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Abstract

Motivation: Approaches to identifying new risk loci, training risk prediction models, imputing

untyped variants and fine-mapping causal variants from summary statistics of genome-wide asso-

ciation studies are playing an increasingly important role in the human genetics community.

Current summary statistics-based methods rely on global ‘best guess’ reference panels to model

the genetic correlation structure of the dataset being studied. This approach, especially in admixed

populations, has the potential to produce misleading results, ignores variation in local structure

and is not feasible when appropriate reference panels are missing or small. Here, we develop a

method, Adapt-Mix, that combines information across all available reference panels to produce

estimates of local genetic correlation structure for summary statistics-based methods in arbitrary

populations.

Results: We applied Adapt-Mix to estimate the genetic correlation structure of both admixed and

non-admixed individuals using simulated and real data. We evaluated our method by measuring

the performance of two summary statistics-based methods: imputation and joint-testing. When

using our method as opposed to the current standard of ‘best guess’ reference panels, we

observed a 28% decrease in mean-squared error for imputation and a 73.7% decrease in mean-

squared error for joint-testing.

Availability and implementation: Our method is publicly available in a software package called

ADAPT-Mix available at https://github.com/dpark27/adapt_mix.

Contact: noah.zaitlen@ucsf.edu

1 Introduction

Summary statistics of association tests, such as effect size estimates

and their standard errors, are becoming the datatype of choice in

many genetic analyses due to two significant advantages. First, sum-

mary statistics-based methods are generally orders of magnitude

faster than their genotype-based counterparts. The rapidly increas-

ing size of existing and planned cohorts is causing computational

bottlenecks for some standard analyses. Second, analyses of sum-

mary statistics are often a necessity since access to individual-level

data is complicated by privacy and other issues (Gymrek et al.,

2013). Publication of summary statistics is now required for all

Nature Genetics genome wide association study (GWAS) papers,

and these statistics have already been released for a large number of

traits. For these reasons, a growing number of summary statistics-

based methods, including imputation of z-scores, joint-testing, fine

mapping of causal variants, quality control of GWAS results and

gene-based tests, have recently been published (Bulik-Sullivan et al.,

2014; Han et al., 2011; Hormozdiari et al., 2014; Kichaev et al.,

2014; Liu et al., 2010; Pasaniuc et al., 2014; Yang et al., 2012).

Moving forward, the integration of summary statistics will be vital

for increasing our knowledge of various complex diseases and

phenotypes (Schork et al., 2013).

Summary statistics-based methods typically require estimates of

linkage-disequilibrium (LD) between markers as input. Existing
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tools use ‘best guess’ reference panels to estimate LD (Han et al.,

2011; Kichaev et al., 2014; Pasaniuc et al., 2014; Yang et al., 2012).

For example, Yang et al. (2012) used European ancestry individuals

from the Queensland Institute of Medical Research reference panel

to estimate LD for an analysis of statistics produced from the

European ancestry GIANT consortium (Speliotes et al., 2010). This

approach is not optimal and has the potential to produce misleading

results in the case of admixed populations. Admixed individuals’

genomes can be viewed as mosaics, where different segments of the

genome are derived from various ancestral groups. Previous work

has shown that the proportions of ancestry for individuals from

admixed populations are highly variable (Bryc et al., 2010; Silva-

Zolezzi et al., 2009; Wang et al., 2008). Given this high variability

in admixed populations, ‘best guess’ panels are more likely to have

LD estimates that are not in concordance with original datasets and

which vary in their local structure. This will be especially true if the

population of interest has no reference panel available.

Furthermore, several genotype-based methods have shown that

learning local structure from multi-population reference panels im-

proves performance even in the case of homogenous study popula-

tions (Howie et al., 2009; Pasaniuc et al., 2013).

In this work, we develop a method, Adapt-Mix, to accurately es-

timate the local single-nucleotide polymorphism (SNP) correlation

matrix for each region of the genome from summary statistics of an

arbitrary population study. We compute the correlation matrix

using a mixture of existing reference panels, such as the 1000

Genomes Project Consortium (2012), where the mixture proportion

for each reference population is learned from summary statistics.

