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Small autonomous machines like biological cells or soft robots can
convert energy input into control of function and form. It is desired
that this behavior emerges spontaneously and can be easily switched
over time. For this purpose we introduce an active matter system that
is loosely inspired by biology and which we term an active colloidal
cell. The active colloidal cell consists of a boundary and a fluid interior,
both of which are built from identical rotating spinners whose activity
creates convective flows. Similarly to biological cell motility, which is
driven by cytoskeletal components spread throughout the entire
volume of the cell, active colloidal cells are characterized by highly
distributed energy conversion. We demonstrate that we can control
the shape of the active colloidal cell and drive compartmentalization
by varying the details of the boundary (hard vs. flexible) and the
character of the spinners (passive vs. active). We report buckling of
the boundary controlled by the pattern of boundary activity, as well
as formation of core–shell and inverted Janus phase-separated con-
figurations within the active cell interior. As the cell size is increased,
the inverted Janus configuration spontaneously breaks its mirror sym-
metry. The result is a bubble–crescent configuration, which alternates
between two degenerate states over time and exhibits collective
migration of the fluid along the boundary. Our results are obtained
using microscopic, non–momentum-conserving Langevin dynamics
simulations and verified via a phase-field continuum model cou-
pled to a Navier–Stokes equation.
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Active matter describes particulate systems with the charac-
teristic that each “particle” (agent) converts energy into

motion (1, 2). Active matter covers a range of length scales that
include molecular motors in the cytoskeleton (3–5), swimming
bacteria (6–8), driven colloids (9, 10), flocks of birds and fish (11–
14), and people and vehicles in motion (15). Over the last decade,
studies of active matter have demonstrated behavior not seen in
equilibrium systems, including giant number fluctuations (16, 17),
emergent attraction and superdiffusion (18–20), clustering (21, 22),
swarming (23–27), and self-assembled motifs (28, 29). These sys-
tems provide interesting theoretical and engineering challenges as
well as opportunities to explore and target novel behaviors that
proceed outside of thermodynamic equilibrium.
Of particular interest are systems found in nature or inspired

by natural phenomena. Biological systems usually operate in con-
fined regions of space––think of intracellular space, interfaces and
membranes, and the crowding of cells near surfaces. The role of
hydrodynamics in confinement has been studied for biological
swimmers, such as bacteria and sperm, showing accumulation at the
walls (30–32) and upstream swimming along surfaces (33) or in a
spiral vortex (34–36). Attraction to walls has also been reported in
the absence of hydrodynamics for disks (37, 38), spheres (39), and
dumbbell swimmers (40). But, whereas these examples study the
behavior under the influence of hard boundaries, biological swim-
mers typically interact with soft boundaries, such as membranes and
biofilms. Another design variable is the possibility that the boundary

itself is active, as in the surface of a bacterium covered with flagellae
or, as demonstrated recently, active nematic vesicles (41).
In this work, we propose and investigate an active matter

system under flexible, active confinement. We call this system an
active colloidal cell. Our realization of an active colloidal cell
consists of independent particles, called spinners (42), that
translate and rotate in two dimensions and are constrained
within a finite area by a flexible boundary that is also built from
spinners. Each spinner has a gear-like geometry, which consists
of a large central disk and four smaller satellite disks (Fig. 1A).
Similar gear-shaped rigid aggregates of self-propelled particles have
been formed experimentally (43). Spinners are freely mobile in the
cell interior. On the cellular boundary, spinners are connected to
one another by a flexible chain of beads attached by finitely ex-
tensible springs. Both the interior and the boundary spinners can be
subject to a clockwise or counterclockwise driving torque, which
makes them active.
Rotationally driven particles can synchronize and self-organize

(44, 45) in the absence (42) and in the presence (46–48) of hy-
drodynamic interactions. Crystallization has recently been ob-
served in rotating magnetic Janus colloids (49) and fast-moving
bacteria (50). Spinners in the interior of the cell resemble mo-
lecular motors that push themselves forward on their neighbors
and, thus, sustain convective dynamics. The effect of the boundary
spinners is similar to that found in the cilia of living tissues, which
stir nearby fluid. Our results demonstrate that a natural conse-
quence of the activity present in the colloidal cell is control
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over both its external shape and internal structure. We report
compartmentalization into regions of clockwise and counter-
clockwise spinners––a behavior which is affected by, and can be
controlled via, properties of the enclosing boundary configu-
ration as previously suggested (51). Transitions in the internal
structure of the colloidal cell occur as its radius increases, and
as the composition of the interior spinners and the patterning
of the boundary are varied.
A previous study of spinners in bulk (42) showed phase sep-

