the mean
arrival rate, hλRðtÞi, calculated by averaging over all profiles in
each dataset. The super tie arrival rate declines across the career,
reaching a 5% likelihood per new collaborator at t= 20 and 2.5%
likelihood by t= 30. The decay is not as fast for the top-cited
scientists, possibly reflecting their preferential access to out-
standing collaborators. However, the estimate for large t is biased
toward smaller values because collaborations initiated late in the
career may not have had sufficient time to grow.
In The Apostle Effect I and The Apostle Effect II, we investigate

the role of super ties at the microlevel by analyzing productivity at
the annual time resolution and the citation impact of individual
publications. In SI Text, we provide additional evidence for the
advantage of super ties by developing descriptive methods that
measures the net productivity and citations of the super ties rel-
ative to all other ties.

The Apostle Effect I: Quantifying the Impact of Super Ties on Annual
Productivity. We analyzed each research profile over the career

Fig. 4. Characteristic measures of collaboration tie
strength. (A) Cumulative distribution of the mean
collaboration strength, hKii. The K-S test indicates
that the PðhKiiÞ are similar for biology (p= 0.031)
and significantly different for physics (p= 0.004).
Vertical lines indicate median value. (B) Cumulative
distribution of Gi. The pairwise K-S test indicates
that the PðGiÞ are similar for biology (p= 0.14) but
not for physics (p= 0.02). Vertical lines indicate the
mean value, with physics indicating significantly
higher Gi than for biology. In (C) biology and
(D) physics, for each dataset, the cumulative distri-
bution of normalized collaboration strength xij shows
excellent agreement with the exponential distribu-
tion EðxÞ= exp½−x� (gray line) over the bulk of the
distribution, with the deviations in the tail regime
representing less than 0.1% of the data.
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years ti ∈ ½6,Minð29,TiÞ�, separating the data into nonoverlapping
Δt-year periods, and neglecting the first 5 y to allow the LijðtÞ and
KijðtÞ sufficient time to grow. We then modeled the dependent
variable, ni,t=hnii, which is the productivity aggregated overΔt-year
periods, normalized by the baseline average calculated over the
period of analysis. Recent analysis of assistant and tenured pro-
fessors has shown that the annual publication rate is governed by
slow but substantial growth across the career, with fluctuations
that are largely related to collaboration size (24).
To better understand the factors contributing to productivity

growth, we include controls for career age t along with four
additional variables measuring the composition of collaborators
from each Δt-year period. First, we calculated the average
number of authors per publication, ai,t, a proxy for labor input,
coordination costs, and the research technology level. Second,
we calculated the mean duration, Li,t, by averaging the Lijðt−ΔtÞ
values (from the previous period) across only the j who are active
in t, i.e., those coauthors with ΔKijðtÞ> 0. In this way, we account
for the possibility that j was not active in the previous period
ðt−ΔtÞ, in which case Lijðt−ΔtÞ is even smaller than LijðtÞ−Δt.
Thus, Li,t measures the prior experience between i and his/her
collaborators. Third, for the same set of coauthors as for Li,t, we
calculated the Gini index of the collaboration strength, GK

i,t, using
the tie strength values up to the previous period, Kijðt−ΔtÞ.
Thus, GK

i,t provides a standardized measure of the dispersion in
coauthor activity, with values ranging from 0 (all coauthors
published equally in the past with i) to 1 (extreme inequality in
prior publication with i). Thus, whereas Li,t measures the lifetime
of the group’s prior collaborations, GK

i,t measures the concen-
tration of their prior experience. Finally, for each period t, we
calculated the contribution of super tie collaborators normalized
by the contribution of all other collaborators,

