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Designing a “cocktail party listener” that functionally mimics
the selective perception of a human auditory system has been
pursued over the past decades. By exploiting acoustic metama-
terials and compressive sensing, we present here a single-sensor
listening device that separates simultaneous overlapping sounds
from different sources. The device with a compact array of reso-
nant metamaterials is demonstrated to distinguish three overlapping
and independent sources with 96.67% correct audio recognition.
Segregation of the audio signals is achieved using physical layer
encoding without relying on source characteristics. This hard-
ware approach to multichannel source separation can be applied
to robust speech recognition and hearing aids and may be extended
to other acoustic imaging and sensing applications.
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The “cocktail party” or multispeaker listening problem is in-
spired by the remarkable ability of the human’s auditory

system in selectively attending to one speaker or audio signal in a
multiple-speaker noisy environment (1, 2). Over the past half a
century (3), the quest to understand the underlying mechanism
(4–6) and build functionally similar devices has motivated sig-
nificant research efforts (4–8).
Previously proposed engineered multispeaker listening sys-

tems generally fall into two categories. The first kind is based on
audio features and linguistic models of speech. For example,
harmonic characteristics, temporal continuity, onset/offset of
speech units combined with hidden Markov language models can
be used to group overlapping audio signals into different sources
(7, 9, 10). The drawback of such an approach is that certain
audio characteristics have to be assumed (e.g., nonoverlapping in
spectrogram) and linguistic model-based estimation can be very
computationally intensive. The second kind relies on multisensor
arrays to spatially filter sources (11). The need for multiple
transducers and system complexity are the major disadvantages
of the second approach.
In this work, we demonstrate a multispeaker listening sys-

tem that separates overlapping simultaneous conversations by
leveraging the wave modulation capabilities of acoustic meta-
materials. Acoustic metamaterials are a broad family of engi-
neered materials which can be designed to possess flexible and
unusual effective properties (12, 13). In the past, acoustic meta-
materials with high anisotropy (14, 15), extreme nonlinearity
(16), or negative dynamic parameters (density, bulk modulus,
refractive index) (17–20) have been realized. Applications such
as scattering reducing sound cloak (21, 22), beam steering
metasurface (23), and other wave manipulating devices (24–27)
have been proposed and demonstrated. We demonstrate here
that acoustic metamaterials can also be useful for encoding in-
dependent acoustic signals coming from different spatial loca-
tions by creating highly frequency-dependent and spatially
complex measurement modes (28), and aid the solution finding
for the inverse problem. Such physical layer encoding scheme
exploits the spatiotemporal degrees of freedom of complex me-
dia, which contribute to a variety of random scattering-based
sensing and wave-controlling techniques (29–32) and a recently

demonstrated radiofrequency metamaterial-based imager (33).
The listening system we demonstrate here provides a hardware-
based computational sensing method for functionally mimicking
cocktail party listening.
Inspired by the frequency-dependent filtering mechanism of

the human cochlea system (1), we designed our multispeaker lis-
tening system with carefully engineered metamaterials to perform
dispersive frequency modulation. This modulation is produced by
an array of Helmholtz resonators, whose heights determine their
resonating frequencies. The sensing system is shown in Fig. 1. The
single sensor at the center is surrounded by 36 fan-like waveguides
that cover 360° of azimuth. Each waveguide possesses a unique
and highly frequency-dependent response (two examples are
plotted in Fig. 1C), which is generated by the resonators with
randomly selected resonant dispersion. The randomized modula-
tion from all of the waveguides “scrambles” the original omnidi-
rectional measurement modes of the single sensor. As a result, the
measurement modes are complex in both the spatial and spectral
dimensions. For example, in Fig. 1E, three modes measured at
different frequencies are shown. Such location-dependent fre-
quency modulation provides both spatial and spectral resolution
to the inversion task (34).
We can describe our sensing system with a general sampling

model as g=H   f , where g is the vector form of the measured data
(measurement vector); f is the object vector to be estimated. The
measurement matrix H, which represents the forward model of
the sensing system, is formed by stacking rows of linear sam-
pling vectors [also known as test functions (35)] at sequentially
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indexed frequencies. This matrix is randomized by the physical
properties of the metamaterials to generate highly uncorrelated
information channels for sound wave from different azimuths
and ranges. The level of randomization of the matrix determines
the supported resolution and the multiplexing capability of the
sensing system.
To quantify the signal encoding capacities of the modulation

channels, here we have chosen the average mutual coherence μav
as the metric of the sensing performance (36). μav ranges from a
desirable 0 (indicating perfectly orthogonal modulation chan-
nels) to a useless 1 (indicating identical and thus indistinguish-
able modulation channels). Average mutual coherence is directly
related to the mean-squared error (MSE) of the reconstruction
(36). The frequency responses of the modulation channels that
are used for calculating the average mutual coherences are
obtained from the Fourier transform of the measured impulse
responses of each spatial location. For our experiment presented
here, the metamaterials are shown to provide to the sensing task
an average mutual coherence of 0.198. In contrast, an omnidi-
rectional sensor without the metamaterial coating exhibits an
average mutual coherence of 0.929. (Details concerning the
calculation of average mutual coherence and other quantitative
characterization of the measurement matrix can be found in the
Supporting Information.