aration into clockwise- and counterclockwise domains. Cates and
collaborators (6, 52, 53) have suggested that phase separation
is a generic consequence of local energy input in an otherwise
equilibrium system. Here and in the study of bulk spinners we
demonstrate phase separation due to local rotational, rather
than translational, energy input. We obtain our results using a
particulate, microscopic model (Fig. 1C) as well as a contin-
uum model (Fig. 1B). This allows us to conclude that the
phenomena we observe are robust with respect to details of
the model.
In this study we use two models to study the behavior of an

active colloidal cell, illustrated in Fig. 1. The microscopic model
describes spinners as individual particles and simulates their
motion using Langevin dynamics. It resolves the behavior of
individual spinners but does not include hydrodynamic effects. In
contrast, the continuum model describes the spinner system as
a viscous binary fluid, which is governed by an incompressible
Navier–Stokes equation coupled to a Cahn–Hilliard equation.
Both models are described in detail in Materials and Methods
below. Note that the microscopic model was introduced in ear-
lier work using Brownian dynamics (42) and is extended here to
include boundaries.

Results
Shape Control from Active Confinement.We first study the behavior
of colloidal cells with passive (nondriven) spinners in the interior
and active spinners on the boundary. We use the microscopic
model while varying two parameters: the number of boundary
segments n and the driving torque on the boundary τ. As shown
in Fig. 2A and Movie S1, the effect of the active boundary is a
deformation of the cell shape. The shape deformation follows
the symmetry of the boundary pattern (horizontal axis in the
figure) and becomes more prominent as the driving torque τ

increases (vertical axis). Buckling occurs at places on the boundary
where the direction of the driving torque switches. In particular,
we observe inward buckling when two adjacent spinners on the
boundary push interior spinners away from the space between
them. Similarly, we find outward buckling when the boundary
spinners pull interior spinners toward the space between them.
Colloidal cells with active spinners in the interior display sim-
ilar, but less well-pronounced behavior.
To understand the deformation of the active colloidal cell, we

analyze the velocity field of the passive spinners in the interior
while fixing the geometry of the boundary. After reaching a
steady state, we observe that the flow field has developed regions
of counterclockwise and clockwise convection, which we visualize
using the vorticity field w and the resulting streamlines in Fig. 2B.
We apply the same color scheme for vorticity (blue for counter-
clockwise and yellow for clockwise) in the continuum model as for
the rotation of individual spinners in the microscropic model. Note
that counterclockwise (clockwise) flow is exclusively in contact with
a clockwise (counterclockwise) rotating boundary.
We now use the continuum model to study the deformation of

the colloidal cell. The active boundary drives convective flow
along the cell wall. Because the passive interior spinners are
transported fastest along the interface, they collect at places
where they turn to flow inward (i.e., where the boundary changes
from yellow to blue traveling counterclockwise), inducing a
positive pressure on the boundary. The result is a higher pres-
sure and outward buckling of the boundary. In contrast, at the
other junction, passive spinners are transported away rapidly
when they approach the boundary from the center of the
cell. Thus, the boundary buckles inward at places where the
boundary activity changes from blue to yellow traveling coun-
terclockwise. The magnitude of the driving torque τ affects the
strength of the pressure difference and thus the anisotropy of the
cell shape.
To complete the comparison with the microscopic model, we

release the boundary in the continuum model, adjusting its ge-
ometry based on the stresses acting on it from the interior fluid.
We observe in Fig. 2C that the cell shape readily adjusts to a
shape predicted by the microscopic simulations, confirming that
the observed buckling is independent of using a microscopic
(particulate) or a continuum model.

Compartmentalization. We next consider what happens if active
spinners are confined within active boundaries. It is known that
without confinement, phase separation through a spinodal de-
composition-like process eventually results in complete demixing
of clockwise- and counterclockwise-driven spinners (42). As we
will see, the presence of an active boundary still allows phase
separation, but also induces a preference of oppositely driven in-
terior and boundary spinners to be in contact near the boundary.
We term this behavior compartmentalization. The presence of the
active boundary can lead to more complex phase behavior than
that found in the bulk system. The size of the colloidal cell also
plays an important role for compartmentalization.
We systematically vary the two composition ratios, i.e., the

fraction of clockwise- to counterclockwise-driven spinners in the
interior (horizontal direction in Fig. 3) as well as the fraction on
the boundary (vertical direction). We find perfect agreement
between the microscopic model and the continuum model. The
precise geometry of compartmentalization changes under varia-
tion of the composition ratios. We distinguish three cases:

i) Core–shell. All boundary spinners are driven in the same
direction and the domain interface forms a circle concentric
to the boundary. We call this the core–shell configuration.
The core–shell configuration maximizes the contact between
interior spinners and boundary spinners of the same type.