ρi,t ≡
P

jjR=1ΔKijðtÞP
jjR=0ΔKijðtÞ, [5]

accounting for the possibility that the relative contribution of
super ties may affect productivity. Although the total coauthor

contribution
P

jΔKijðtÞ is highly correlated with ni,t, the correla-
tion coefficient between ρi,t and ni,t is only 0.07. We only include
researchers in this analysis if there are ≥4 data points for which
the denominator of Eq. 5 is nonzero.
We implemented a fixed-effects regression of the model

ni,t
hnii= βi,0 + βa ln ai,t + βLLi,t + βGG

K
i,t + βρρi,t + βtti,t + ei,t, [6]

which accounts for author-specific time-invariant features (βi,0),
using robust SEs to account for autocorrelation within each i.
Because the predictors are calculated from the same ego profile,
covariance is expected; for example, the highest correlation co-
efficient between any two independent variables is 0.32 between
lnai,t and GK

i,t, because the variance in Kij increases proportional to
the sample size (i.e., ai,t). Table 1 shows the results of our model
estimates for Δt= 1 year, and Table S1 shows the results for Δt= 3
years. We also ran the regression for all of the datasets together,
“All,” and provide standardized coefficients that better facilitate a
comparison of the coefficient magnitudes.
We observed a positive coefficient βρ = 0.11± 0.01 (p≤ 0.003 for

all datasets), meaning that larger contributions by super ties are
associated with above-average productivity. By way of example,
consider a scenario where the super ties contribute a third of the
total coauthor input, corresponding to ρi,t = 0.5, the average ρi,t
value we observed. Consider a second scenario with ρi,t = 1, corre-
sponding to equal input by the super ties and their counterparts
(ρi,t ≥ 1 for 14% of the observations). If all other parameters con-
tribute a baseline productivity value 1, then the additional contri-
bution from βρ corresponds to a 100× 0.5βρ= ð1+ 0.5βρÞ= 5.2%
productivity increase. This value is consistent with the 5% pro-
ductivity spillover observed in a study of star scientists (33).
We also found that periods corresponding to higher levels of

prior experience are associated with below-average productivity
(βL < 0, p≤ 0.008 for all datasets except for Top biology). Despite
the costs associated with tie formation, this result demonstrates that
productivity can benefit from collaborator turnover. Nevertheless,
above-average productivity is associated with higher inequality in

Fig. 5. The frequency of super ties. Vertical lines indicate the distribution mean. (A) Cumulative distribution of the fraction fR,i of the Si coauthors that are
super ties. All pairwise comparisons of the distributions have K-S P values greater than 0.21, indicating a common underlying distribution PðfRÞ. (B) Cumulative
distribution of the fraction fN,i of publications that include at least one super tie coauthor. The Top scientist distributions show mean values that are sig-
nificantly smaller than their counterparts. (C) Cumulative distribution of the fraction fK,i of publications coauthored with his/her top collaborator. The mean
and SD for biology (Top) is 0.15± 0.16, for biology (Other) is 0.31± 0.16, for physics (Top) is 0.17± 0.13, and for physics (Other) is 0.38± 0.26. (D) The mean rate
of super ties per new collaboration, hλRðtÞi, averaged over all of the profiles in each dataset using observations aggregated over consecutive 3-y periods.
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the concentration of prior experience (βG > 0, p< 0.001 level for all
datasets). Together, these results point to the benefits of strategi-
cally pairing new collaborators with incumbent ones to promote the
atypical combination of knowledge backgrounds and to achieve
higher scientific impact (34). The standardized coefficients in Table
1 indicate that βG is twice as strong as βρ and βL; interestingly, βρ
and βL have opposite signs yet are balanced in magnitude, sug-
gesting a compensation strategy for group managers.
The age coefficient βt is also positive (p< 0.001 level for all

datasets), consistent with patterns of steady productivity growth
observed for successful research careers (5, 24, 31). Possible
explanatory variables to consider in extended analyses are the
SD in Kij, a contact frequency (Kij=Lij) measure of tie strength
intensity per Granovetter’s original operationalization (10), and
absolute calendar year y, variables that we omit here to keep the
model streamlined.