Unlike previous approaches, our method incorporates data from

multiple reference panels when computing the correlation matrix

and allows for adaptation to local structure. We first provide a

closed form solution for the expected correlation structure from a

mixture of populations in a genomic locus. Then, using this deriv-

ation, we efficiently search for the mixture of populations in each

genomic locus that maximizes/minimizes an objective function most

relevant to the problem in question. For example, in this work, we

consider the problems of imputation and joint-testing from sum-

mary statistics, using imputation error and joint-test accuracy as the

objective function, respectively. In practice, arbitrary objective func-

tions can be used provided they can be computed efficiently.

We apply our method to summary statistics from simulated

phenotypes over real genotypes from the Genes-environments &

Admixture in Latino Americans (GALA II, Borrell et al., 2013) co-

hort that is composed of Mexican and Puerto Rican individuals. We

also apply our method to real coronary artery disease summary stat-

istics from the CARDIoGRAMplusC4D consortium (Coronary

Artery Disease (C4D) Genetics Consortium, 2011; Schunkert et al.,

2011). In the simulated datasets, we show significant improvements

in the mean-squared error (MSE) of our mixture correlation coeffi-

cients compared with the most relevant reference panels. We also

demonstrate the direct impact of the improved correlation estimates

for imputation and joint-testing methods, which take correlation

matrices as input. For both the simulated summary statistics over

the GALA II study as well as the meta-analysis results, we show sig-

nificant improvement in both summary statistics-based imputation

and joint-testing (Pasaniuc et al., 2014; Yang et al., 2012).

2 Methods

First, we describe the situation where Adapt-Mix may be applied.

We then derive a formula for the genotype correlation matrix as a

mixture of several reference populations and describe our procedure

for optimizing the mixture frequencies for various objective func-

tions. We end the section by discussing the simulation framework in

which we evaluate our method.

GWAS summary statistics typically consist of an effect size bi

and standard error ri for each SNP i examined in a study. For sim-

plicity, bi and ri can be converted to a Wald test statistic (Z-score)

zi. When dealing with case–control phenotypes zi ¼
ffiffiffiffiffi
N
p pþ

i
�p�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pið1�piÞ
p ,

where N is the sample size, pþi (p�i ) is the frequency of the reference

allele in cases (controls), and pi is the overall frequency. For quanti-

tative phenotypes zi ¼
ffiffiffiffiffi
N
p

corð~gi ;~qÞ, where ~gi are the genotypes of

the individuals and ~q are the phenotypes. Here, ~gi ¼ fgi1:::giNg for

gid 2 f0;1; 2g, gid being the count of the reference allele for individ-

ual d.

As input, most summary statistics-based methods take Z-scores

and a correlation matrix R (Bulik-Sullivan et al., 2014; Han et al.,

2011; Hormozdiari et al., 2014; Kichaev et al., 2014; Liu et al.,

2010; Pasaniuc et al., 2014; Yang et al., 2012). For each pair of

SNPs i, j, the correlation matrix has the value Rij ¼ rij, where rij is

the Pearson correlation coefficient between the SNPs in the study. If

individual level genotypes are available, the correlation can be com-

puted by rij ¼ corð~gi ; ~gj Þ. When individual level genotypes are un-

available, rij is typically estimated using a reference panel of

genotypes from a population similar to the source population of the

data being analyzed. In this work, we develop a method to provide a

better estimate of rij using a combination of reference panels from

different populations. Given a set of K reference populations, we

generate a correlation matrix for each genomic locus using a new

mixture population, where the frequency of population k 2 K in the

mixture population is fk. The objective of our work is to select the

frequencies, fk, that optimizes the performance of the summary stat-

istics method of interest.