Fig. 1. Schematic of the confined spinner models. (A) The active colloidal
cell is made up of spinners driven counterclockwise (blue) or clockwise
(yellow). Boundary spinners are connected by a flexible bead–spring chain
(gray). We compare the behavior of a continuum model (B) to a microscopic
model (C). The compartmentalization of interior spinners is visualized by
coloring the Voronoi tessellation in the microscopic model.
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ii) Inverted Janus. For equal ratios of clockwise- to counter-
clockwise-driven spinners on the boundary and in the inte-
rior the domain interface is a straight line. We call this the
inverted Janus configuration. The inverted Janus configura-
tion maximizes the contact between unlike spinners at the
cell boundary, as shown in Movie S2.

iii) Bubble–crescent. Intermediate to the extreme cases of core–
shell and inverted Janus is the bubble–crescent configura-
tion. In the bubble–crescent configuration one of the spinner
species attempts to minimize its area into a circular domain
while simultaneously avoiding contact with the boundary.

Compartmentalization can be understood as the result of
competition between two effects. The observation of spinodal
decomposition in the bulk system (42) suggests that like-driven
spinners in the cell interior and boundary prefer to be in contact.
We call this behavior the boundary preference. In addition, at an
interface between clockwise- and counterclockwise-driven spin-
ners, spinners develop a velocity profile flowing parallel to the
interface. We call this behavior the interface preference.
Both boundary preference and interface preference are satis-

fied for a single-component active boundary, which explains the
geometry of the core–shell case. In the case of a Janus boundary,
boundary preference and interface preference work against each

other and result in competition. This can be understood from the
schematic in Fig. 4. If the interior spinners were to phase sepa-
rate into a regular Janus pattern (i.e., maximizing the contact
between like spinners at the boundary), then the flows induced
on the interior spinners by both the boundary and the interface
between the two interior phases would converge to a single point,
causing the entire colloidal cell to jam (Fig. 4A). In fact, if the
boundary activity of an inverted Janus cell is instantaneously
swapped to put the cell into a Janus configuration, the cell first
jams and mixes before demixing into the inverted Janus config-
uration once more, as shown in Movie S3. By creating an
inverted Janus configuration, the domain interface stabilizes a
flow of spinners in the opposite direction of the pressure gradi-
ent imposed by the active boundaries, and the circular flow of the
spinners in the interior can be maintained (Fig. 4B). This be-
havior is similar to the cell sorting model reported in ref. 37,
where a mixture of self-propelled soft disks in confinement moves
toward the walls of the container. Finally, the bubble–crescent
configuration is an intermediate case. Spinners are slowed down
when they enter a region of unlike boundary contact resulting in
the formation of the crescent. The boundary preference causes a
layer of whichever species is dominant to form a wetting layer in
contact with the cell boundary of the same species. In the perfectly

Fig. 2. Cellular shape control for active boundaries with passive interior. (A) Simulations in the microscopic model with 512 interior spinners and 80 boundary
spinners reveal a symmetric buckling of the colloidal cell. The buckling is suppressed for low driving torque τ (Top Row) but appears if the driving torque is
sufficiently high (Bottom Row). We can control the symmetry by changing the number of alternately driven segments on the active boundary, varied hor-
izontally. (B) Simulations in the continuum model with fixed boundaries reveal convective flows of the interior spinners, which we visualize via the vorticity
field w. (C) Simulations in the continuum model with free boundaries confirm the shape changes observed in the microscopic model. Again, we show results
for two different levels of activity τ′ for frictional damping γ′= 0.1 and boundary tension κ= 80 in a cell of size R= 20. The case of n= 1 exhibits a cusp-like
singularity that cannot be captured by the perturbation analysis used to compute the cell shape (Materials and Methods).
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balanced inverted Janus case, neither species is dominant and the
time-averaged width of the wetting layer approaches zero.

Quantifying Intracellular Order and Finite-Size Effects. To quantify
the geometry of the domains and to distinguish the three types
of colloidal cell compartmentalization, we construct a family of
cellular order parameters mn for nonnegative integer n corre-
sponding to observed symmetries within the cell. Each spinner is

assigned a fictitious charge cj of +1 or −1 depending on whether
it is being driven clockwise or counterclockwise. The order pa-
rameter mn is defined as

mn =
1
m0

n

�����
X
j

cjrjeinθj
�����, [1]

where (rj, θjÞ is the position of the interior spinner j in polar
coordinates with the origin at the center of mass of the colloidal
cell, and m0

n a normalization factor.
The order parameter m0 is designed to be maximal when one

species moves to the outside of the cell, i.e., for the core–shell
configuration. The order parameters mn, n> 0 are maximal for
systems that phase separate into radial sectors with n-fold sym-
metry, which is the case for the n-fold alternating boundary of
Eq. 3. For example, m0 measures radial asymmetry and m1
measures dipolar order.
We find that the type of intracellular compartmentalization

not only depends on the interior and boundary spinner compo-
sitions but also on the size of the colloidal cell (Movie S4). We
simulate cells with an even composition of spinners at the
boundary and in the interior. It is apparent from the order pa-
rameter histograms in Fig. 5A that small cells do not order well
due to the stronger influence of noise. As the number of interior
spinners increases to N = 128, the effect of noise decreases and
the colloidal cell approaches the inverted Janus configuration.