The Apostle Effect II: Quantifying the Impact of Super Ties on the
Long-Term Citation of Individual Publications. The impact of super
ties on a publication’s long-term citation tally is difficult to
measure, because, clearly, older publications have had more time
to accrue citations than newer ones—a type of censoring bias—
and so a direct comparison of raw citation counts for publica-
tions from different years is technically flawed. To address this
measurement problem, we map each publication’s citation count
ci,p,Y ðyÞ in census year Yi to a normalized z score,

zi,p,y ≡
ln ci,p,Y ðyÞ−

�
ln cmY ðyÞ

�

σ
�
ln cmY ðyÞ

� . [7]

This citation measure is well suited for the comparison of
publications from different y because zi,p,y is measured relative to

the mean hln cmY ðyÞi number of citations by publications from the
same year y, in units of the SD, σ½ln cmY ðyÞ� (31). Thus, we take
advantage of the fact that the distribution of citations obeys a
universal log-normal distribution for p from the same y and disci-
pline (35). In this way, z is defined such that the distribution PðzÞ is
sufficiently time invariant. To confirm this property, we aggre-
gated zi,p,y within successive 8-y periods, and calculated the condi-
tional distributions PðzjyÞ, which are stable and approximately
normally distributed over the entire sample period (Fig. S5).
To define the detrending indices h. . .i and σ½. . . �, we use the

baseline journal set m comprising all research articles collected
from the journals Nature, Proceedings of the National Academy of
Sciences, and Science. We use this aggregation of three multi-
disciplinary journals only to control for the time-dependent
feature of citation counts. We chose these journals as our baseline
because they have relatively large impact factors (high citation
rates), and so the temporal information contained in h. . .i and
σ½. . . � is less noisy than other m with lower citation rates. Fur-
thermore, because most publications reach their peak citation
rate within 5−10 y after publication (5), we only analyze zi,p,y with
y≤ 2003. In this way, the zi,p,y values we analyze are less sensitive
to fluctuations early in the citation lifecycle, in addition to recent
paradigm shifts in science such as the Internet, which affects the
search, the retrieval, and the citation of prior literature, and the
rise of open access publishing.
In our regression model, we use five explanatory variables that

are author (i) and publication (p) specific. The first is the number
of coauthors, ai,p, which controls for the tendency for publications
with more coauthors to receive more citations (4). This variable is
also a gross level of technology and coordination costs, because
larger teams typically reflect endeavors with higher technical
challenge distributed across a wider range of skill sets. We use
ln ai,p because the range of values is rather broad, appearing to be

Table 1. Parameter estimates for the productivity model for ni,t in Eq. 6 using Δt= 1-y-long periods

Dataset A ln at Lt GK
t ρt t Nobs. Adj. R2

All 466 0.002±0.029 −0. 054± 0. 008 1. 788±0. 134 0.110±0. 013 0. 029±0.002 8,483 0.19
(Std. coeff.) 0.002±0.033 −0. 140± 0. 021 0. 320±0. 024 0.140±0. 016 0. 049±0.004
P value 0.943 0.000 0.000 0.000 0.000

Biology (Top) 99 −0.123±0.056 −0.011± 0.018 2. 816±0. 270 0.111±0. 026 0. 031±0.003 2,202 0.24
P value 0.031 0.519 0.000 0.000 0.000

Biology (Other) 95 −0.061± 0.056 −0. 067± 0. 025 1. 654±0. 287 0.071±0. 023 0. 053±0.006 1,467 0.29
P value 0.275 0.008 0.000 0.003 0.000

Physics (Top) 100 −0. 146± 0. 057 −0. 047± 0. 015 2. 053±0. 287 0.153±0. 025 0. 022±0.004 2,056 0.15
P value 0.012 0.002 0.000 0.000 0.000

Physics (Other) 172 0.089±0.050 −0. 065± 0. 013 1. 495±0. 213 0.101±0. 021 0. 026±0.005 2,758 0.15
P value 0.079 0.000 0.000 0.000 0.000

Each fixed-effects model was calculated using robust SEs, implemented by the Huber/White/sandwich method. Values significant at the p≤ 0.04 level are
indicated in boldface. Std. coeff., the estimates of the standardized (beta) coefficients; All, the combination of all datasets.