2.1 Estimating the mixture correlation matrix
Given a set of mixture frequencies, ~f ¼ ff1; . . . ; fKg, where fk 2 ~f is

the frequency for population k 2 K. We wish to compute the ex-

pected correlation between each pair of SNPs in the mixture popula-

tion. For simplicity, we begin by deriving the mixture variance of

the allele frequencies (r2
i ) at SNP i, in a mixture population com-

posed of two reference populations. At SNP i, the two reference

populations will have separate variances (r2
1i; r2

2i), sample sizes (n1,

n2) and allele frequencies (p1i; p2i).

Additionally, assume that each reference population has a mix-

ture frequency equal to their proportion of sample size, i.e. f1

¼ n1

n1þn2
and f2 ¼ n2

n1þn2
. We can then express the mixture variance as

r2
i ¼

Pn1

z¼1

ðg1z � 2piÞ2 þ
Pn2

q¼1

ðg2q � 2piÞ2

ðn1 þ n2Þ

where gkd is the genotype of individual d in population k, and

2pi ¼ f12p1i þ f22p2i is the genotype frequency in the mixture popu-

lation. Let us now consider only
Pn1

z¼1 ðg1z � 2piÞ2. This term is

equal to

Xn1

z¼1

½ðg1z � 2p1iÞ þ ð2p1i � 2piÞ�2

¼
Xn1

z¼1

ðg1z � 2p1iÞ2 þ n1ð2p1i � 2piÞ2 ¼ n1r
2
1i þ n1ð2p1i � 2piÞ2
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Applying the same logic to
Pn2

q¼1 ðg2q � 2p2iÞ2, we arrive at the

formula for the variance for the mixture population.

r2
i ¼

n1r2
1i þ n2r2

2i

n1 þ n2
þ n1ð2p1i � 2piÞ2 þ n2ð2p2i � 2piÞ2

n1 þ n2

¼ f1r2
1i þ f1ð2p1i � 2piÞ2 þ f2r2

2i þ f2ð2p2i � 2piÞ2

We now extend from 2 to K populations. Suppose we have a set of

reference panels representing K populations and their corresponding

mixture frequencies, ~f . Then for SNP i in population k 2 K, let r2
ki

be the variance and 2pki be the frequency. The frequency in the mix-

ture population is then 2pi ¼
PK

k¼1 fk2pki and the combined vari-

ance at SNP i is

r2
i ¼ f1

Xn1

z¼1

ðg1z � 2piÞ2 þ � � � þ fK

XnK

l¼1

ðgKl � 2piÞ2

¼ f1r2
1i þ f1ð2p1i � 2piÞ2 þ � � � þ fKr2

Ki þ fKð2pKi � 2piÞ2

¼
XK

k¼1

fk½r2
ki þ 4ðpki � piÞ2�

(1)

Next, we derive the covariance between SNPs i and j in the mix-

ture population. If x and y are random variables, r2
xþy ¼ covðxþ y;

xþ yÞ ¼ covðx;xÞ þ covðy; yÞ þ covðy;xÞ þ covðx; yÞ ¼ r2
x þ r2

yþ 2

covðx; yÞ and thus covðx; yÞ ¼ r2
xþy�r2

x�r2
y

2

Let covkði; jÞ be the covariance of SNPs i and j in population k.

Then the covariance in the mixture population is:

2covði; jÞi6¼j ¼ ½r2
iþj � r2

i � r2
j �

¼
XK

k¼1

fk

�
½r2

ki þ r2
kj þ 2covkði; jÞ þ 4ðpkðiþjÞ � pðiþjÞÞ2�

� ½r2
ki þ 4ðpki � piÞ2� � ½r2

kj þ 4ðpkj � pjÞ2�
�

¼
XK

k¼1

fk

�
½r2

ki þ r2
kj þ 2covkði; jÞ þ 4ððpki � piÞ þ ðpkj � pjÞÞ2�

� ½r2
ki þ 4ðpki � piÞ2� � ½r2

kj þ 4ðpkj � pjÞ2�
�

) covði; jÞi6¼j ¼
XK

k¼1

fk½covkði; jÞ � 4ðpki � piÞðpkj � pjÞ�

By definition, the mixture correlation matrix is

Rij ¼
covði; jÞffiffiffiffiffiffiffiffiffiffi

r2
i r

2
j

q (2)