Fig. 4. Explanation for the inverted Janus configuration. We compare the
flows in the (nonobserved) Janus configuration (A) to the (observed) inverted
Janus configuration (B). In the inverted Janus configuration the flow maintains
two circular vortices, whereas in the noninverted Janus configuration the flow
would converge to a singular point (⋆).

Fig. 3. Compartmentalization of a colloidal cell with active boundary and active interior. (A) A grid of representative snapshots of active colloidal cells with
varying boundary (horizontal direction) and interior (vertical direction) composition in the microscopic model. A system of 128 interior spinners are enclosed by a
boundary of 40 spinners. All spinners are active. We observe the core–shell and the inverted Janus configurations where the contact between like and unlike
spinners, respectively, is maximized. The bubble–crescent configuration interpolates between these two extrema. (B) We confirm the steady-state behavior in the
continuummodel with τ′= 8 and γ′= 0.1 for cell of size R= 10with different patterns of boundary activity. The configurations in B correspond to the bottom row ofA.
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A further increase of N induces a transition of the Janus config-
uration into the bubble–crescent configuration by a spontaneous
breaking of the mirror symmetry. Interestingly, the symmetry
breaking is not persistent. As time progresses, the colloidal cell
switches reversibly between a clockwise bubble and a counter-
clockwise bubble (Fig. 5B). We can explain the symmetry breaking
as a kinetic effect. A colloidal cell can gain net rotation due
to an imbalance in the number of interior spinners of each
type touching the boundary of the same type. This behavior is
self-reinforcing: once more clockwise-driven interior spinners
are in contact with clockwise-driven boundary spinners, the cell
boundary will begin to rotate clockwise, which brings it into
contact with more clockwise-driven interior spinners. In small
cells the boundary is able to switch rapidly between the two
bubble–crescent configurations due to their size. As the cell size
increases, however, fluctuations become less capable of inverting
the bubble–crescent configuration and one species persists as the
bubble. In the limit of infinite cell size, we expect the symmetry
breaking to become irreversible. When the boundary spinners
are pinned in place, the colloidal cell does not form the bubble–
crescent pattern but remains in the inverted Janus configuration,
as shown in Movie S5.
The continuum model also captures the qualitative depen-

dence on the cell size observed in the microscopic model. For a
50:50 mixture of active spinners confined within a 50:50 active
boundary, we observe a destabilization of the inverted Janus
configuration and the concomitant formation of the bubble–
crescent configuration upon increasing the size of the cell from
R= 10 to R= 20 (Fig. 6) in agreement with the result of the mi-
croscopic model. These results can be seen in Movies S6 and S7.

Discussion and Conclusion
Wehave introduced the active colloidal cell as a simplemodel for the
study of an active matter system under confinement. The confine-
ment is itself active and soft, allowing cells to be flexible in geometry.
The main effect of the active boundary is the stirring of flow in the
interior of the cell, which is observed in both a microscopic model
without hydrodynamics and a continuum model. In both models,
confinement results in a competition between complete phase sep-
aration with a straight interface, favored by spinners in the bulk (42),

and deviating behavior imposed by the boundary conditions. There is
an optimal size of the colloidal cell (in our model around N = 128),
which is large enough such that strong thermal fluctuations are
suppressed, but not too large for the system to still be influenced by
the activity of the boundary. A colloidal cell of this size conjures up
the image of a soft, miniature robot that can change its shape, vary its
internal patterning with two species of spinners, and even exhibit a
bistable equilibrium that switches back and forth.
Although we have taken just an early first theoretical step on

two simple model systems, it is tempting to consider the possi-
bility of exploiting the behaviors we report in the development of
colloidal machines––integrated systems of colloids able to carry
out programmable functions. Recent experimental reports of func-
tional bionic nanoparticle assemblies (54) and colloidal actuators

Fig. 5. Order parameter histograms of common intracellular compartmentalizations. We use the cellular order parameters m0 and m1 to quantify core–shell
and Janus behavior in simulations of the microscopic model. The order parameters are normalized such that m0 = 1 and m1 = 1 for the perfectly ordered
configurations. (A) The interior composition and the boundary composition are kept even. As the size of the cell grows from 32 (salmon) to 64 (violet), 128
(teal), 256 (green), and 512 (brown) interior spinners, the cell configuration transitions from inverted Janus to bubble–crescent. For very small cells, thermal
fluctuations smear out the histogram significantly. (B) Transient behavior in cells of 32 (top row), 128 (middle row), and 512 (lower row) interior spinners.
Medium-sized cells exhibit periodic migrations where spinners of one type travel along the segment of the same type in the boundary. For large cells, this
migration becomes self-reinforcing due to the boundary rotation it induces, causing a spontaneous symmetry-breaking.