Table 2. Parameter estimates for the citation model for zi,p in Eq. 8 using only the publications with yp ≤ 2003

Dataset A lnap Rp tp lnNiðtpÞ ln SiðtpÞ Nobs. Adj. R2

All 377 0. 263±0.024 0. 202±0.023 −0.061±0. 004 0.062±0.066 0.065±0.072 68,589 0.27
(Std. coeff.) 0. 135±0.012 0. 129±0.015 −0.039±0. 003 0.044±0.046 0.050±0.055
P value 0.000 0.000 0.000 0.347 0.367

Biology (Top) 100 0. 263±0.039 0. 213±0.033 −0.029±0. 007 −0.138±0.102 0.062±0.112 22,135 0.12
P value 0.000 0.000 0.000 0.177 0.578

Biology (Other) 55 0. 579±0.053 0. 152±0.066 −0.031±0. 015 −0.179±0.095 0. 211±0. 094 4,801 0.20
P value 0.000 0.026 0.040 0.065 0.029

Physics (Top) 100 0. 139±0.043 0. 230±0.044 −0.070±0. 007 0. 277±0. 118 −0.119± 0.135 22,673 0.19
P value 0.002 0.000 0.000 0.021 0.380

Physics (Other) 122 0. 272±0.042 0. 235±0.049 −0.060±0. 008 0.082±0.095 0.017±0.104 18,980 0.19
P value 0.000 0.000 0.000 0.389 0.870

Each fixed-effects model was calculated using robust SEs, implemented by the Huber/White/sandwich method. Values significant at the p≤ 0.04 level are
indicated in boldface. Std. coeff., the estimates of the standardized (beta) coefficients; All, the combination of all datasets.
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approximately log-normally distributed in the right tail (7). The
second explanatory variable is the dummy variable Ri,p, which
takes the value 1 if p includes a super tie and the value 0 other-
wise. Remarkably, the percentage of publications including a
super tie is rather close to parity for three of the four datasets:
54% (Top biology), 45% (Top physics), 74% (Other biology), and
54% (Other physics). The third age variable, ti,p, is the career age
of i at the time of publication. The fourth variable, NiðtpÞ, is the
total number of publications up to year ti,p, which is a non-cita-
tion-based measure of the central author’s reputation, visibility,
and experience within the scientific community. The final ex-
planatory variable is the collaboration radius, SiðtpÞ, which is the
cumulative number of distinct coauthors up to ti,p, representing
the central author’s access to collaborative resources, as well as
an estimate of the number of researchers in the local community
who, having published with i, may preferentially cite i. Hence, by
including NiðtpÞ and SiðtpÞ, we control for two dimensions of cu-
mulative advantage that could potentially affect a publication’s
citation tally.
We then implement a fixed-effects regression to estimate the

parameters of the citation impact model,

zi,p= βi,0+ βa ln ai,p+ βRRi,p+ βtti,p+ βN lnNi
	
tp


+ βS ln Si

	
tp


+ ei,p,

[8]

using the Huber/White/sandwich method to calculate robust SE
estimates that account for heteroskedasticity and within-panel
serial correlation in the idiosyncratic error term ei,p. We excluded
publications with yp > 2003, and, in order that the Top and Other
datasets are well balanced, we also excluded the Other re-
searchers with less than 43 (biology) and 33 (physics) publications
(observations) as of 2003. Table 2 lists the (standardized) parameter
estimates. We provide the data used for both regression models
in Dataset S1.
We estimated βR = 0.20± 0.02 (p≤ 0.026 level in each re-

gression), indicating a significant relative citation increase when a
publication is coauthored with at least one super tie. The stan-
dardized βa and βR coefficients are roughly equal, meaning that
increasing ap from 1 (a solo author publication) to e≈ 3 coauthors
produces roughly the same effect as a change in Rp from 0 to 1.
Thus, although larger team size correlates with more citations (4),
the relative strength of βR stresses the importance of who in ad-
dition to how many.
Interestingly, the career age parameter βt =−0.061± 0.004 is