Algorithm 1 details our procedure for computing the mixture

correlation matrix over a set of SNPs. Given K populations and M

SNPs, it takes as input the mixture frequencies (~f ), a matrix of SNP

variances (VKxM ¼ frkig), a matrix of the pairwise SNP covariances

(CKxMxM ¼ fcovkði; jÞg) and a matrix of the genotype frequencies

(PKxM ¼ f2pkig) and outputs the mixture correlation matrix.

Algorithm 1 Create R

Input: ~f , V, C, P

Output: R
# Normalize mixture freqs. so they sum to 1
~f ¼~f =sumð~f Þ

# Compute adjustment factors for mixture variances

WeightedGT ¼ P ð~f TÞ,

NegWeightedGT ¼ P ½ð~f � 1ÞT�
D ¼ empty K x M matrix

for all k in f1:::Kg do

Dk ¼ NegWeightedGTk þ sum(WeightedGTl), 8l 6¼ k

# Compute mixture variances

MixVar ¼ ðD2 þ VÞ

# Compute mixture covariances

MixCov ¼ empty K x M x M matrix

for all k in f1:::Kg do

tmp ¼ fk � ðCk þ ½Dk �Dk�Þ
MixCov ¼ Cþ tmp

# Compute mixture correlations

denominators ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMixVar�MixVarÞ

p
, "Square-root applied

element-wise

R ¼MixCov=denominators " Element-wise division

2.2 Optimization of mixture frequencies
Given this algorithm for computing the correlation matrix R of the

mixture population over a set of SNPs, we turn to the problem of se-

lecting the mixture frequencies ~f . We formulate this as a constrained

optimization problem: minimizing (or maximizing) the value of a

given objective function subject to the constraint that
P

f ¼ 1 using

the L-BFGS algorithm (Byrd et al., 2006). In this context, the ‘best

guess’ approach corresponds to setting fk¼1 for the guessed popula-

tion and fj¼0 8j 6¼ k. In this work, we consider the problems of im-

putation and joint-testing from summary statistics and therefore

selected the MSE of imputed z-scores at observed SNPs and MSE of

computed joint-test statistics as our objective functions, respectively

(see Sections 2.3 and 2.4). However, other objective functions may

be more appropriate depending on the purpose of the summary stat-

istics-based method. For example, one could chose to maximize the

likelihood of the observed z-scores ~Z under a multivariate normal

distribution.

To allow for variation in local correlation structure, the genome

is separated into W equally sized non-overlapping windows. For

each window, w 2 f1:::Wg, we compute the correlation matrix

using only SNPs in w, RðwÞ. Using RðwÞ, z-scores are imputed for all

SNPs in w and the imputed values are used to compute the MSE

from the true z-scores. We exclude SNPs from RðwÞ with a minor al-

lele frequency (MAF) less than 0.01 in any of the k populations,

missing z-scores, r2 � 0:003, or an undefined r with the SNP we are

imputing. These SNPs are excluded because they only add noise to

the imputation process. To ensure that R is invertible, k is added to

the diagonal of the matrix. The final correlation matrix is then

R ¼ Runadj þ kI. Runadj is the original correlation matrix prior to

adding k. The exact algorithm to compute the imputation MSE for a

set of SNPs in a window is described in Algorithm 2.