Fig. 6. Active Interior, active boundary. Snapshots of the steady-state
composition φ for two different cell sizes R= 10 and R= 20. The cells contain
50:50 mixtures of clockwise- and counterclockwise-rotating spinners within
an active boundary comprising two equally sized, counterrotating domains.
Increasing the size of the cell results in the destabilization of the inverted
Janus configuration and the formation of the bubble–crescent configura-
tion. Here, the strength of active rotation is τ′= 8; the strength of frictional
damping is γ′= 0.1.

E4646 | www.pnas.org/cgi/doi/10.1073/pnas.1513361112 Spellings et al.

http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1513361112/video-5
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1513361112/video-6
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1513361112/video-7
www.pnas.org/cgi/doi/10.1073/pnas.1513361112


(55) demonstrate prototypical functions of converting light into
energy and converting energy into mechanical work, respectively––
both functions critical for a colloidal machine. The behaviors of
predictable compartmentalization, shape control, and switchability
demonstrated in our model system of colloidal spinners provide
additional, machine-like functionality. We expect such machines
could be made from anisotropic colloids exhibiting, e.g., catalyti-
cally propelled or magnetic-field-induced motion (56).

Materials and Methods
Microscopic Model. In the microscopic model, spinners are rigid bodies con-
sisting of four peripheral disks of radius σ symmetrically arranged about a
central disk of radius 3σ (Fig. 1A). The system is governed by the Langevin
equation for translation,

m
∂v i

∂t
= F i − γv i + FR

i , [2]

where m is the mass and vi is the translational velocity of each of the disks
comprising the ith spinner. If the spinner is active then its rigid body is driven
by an external driving torque τi =±τ of constant magnitude, with positive
sign for counterclockwise rotation (A, blue) and negative sign for clockwise
rotation (B, yellow). In a real system, this torque could be due to the four
peripheral disks being self-propelled particles, oriented symmetrically to
impose a net torque but no net force on the spinner as a whole, much like
the particles described in ref. 43. The torque on the particles would then be
balanced by a torque on the stationary substrate. Spinners are hard particles
that interact via a repulsive contact potential, resulting in internal forces F i.
Translational and rotational kinetic energy is dissipated through the trans-
lational drag force −γvi applied to each constituent disk of a spinner. Noise is
included via Gaussian random forces FR

i =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2γkBT

p
RðtÞ that model a heat

bath at temperature T. Here RðtÞ are normalized zero-mean white-noise
Gaussian processes, which ensure thermodynamic equilibrium in the absence
of the externally applied torques. Note that in contrast with earlier work
(42) we apply drag and random forces to each constituent disk of the spinner
separately, which means we do not have to specify a separate Langevin
equation for rotation. Because the random forces are not applied pairwise,
the thermostat is non–momentum-conserving. Therefore, our microscopic
model explicitly does not include hydrodynamics.

The boundary is modeled in two steps. First, we connect the ends of a linear
chain of disks with radius σ=2 that interact with their adjacent neighbors via
a finitely extensible nonlinear elastic potential UðrÞ=−ð1=2Þkr20 lnð1− ðr=r0Þ2Þ
with spring constant k, divergence length r0, and separation distance r. Second,
we rigidly attach a spinner to every 10th boundary disk, so that the boundary
spinners can rotate freely without colliding if the boundary is sufficiently
stretched.We can choose tomake the boundary spinners active bydriving them
rotationally and vary the patterning of the boundary by constructing it from
segments of equal driving torque. To describe the patterning we introduce the
boundary activity function fðθÞ∈ ½−1,1�, where θ∈ ½0,2πÞ is an angle that de-
scribes the position at the boundary (if formed into a circle). f = 1 indicates a
counterclockwise driving torque whereas f =−1 indicates a clockwise driving
torque. Simple examples are the uniform boundary fðθÞ= 1 (all boundary
spinners are driven counterclockwise), the Janus boundary fðθÞ= 1− 2Hðθ− πÞ
(half counterclockwise and half clockwise), and the n-fold alternating boundary

fðθÞ= 1+ 2
X2n−1
j=1

ð−1Þ jHðθ− jπ=nÞ, [3]

where H is the Heaviside step function.
Langevin dynamics simulations are performed on graphic processing units

with HOOMD-blue (57, 58) (codeblue.umich.edu/hoomd-blue) for colloidal
cells with between 16 and 512 spinners in the interior. The contact between
spinners is a Weeks–Chandler–Andersen potential (59) with parameter «