negative (significant at the p≤ 0.04 level in each regression),
meaning that researchers’ normalized citation impact decreases
across the career, possibly due to finite career and knowledge life
cycles. This finding is consistent with a large-scale analysis of
researcher histories within high-impact journals, which also shows
a negative trend in the citation impact across a career (31). Neither
the reputation (βN) nor collaboration radius (βS) parameters were
consistently statistically significant in explaining zi,p,y, likely because
they are highly correlated with tp for established researchers.
Modifications to consider in followup analysis are controls for the
impact factor of the journal publishing p, the absolute year y to
account for shifts in citation patterns in the post-Internet era, and
removing self-citations from super ties. Unfortunately, this last task
requires a substantial increase in data coverage, far beyond the
relatively small amount needed to construct individual ego network
collaboration profiles.
We develop three additional descriptive methods in SI Text to

compare the subset of publications with at least one super tie to
the complementary subset of publications without one. These in-
vestigations provide further evidence for the apostle effect. First,
we defined an aggregate career measure, the productivity premium
pN,i (see Eq. S1), which measures the average Kij value among the
super ties relative to all of the other collaborators. Second, we

defined a similar career measure, the citation premium pC,i (see
Eq. S5), which quantifies the average citation impact attributable
to super ties relative to all of the other collaborators.
Independent of dataset, we observed rather substantial pre-

mium values. For example, the productivity premium has an av-
erage value h pNi≈ 8, meaning that on a per-collaborator basis,
productivity with super ties is roughly 8 times higher than with the
remaining collaborators. Similarly, the citation premium pC,i
is also significantly right-skewed, with average value hpCi≈ 14,
meaning that net citation impact per super tie is 14 times larger
than the net citation impact from all other collaborators. We
emphasize that pC,i appropriately accounts for team size by using
an equal partitioning of citation credit across the ap coauthors,
remedying the multiplicity problem concerning citation credit.
Third, we calculated an additional estimation of the publica-

tion-level citation advantage due to super ties (Fig. S6). For both
biology and physics, we found that the publications with super ties
receive roughly 17% more citations than their counterparts. In
basic terms, this means that the average publication with a super
tie has 21 more citations in biology and 8 more citations in physics
than the average publication without a super tie. This is not a tail
effect, because the citation boost factor αR = 1.17 applies a mul-
tiplicative shift to the entire citation distribution, Pð~cjRp = 1Þ≈
PðαR~cjRp = 0Þ, thereby impacting publications above and below
the average.

Discussion
The characteristic collaboration size in science has been steadily
increasing over the last century (4, 7, 21), with consequences at
every level of science, from education and academic careers to
universities and funding bodies (8). Understanding how this
team-oriented paradigm shift affects the sustainability of careers,
the efficiency of the science system, and society’s capacity to
overcome grand challenges will be of great importance to a broad
range of scientific actors, from scientists to science policy makers.
Collaborative activities are also fundamental to the career

growth process, especially in disciplines where research activities
require a division of labor. This is especially true in biology and
physics research, where computational, theoretical, and experi-
mental methods provide complementary approaches to a wide
array of problems. As a result, a contemporary research group
leader is likely to find the assembly of team—one that is com-
posed of individuals with diverse yet complementary skill sets—a
daunting task, especially when under constraints to optimize
financial resources, valuable facilities, and other material re-
sources. Online social network platforms, such as VIVO (www.
vivoweb.org/) and Profiles RNS (profiles.catalyst.harvard.edu/),
which serve as match-making recommendation systems, have
been developed to facilitate the challenges of team assembly.
Our analysis indicates that 2/3 of the collaborations analyzed