A multispeaker listening system should provide information
about “who” is saying “what.” We thus design our sensing ex-
periment as follows: Multiple sound sources simultaneously emit
a sequence of independent audio messages (acting as a “con-
versation”). Each component of the conversation consists of 40
“words” randomly selected from a library containing 100 distinct
but broadband synthesized pulses. The sound waves emitted
from the sources first propagate in the free space and then are
modulated by the encoding channels offered by the meta-
materials, before they are collected as a single mixed waveform.
In the data processing stage, the inversion algorithm segre-
gates the mixed waveform and reconstructs the audio content of
each source. The concept schematic of the measurement and
reconstruction process is shown in Fig. 2. A Fourier component
of the collected signal can be expressed as the superposition of
the responses from all of the waveguides at this frequency:
PcðωÞ= 

P36
i=1PiðωÞ , where PiðωÞ is the response from the ith

waveguide. The measured data vector used for reconstruction is
g= ½Pcðω1Þ Pcðω2Þ ⋯ PcðωMÞ �T, and the object vector f is a
scalar vector containing N =K ×P elements (K is the number of
the possible locations and P is the size of the finite audio library).
Because of the sparsity of f (only several elements are nonzero,
corresponding to the activated sources), the sensing process is an
ideal fit for the framework of compressive sensing. L1-norm
regularization is performed with the Two-step Iterative Shrink-
age/Thresholding (TwIST) algorithm (37) to solve the ill-posed
inverse problem.
To examine the capability of the metamaterial sensing system

in audio segregation, and ruling out other factors such as com-
plex background [which may aid the reconstruction if they are
well-characterized (38)], the tests were performed in an anechoic
chamber as shown in Fig. 3. Three independent speakers were
used as sources to emit words randomly selected from the pre-
defined synthesized library. The measurement vector g used
as the input for the algorithm contains 51 complex elements
corresponding to the discretized frequency responses between
3,000 and 5,000 Hz with an interval of 40 Hz. Compared with the
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Fig. 1. (A) The 0.2-m radius structure of the metamaterial multispeaker
listener and (B) one fan-like waveguide. (C) The frequency modulation of
two fan-like waveguides obtained from simulation. (D) Fabricated prototype
of the listener. (E) Measured amplitude patterns (normalized) of the mea-
surement modes at 3,120, 4,320, and 5,240 Hz, respectively.
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Fig. 2. Schematic of the measurement and reconstruction process.
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Fig. 3. (A) Measurement performed in an anechoic chamber. (Left) Photo of
the metamaterial listener in the chamber. (Right) Schematic of the setup and
two examples of synthesized word. (B) Measured transfer functions for the
locations of three speakers.
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300 source location–audio pair possibilities (possible combina-
tions of 3 source locations and 100 broadband signals), a com-
pression factor of about 6:1 is achieved.
The results shown in Fig. 4 exhibit the reconstruction for each

source location–audio combination, where the more purple color
indicates higher signal strength. The ground truth marked with
black rectangular boxes indicates three overlapping simultaneous
speeches in a conversation. The metamaterial listener provides a
faithful reconstruction with an average MSE of about 0.08. In
contrast, when the metamaterial coating is removed and only an
omnidirectional sensor is used to collect the overlapping audio
signals, the reconstruction is too poor to provide separated in-
formation about the sources (MSE = 1.99; see the Supporting
Information for the results of the controlled experiment without
metamaterials), which is expected as the transfer functions from the
source locations to the sensor are less different (or more mutually
coherent) from each other in the case without metamaterials. If the

prior knowledge that each source sends out one audio message at
each time index is applied, we can define a recognized audio by
selecting the message with the highest strength for each source at
every time index. The recognition ratio can thus be calculated as the
number of the recognized audio over the total number of the audio
messages. For the case with metamaterials, the average recognition
ratio for the three sources is 96.67%, whereas that for the case
without metamaterials is close to zero. The results indicate that
metamaterials contribute significantly in creating a forward model
that aids the inversion of the sensing task.
Our proposed multispeaker listening system functionally mimics

the selective listening capability of human auditory systems. The
system employs only a single sensor, yet it can reconstruct the
segregated signals with high fidelity. The device is also very simple
and robust, as the passive metamaterial structure modulates the
signal and, other than the microphone, no electronic or active
components are used. The system proposed here does not rely on
linguistic models or data mining algorithms (although it could be
combined with such to extend its functionality) and has the ad-
vantages of low cost and low computational complexity. We also
want to note that our demonstrated design does not reflect the
mechanism of the cocktail party listening of human auditory sys-
tems, which is far more complicated and involves acoustic, cog-
nitive, visual, as well as psychological factors (1–9).
In conclusion, we have demonstrated here an acoustic meta-

material-based multispeaker listener. Results of multiple-source
audio segregation are demonstrated. We envision that it can be
useful for multisource speech recognition and segregation, which
are desired in many handheld, tabletop interactive devices. Be-
sides, by extending such physical layer modulation approach to other
applicable frequency ranges, we may expect other acoustic sensing
and imaging applications such as hearing aid or ultrasound imaging.

Materials and Methods
The metamaterial listener prototype was fabricated with acrylonitrile bu-
tadiene styrene plastics using fused filament fabrication 3D printing tech-
nology. The design process was aided with a commercial full-wave simulation
package COMSOL Multiphysics. Three-dimensional simulations with Pressure
Acoustics Module were conducted to extract the frequency responses of all of
the waveguides. The multispeaker listening experiment was performed in an
anechoic chamber and multiple speakers used as audio sources were deployed
on the floor of the chamber. Detailed discussions concerning the forward
model derivation, the quality metric of the reconstruction, measurement
matrix evaluation, the spatiotemporal degrees of freedom of the mea-
surement modes, as well as the advantages of using metamaterials, can be
found in the Supporting Information. The results of the controlled ex-
periment without metamaterials and the multispeaker listening experi-
ments with different configurations of sources can also be found in the
Supporting Information.
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