shifted to the surface of each disk such that its range is a small fraction of
the disk diameter, thereby approximating hard shapes. Throughout the
paper we report results for γ = 1

ffiffiffiffiffiffiffi
me

p
=σ, r0 = 1.5σ, k= 20e=σ2, and thermal

noise kBT =1e using σ as the length unit and « as the energy unit. These
parameter choices correspond to the overdamped, diffusive limit. Active
systems are often described by overdamped equations of motion where
inertia is neglected (11, 17, 19). Although inertia is incorporated in our
model, we confirmed that it is not crucial for any of the observed behavior.
Additional studies of the role of convection in bulk systems of spinners are
presented in ref. 60.

Continuum Model. In the continuum model, the spinner dynamics is described
by coupling the Cahn–Hilliard phase field equation to a Navier–Stokes
equation with an active term representing the rotational driving torque.
Previously, a continuum model was used to describe separation of trans-
lationally driven particles into high- and low-density phases, much like
vapor–liquid or vapor–solid coexistence in single-component equilibrium
systems (20, 61, 62). Here, instead, we model separation into clockwise-
and counterclockwise-driven domains, analogous to equilibrium phase
separation of a binary mixture of immiscible fluids as reported in ref. 42
for our microscopic model. Boundary effects are taken into account via the
choice of boundary conditions for the equations. Depending on the
presence or absence of activity at the boundary and in the interior we
distinguish various cases. Here we first present the governing equations
for the most general situation and refer to Governing Equations for details
and derivations.

To describe the binary fluid of actively rotating spinners, we start with the
Cahn–Hilliard equation for the fraction of clockwise- or counterclockwise-
driven spinners within a fluid volume, φ. The Cahn–Hilliard equation can be
written in nondimensional form as

dφ
dt

=∇2�−φ+φ3 −∇2φ
�
. [4]

The 2D fluid is modeled as a generalization of an incompressible, Newtonian
fluid governed by the (nondimensional) Navier–Stokes equations (63, 64),

Re
dv
dt

=−∇p+∇2v − γ′v +Ca−1μ∇φ+ τ′∇× ðφezÞ, [5]

0=∇ ·v, [6]

where v is the fluid velocity, Re is a Reynolds number, Ca is a capillary
number, γ′ is a translational drag coefficient present in the microscopic
model, and τ′ measures the strength of the rotational driving torque. The
form of the rotating driving implies that the torque density is proportional
to the local composition φ (65). For simplicity, we neglect the effects of fluid
inertia as well as that of capillary-like forces acting normal to the fluid–fluid
interface (i.e., Re→ 0 and Ca−1 → 0). These contributions are expected to be
unimportant for the relatively small fluid domains described here. With
these simplifications, convective flows are driven only by forces due to active
rotation directed parallel to the interface separating the counterrotating
domains, τ′∇× ðφezÞ.

To solve for the 2D velocity field, it is convenient to introduce the stream
function ψ where v =∇× ðψezÞ. As shown in Eqs. 12–14, the momentum
equation (Eq. 5) can then be recast in terms of the stream function,

0=∇4ψ − γ′∇2ψ + τ′∇2φ. [7]

Importantly, the dimensionless coefficients τ′ and γ′ characterizing the strength
of active rotation and frictional drag in the continuum model are directly
analogous (in an order-of-magnitude sense) to the parameters τ and γ in the
microscopic model. Together with an impermeable boundary with spatially
varying stress, Eqs. 4 and 7 govern the dynamics of the composition φ and
stream function ψ of the fluid. We integrate these continuum equations using
COMSOL Multiphysics, Version 4.4.

The fluid is confined within an impermeable passive or active boundary, en-
tering as boundary conditions for the continuum equations. The driving torques
applied to the boundary spinners are equal to those driving the rotation of the
interior spinners. This scenario can be approximated by the two boundary con-
ditions ψ =0 and ∇× v =−τ′ðfðθÞ−φÞ, where fðθÞ∈ ½−1,1� is the boundary ac-
tivity. Furthermore, in the microscopic model, the active boundary is not fixed in
place but is free to rotate relative to the stationary surroundings (e.g., an un-
derlying substrate). To describe this effect in the continuum model, we fix the
shape of the boundary to a circle of radius R but allow for its rotational motion
with an angular velocity Ω. In the low Reynolds number limit, the use of a ro-
tating reference frame does not affect the equations of motion with the ex-
ception of the frictional damping term in the Navier–Stokes equation. Finally, the
activity-induced flows create nonuniform stresses normal to the boundary that
result in its deformation. To model shape changes of the active colloidal cell, we
assume that the normal component of the stress at the boundary is balanced by a
surface-tension–like force, which is proportional to the local curvature of the in-
terface. After this short summary, we now derive the continuum model in detail.
Governing equations. To describe the binary fluid of actively rotating spinners,
we start with the convective Cahn–Hilliard equation for the compositional
order parameter φ,
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∂φ
∂t

+ v ·∇φ=M∇2μ, [8]

where v is the fluid velocity, M is a mobility coefficient, and μ is the chemical
potential. For simplicity, we assume the chemical potential is of the form

μ=−rφ+ λφ3 −K∇2φ, [9]

where r, λ, and K are positive coefficients. Physically, these coefficients de-
termine the thickness ðK=rÞ1=2 of the interface separating two equilibrium
phases with composition φeq =±ðr=λÞ1=2.