here are weak. Nevertheless, the remaining strong ties represent
social capital investments that can indeed have important long-
term implications, for example, on information spreading (17),
career paths (36), and access to key strategic resources (37). In
the private sector, strong ties facilitate access to new growth op-
portunities, playing an important role in sustaining the competi-
tiveness of firms and employees (38). These considerations further
identify why it is important for researchers to understand the op-
portunities that exist within their local network. Understanding the
redundancies in the local network (39) and the interaction capacity
of team members (25) can help a group leader optimize group
intelligence (26) and monitor team efficiency (24), thereby con-
stituting a source of strategic competitive advantage.
In summary, we developed methods to better understand the

diversity of collaboration strengths. We focused on the career as
the unit of analysis, operationalized by using an ego perspective
so that collaborations, publications, and impact scores fit to-
gether into a temporal framework ideal for cross-sectional and
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longitudinal modeling. Analyzing more than 166,000 collabora-
tions, we found that a remarkable 60−80% of the collaborations
last only Lij = 1 year. Within a subset of repeat collaborations
(Lij ≥ 2 y), we find that roughly 2/3 of these collaborations last
less than a scientist’s average duration hLii≈ 5 y, yet 1% last
more than 4hLii≈ 20 y. This wide range in duration and the
disparate frequencies of long and short Lij together point to the
dichotomy of burstiness and persistence in scientific collabora-
tion. Closer inspection of individual career paths signals how
idiosyncratic events, such as changing institutions or publishing a
seminal study or book, can have significant downstream impact
on the arrival rate of new collaboration opportunities and tie
formation (see Fig. 1 and Fig. S1). Also, the frequency of rela-
tively large publication overlap measures (fK,i and fN,i) indicates
that career partners occur rather frequently in science.
In the first part of the study, we provided descriptive insights

into basic questions such as how long are typical collaborations,
how often does a scientist pair up with his/her main collaborator,
and what is the characteristic half-life of a collaboration. We also
found that as the career progresses, researchers become attrac-
tors rather than pursuers of new collaborations. This attractive
potential can contribute to cumulative advantage (30, 31), as it
provides select researchers access to a large source of collabo-
rators, which can boost productivity and increase the potential
for a big discovery.
We operationalized tie strength using an egocentric perspec-

tive of the collaboration network. Because the number of pub-
lications Kij between the central scientist i and a given coauthor j
was found to be exponentially distributed, the mean value hKii is
a natural author-specific threshold that distinguishes the strong
(Kij ≤ hKii) from the weak ties (Kij < hKii). Within the subset of
strong ties, we identified super tie outliers using an analytic ex-
treme-statistics threshold Kc

i defined in Eq. 4. Also, because the
number of publications produced by a collaboration is highly
correlated with its duration, a super tie also represents persis-
tence that is in excess of the stochastic churn rate that is char-
acteristic of the scientific system. On a per-collaborator basis, the
fraction of coauthors within a research profile that are super ties
(fR,i) was remarkably common across datasets, indicating that
super ties occur at an average rate of 1 in 25 collaborators.
There are various candidate explanations for why such ex-

tremely strong collaborations exist. Prosocial motivators may play
a strong role, i.e., for some researchers, doing science in close
community may be more rewarding than going it alone. Also, the
search and formation of a compatible partnership requires time
and other social capital investment, i.e., networking. Hence, for
two researchers who have found a collaboration that leverages
their complementarity, the potential benefits of improving on their
match are likely outweighed by the long-term returns associated
with their stable partnership. Complementarity, and the greater
skill set the partnership brings, can also provide a competitive
advantage by way of research agility, whereby a larger collective
resource base can facilitate rapid adjustments to new and changing
knowledge fronts, thereby balancing the risks associated with
changing research direction. After all, a first-mover advantage can
make a significant difference in a winner-takes-all credit and re-
ward system (2).
Scientists may also strategically pair up to share costs, rewards,

and risk across their careers. In this light, an additional incentive
to form super ties may be explained, in part, by the benefits of
reward sharing in the current scientific credit system, wherein
publication and citation credit arising from a single publication are
multiplied across the ap coauthors in everyday practice. Consid-
ered in this way, the career risk associated with productivity lulls
can be reduced if a close partnership is formed. For example,
we observed a few “twin profiles” characterized by a publication
overlap fraction fK ,i between the researcher and his/her top col-
laborator that was nearly 100%. Moreover, we found that 9% of