Algorithm 2 MSE objective function

Input: ~f , V, C, P, windowSize, k, ~Z

Output: meanSquaredError

# Normalize mixture freqs. so they sum to 1
~f ¼ ~f =sumð~f Þ

# Compute number of windows

windows ¼ lengthð~ZÞ=windowSize

Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses i183



# Initialize numerator and denominator of MSE

numerator ¼ 0

denominator ¼ 0

for all q 2 f1:::mg do

# Compute Sigma using SNPS in window q

RðqÞ ¼ Create Rð~f ;VðqÞ;CðqÞ;PðqÞÞ, see Algorithm 1

RðqÞ ¼ RðqÞ þ kI

# Impute SNPs in the window

for all s 2 f1:::windowSizeg do

zs ¼ RðqÞst ½R
ðqÞ
tt ��1~Z

ðqÞ
t ; 8t 6¼ s

numerator ¼ numeratorþ ðzs � ~Z
ðqÞ
s Þ

2

denominator ¼ denominatorþ 1

meanSquaredError ¼ numerator / denominator

The procedure we have described is easily extendable from a

window to any region, be it a whole-genome, chromosome or single

locus. In this case, ~f is optimized by minimizing/maximizing the ob-

jective function over the sum of the non-overlapping windows. If

there are a large number of SNPs in the region of interest, the con-

vergence time of the algorithm will increase. To minimize the com-

putation time when optimizing over the entire genome, we selected

regions of the genome that have the largest absolute z-scores.

Specifically, for every set of five adjacent windows, we optimized

using the two windows with the largest number of z-scores

with >1.5.

2.3 Imputation
The z-score at a SNP i can be imputed from summary statistics and

the correlation matrix, R, using the ImpG approach (Pasaniuc et al.,

2014). Pasaniuc et al. used a Gaussian approximation combined

with a windowing approach to impute the z-score at i. The window-

ing aims to decrease runtime and reduce statistical noise that might

be caused by distant SNPs with random non-zero correlation but no

true LD. Define ~Zt as the set of observed z-scores within a given

window size around i. The imputed z-score is then zi ¼ RitR
�1
tt
~Zt for

all SNPs t in the window.

2.4 Joint-testing
At genomic loci where two SNPs are negatively correlated, using a

marginal test often underestimates effect sizes (Galarneau et al.,

2010; Sanna et al., 2011; Yang et al., 2012). A joint analysis is more

powerful than a marginal test when analyzing such SNPs. Given two

z-scores computed at SNPs i and j using a marginal test, a v2 test-

statistic with 2 degrees of freedom, Jij can be calculated as shown in

Equation (3).

Jij ¼
1

1� R2
ij

ðz2
i þ z2

j � 2RijzizjÞ (3)

In our tests, the calculation of Jij is restricted to SNPs that have a

pairwise correlation jrj < 0:8 because small changes in r can cause

large fluctuations in Jij as jrj approaches 1.

2.5 Simulation framework
We simulated data using individuals from the Genes-environments

& Admixture in Latino Americans (GALA II) cohort (Borrell et al.,

2013), which is composed of 1245 Mexican and 1785 Puerto Rican

individuals. The Mexican individuals have predominantly European

and Native American ancestry, whereas their Puerto Rican counter-

parts tend to have mostly European and African ancestry.

We conducted separate simulations for each group due to the differ-

ences in ancestry. We generated quantitative phenotypes and

z-scores for every non-overlapping window of 1000 SNPs. For each

window, a binomial trial (P¼0.01) was used to determine whether

the phenotype should be drawn from the null or alternate. Under the

null, individuals’ phenotypes were drawn from a Nð0; 1Þ. Under the

alternate, we assumed an effect size of 0.2 and drew individuals’

phenotypes from Nð0:2gid;1Þ, where gid is the genotype of individ-

ual d at SNP i. The phenotypes were generated using the SNP in the

middle of each window, and z-scores were computed at all SNPs as

described in the introduction of Section 2.

2.6. Reference panels
Reference panels were generated using the 1000 Genomes (1KG)

Phase 3 data from the following 11 populations: CEU, IBS, FIN,

GBR, TSI, YRI, MXL, PUR, CHB, JPT and GIH. For each dataset

we analyzed (i.e. GALA II, CARDIoGRAMplusC4D), we removed

any A/T and G/C SNPs to avoid strand issues. We then took an

intersection of rsids between our data and the 1KG data to deter-

mine which SNPs to include in our reference panels. All SNPs for

the reference panels were coded as the number of reference alleles an

individual had (i.e. 0, 1 and 2).