We further assume that the fluid is incompressible, Newtonian, and
symmetric such that the bulk properties of the two phases are equal––in
particular, the density ρ and viscosity η. The two components of the fluid are
driven to rotate in opposite directions by a torque density aφez, which is
proportional to the order parameter φ and to a constant a that describes the
magnitude of rotation. Under these conditions, conservation of mass and
momentum implies that

0=∇ ·v, [10]

ρ
dv
dt

=−∇p+ η∇2v −bv + μ∇φ+ a∇× ðφezÞ, [11]

where the additional terms in Eq. 11 describe (i) frictional drag against the
stationary surroundings, −bv, (ii) capillary-like forces acting normal to the
fluid–fluid interface, μ∇φ, and (iii) forces due to active rotation directed
parallel to the interface, a∇× ðφezÞ.
Nondimensionalization. At this point, it is convenient to nondimensionalize the
governing equations using characteristic scales for the interfacial thickness
ðK=rÞ1=2, the time of demixing K=Mr2, and the equilibrium composition
ðr=λÞ1=2. In these dimensionless units, Eqs. 8 and 11 become

dφ
dt

=∇2�−φ+φ3 −∇2φ
�
, [12]

Re
dv
dt

=−∇p+∇2v − γ′v +Ca−1μ∇φ+ τ′∇× ðφezÞ, [13]

where Re= ρMr=η is a Reynolds number, Ca=Mλη=K is a capillary number,
and the dimensionless coefficients τ′ and γ′ characterize the strength of ac-
tive rotation and frictional drag, respectively. Here, we focus exclusively
on the low Reynolds number limit (Re→ 0) and neglect capillary forces
(Ca−1 → 0) such that fluid flow is driven solely by the active rotation of the
particles. Systems with passive fluid interiors are described by setting τ′= 0.

To solve for the 2D velocity field, it is convenient to introduce the stream
function ψ where v =∇× ðψezÞ such that Eq. 13 becomes

0=∇4ψ − γ′∇2ψ + τ′∇2φ. [14]

For such 2D flows, the fluid vorticity (in the z direction), w =∇× v, can be
related to the stream function as w =−∇2ψ. Together, Eqs. 12 and 14 govern
the dynamics of the composition φ and the flow field.
Passive boundary. In the microscopic model, a passive boundary refers to that
formed by passive spinners that are otherwise free to rotate and translate
subject to the constraints of their connectivity. In the continuum model, the
passive boundary is described by a circle of radius R with no flow normal to
the boundary and no stress tangent to the boundary

n · v = 0, [15]

n · τ · t = 0. [16]

Here, n and t are the unit vectors normal and tangent to the boundary (with
the convention n× t = ez), and τ =∇v + ð∇vÞT is the viscous stress tensor. In
terms of the stream function and the vorticity, these conditions imply

ψ = 0, [17]

w =0, [18]

everywhere along the circular boundary.
Similarly, for systemswithactive interiors,we require twoboundary conditions to

fully specify the composition field φ. First, there is no flux normal to the boundary

n ·∇μ= 0. [19]

We also require a “wetting” condition that determines the effective contact

angle between the counterrotating fluid phases and the bounding surface.
For the symmetric fluids described here, this effective contact angle should
be π=2 such that

n ·∇φ= 0. [20]

Subject to these boundary conditions, Eqs. 12 and 14 are solved numerically
using the commercial finite-element solver COMSOL.
Active boundary. In the microscopic model, an active boundary refers to that
formed by active spinners which are driven to rotate in either direction with a
constant torque. These boundary spinners can induce stresses tangent to the
boundary that drive flows of the interior fluid, whichmay be active or passive.
In the continuummodel, the active boundary is described by a circle of radius
Rwith no flow normal to the boundary and a tangential stress related to the
local composition φ and the boundary activity fðθÞ as

ψ = 0, [21]

w =−τ′ðfðθÞ−φÞ, [22]

where fðθÞ∈ ½−1,1�, with f = 1 for counterclockwise-rotating boundary spin-
ners and f =−1 for clockwise boundary spinners. Here, the driving torques
applied to the boundary spinners are assumed equal to those driving the
rotation of the interior spinners. Note that the vorticity w at the boundary
(here equal to the tangent stress) depends on the difference between the
spinner composition in the fluid interior and that at the boundary. An in-
terface between like rotating particles results in no net stress (i.e., when
f =φ); the largest stresses occur at interfaces between counterrotating par-
ticles (i.e., when f =−φ). Systems with passive fluid interiors can be described
by setting φ= 0 in Eq. 22.