the biologists and 20% of the physicists shared 50% or more of
their papers with their top collaborator. This highlights a partic-
ularly difficult challenge for science, which is to develop a credit
system that appropriately divides the net credit but, at the same
time, does not reduce the incentives for scientists to collaborate (8,
27–29). Thus, it will be important to consider these relatively high
levels of publication and citation overlap in the development of
quantitative career evaluation measures; otherwise, there is no
penalty to discourage coauthor free riding (7).
We concluded the analysis by implementing two fixed-effects

regression models to determine the sign and strength of the
apostle effect represented by βρ (productivity) and βR (citations).
Together, these two coefficients address the fundamental ques-
tion: Is there a measurable advantage associated with heavily
investing in a select group of research partners?
In the first model, we measured the impact of super ties on a

researcher’s annual publication rate, controlling for career age,
average team size, the prior experience of i with his/her co-
authors, and the relative contribution of super ties within year
t as measured by ρi,t in Eq. 5. We found larger ρi,t to be associated
with above-average productivity (βρ > 0), indicating that super
ties play a crucial role in sustaining career growth. We also found
increased levels of prior experience to be associated with de-
creased productivity (βL < 0), suggesting that maintaining older
ties conflicts with the potential benefits from mixing new col-
laborators into the environment. Nevertheless, higher inequality
in the concentration of prior experience was found to have a
counterbalancing positive effect on productivity (βG > 0).
In the second regression model, we analyzed the impact of

super ties on the citation impact of individual publications, using
the detrended citation measure zi,p,y defined in Eq. 7. This cita-
tion measure is normalized within publication year cohorts, thus
allowing for a comparison of citation counts for research articles
published in different years. We found that publications coau-
thored with super ties, corresponding to 52% of the papers we
analyzed, have a significant increase in their long-term citations
(βR > 0). In SI Text, we provide additional evidence for the
apostle effect, showing that publications with super ties receive
17% more citations. This added value may arise from the extra
visibility the publications receives, because the super tie collab-
orator may also contribute a substantial reputation and future
productivity that promote the visibility of the publication. This
type of network-mediated reputation spillover is corroborated by
a recent study finding a significant citation boost attributable to a
researcher’s centrality within the collaboration network (40).
This data-oriented analysis also contributes to the literature

on the science of science policy (41), providing insight and
guidance in an increasingly metrics-based evaluation system on
how to account for individual achievement in team settings. As
such, we conclude with some policy recommendations. One
particularly relevant scenario is fellowship, tenure, and career
award evaluations, where it is a common practice to consider
“independence from one’s thesis advisor” as a selection criteria.
We show that to assess a researcher’s independence, evaluation
committees should also take into consideration the level of
publication overlap between a researcher and his/her strongest
collaborator(s), e.g., fK ,i and fN,i. However, at the same time, the
beneficial role of super ties—as we have quantitatively demon-
strated—should also be acknowledged and supported. For ex-
ample, funding programs might consider career awards that are
specifically multipolar (8), which would also benefit the research
partners in academia who are actually life partners, and who may
face the daunting “two-body problem” of coordinating two re-
search careers. Furthermore, understanding the basic levels of
publication overlap in science is also important for the ex post
facto review of funding outcomes as a means to evaluate the
efficiency of science. In large-team settings, measuring the effi-
ciency of a laboratory or project is difficult without a better
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understanding of how to measure overlapping labor inputs (i.e.,
collaborator contributions) relative to the project outputs (e.g.,
publications, patents, etc.). Finally, our study informs early ca-
reer researchers—who are likely to face important decisions
concerning the (possibly strategic) selection of collaborative
opportunities—on the positive impact that the right research
partner can have on their career’s long-term sustainability and
growth. In all, our results provide quantitative insights into the
benefits associated with strong collaborative partnerships, pointing

to the added value derived from skill-set complementarity, social
trust, and long-term commitment.
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