To model the boundary activity used in the microscopic model, the
function fðθÞ was chosen as

fðθÞ= tanh
�
cosðnθÞ

nδ

�
, [23]

where n determines the number of domains on the boundary, and δ is a
length characterizing the width of the transition from one domain to the
next (here, δ= 0.01). The resulting flows for passive interiors with n= 1 to
n= 5 are shown in Fig. 2B.

Finally, it is important tonote that the active boundary is not fixed in place but
is free to rotate relative to the stationary surroundings (e.g., an underlying
substrate). To describe this effect in the continuum model, we fix the shape of
the boundary to a circle of radius R but allow for its rotational motion with an
angular velocityΩ. We adopt a rotating frame of reference which is fixed to the
boundary and participates in its motion. In the low Reynolds number limit, the
use of a rotating reference frame does not affect the equations of motion with
the exception of the frictional damping term in the Navier–Stokes equation,
which describes the resistance to motion relative to the stationary surroundings.
In the rotating reference frame, the stream function Eq. 14 becomes

0=∇4ψ − γ′
�
∇2ψ + 2Ω

�
+ τ′∇2φ. [24]

It is further assumed that the net torque T acting on the surroundings is
identically zero at all times (otherwise, the system would accelerate or de-
celerate its rotational motion). This condition implies that

T = γ′
Z
S

r × ðv −Ω× rÞdS= 0, [25]

where the integral is carried out over the entire fluid domain S. For a circular
domain of radius R, the angular velocity Ω is therefore

Ω=
2

πR4

Z
S

ðr × vÞdS. [26]

This integral constraint must be solved at each time step to describe the
rotation of the cell. Note that such complications are necessary only in de-
scribing the most general case of actively rotating fluids confined by an
active boundary.
Shape change. The activity-induced flows create nonuniform stresses normal to
the flexible boundary that can result in its deformation. To describe these
deformations, we assume that the normal component of the stress at the
boundary is balanced by a surface-tension–like force, which is proportional
to the local curvature H of the interface
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−p+ τnn = κH, [27]

where τnn =n · τ ·n is the normal component of the viscous stress at the
boundary, and κ is the surface tension of the boundary (in units of
ηMr3=2=K1=2). Provided that forces due to surface tension are large compared
with those due to boundary activity (i.e., κ � Rτ′), deformations in the shape
of the boundary will be small. Under these conditions, we can use the stress
computed for the circular boundary to approximate changes in cell shape
rðθÞ, which is computed as

HðθÞ= r2 + 2r2θ − rrθθ�
r2 + r2θ

�3=2 , [28]

where HðθÞ is the local curvature specified by Eq. 27, and the subscripts
denote differentiation with respect to θ.

Connecting the Continuum and Microscopic Models. In the microscopic model,
the key parameters such as the driving torque τ, the frictional drag γ, and the
elasticity of the boundary κ are expressed using natural microscopic scales
for length σ, time σðm=eÞ1=2, and energy e= kBT. Here, we connect these
characteristic scales to those used in nondimensionalizing the continuum
model. The characteristic length in the continuum model is taken to be the
thickness of the interface separating the two counterrotating phases,
ðK=rÞ1=2; this length should be comparable to the size of the particles such
that ðK=rÞ1=2 ∼ σ. The characteristic time used in the continuum model is that
of unmixing, K=Mr2, which should be comparable to the time required for a
particle to diffuse one particle diameter––that is, K=Mr2 ∼ σðm=eÞ1=2. Finally,
the characteristic energy scale used in the continuum model is taken to be

ηMr. Approximating the fluid viscosity as η∼ ðme=σ2Þ1=2 (66) and applying the
two relations above, this energy scale becomes ηMr ∼ e.

To summarize, the characteristic scales used in the continuummodel are––
to within an order of magnitude––the same as those used in the microscopic
model. Consequently, the parameter values used in each of the models––
although not exactly equivalent––should be directly comparable to one
another. This is reflected by the use of common notation, i.e., τ and τ′ for
the driving torque in the microscopic model and the continuum model, re-
spectively, as well as γ and γ′ for the frictional drag.

Scale Microscopic Continuum

Length σ ðK=rÞ1=2
Time σðm=eÞ1=2 K=Mr2

Energy e ηMr

Summary of the characteristic scales used in the microscopic and continu-
um models.
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