3 Results

We applied Adapt-Mix to summary statistics from simulated and

real data to estimate the pairwise SNP correlation matrix (R). In this

work, we use z-score imputation and joint-testing. For both data-

sets, we used several approaches to estimate R and impute z-scores.

All imputation was done using a window size of 200 SNPs and

k ¼ 0:1. The values for window size and k were chosen based on the

recommended settings used in Pasaniuc et al. (2014). We measured

the impact of using different methods to estimate R on z-score im-

putation by computing the MSE and Pearson correlation coefficient

(r) between the imputed z-scores and true z-scores. In addition to

imputation, we also performed joint-testing in the simulated data

because we had access to the individual genotypes and thus they

could compute the true SNP correlation matrix. Again, we measured

the effect of several R estimation methods on joint-testing by com-

puting the MSE and r between the true joint statistics and the esti-

mated joint statistics.

3.1 Simulated data
Simulated z-scores from the GALA II genotypes (see Section 2.5) were

used to determine whether our method gave more accurate results for

(i) imputing z-scores and (ii) computing joint-test statistics. Since there

are multiple ways to optimize mixture frequencies using Adapt-Mix,

we compared the use of several optimization strategies against the

‘best guess’ approach. Using Adapt-Mix, we estimated R using 1KG

reference panels by optimizing over each chromosome (1KG-Chrom),

over the whole genome (1KG-Genome) and per window (1KG-

Window). We note that any SNP used to measure imputation quality

was excluded during optimization. Additionally, to evaluate how our

method affects imputation and joint-testing when a ‘best guess’ panel

is unavailable, we removed both MXL and PUR panels and optimized

frequencies over the chromosomes (1KG-No-PUR-MXL).

3.1.1 Population Frequencies

We applied our method to simulated data over Mexican and Puerto

Rican individuals from the GALA II cohort (Borrell et al., 2013).

Figure 1 shows the average frequency assigned to each population

i184 D.S.Park et al.



when frequencies were optimized per chromosome. When matching

reference populations are included in the optimization (MXL for the

Mexicans and PUR for the Puerto Ricans), nearly one-third of the

mixture is assigned to the matching reference panel. The rest of

the frequencies are distributed to populations in a similar manner to

the admixture proportions of each group (Baran et al., 2012).

Having predominantly Native American and European ancestry,

Mexicans have frequencies distributed among European and East

Asian panels in addition to MXL. However, when MXL and PUR

are not included, we see an increase in frequency assigned to the

East Asian panels. Puerto Ricans have more African ancestry than

Native American ancestry, and we observe a correspondingly larger

frequency of the YRI (African) panel and lower frequencies of East

Asian panels.

3.1.2 Imputation

We next evaluated the imputation performance of the different

approaches to estimating R. We measured each method’s impact on

imputation by computing the MSE and Pearson correlation coeffi-

cient (r) between the imputed z-scores and true z-scores. We

imputed the z-score of the 100th SNP in every window. We re-

stricted our analysis to SNPs with an MAF � 0.01 in the reference

panel since imputation quality tends to be poor for rare SNPs. We

also removed from R SNPs that had a r2 � 0:003 with the SNP we

were imputing. When using a mixture reference panel, we filtered

SNPs using a mixture MAF. The mixture MAF for SNP i isPK
k¼1 fkMAFki, where fk is the mixture frequency assigned to popu-

lation k and MAFki is the MAF of SNP i in k.

As the gold standard, the original GALA II genotypes were used

to estimate R. It is clear from Tables 1 and 2 that using the original

genotypes results in very high imputation quality. To demonstrate

that using the wrong reference panel can cause a huge decrease in

performance, we imputed z-scores using YRI and JPT as reference

panels for the Mexicans and Puerto Ricans, respectively. Using the

Fig. 1. This heatmap shows the average mixture frequency assigned to each reference population when optimizing over independent chromosomes for various

datasets

Table 1. Performance of each reference panel when imputing z-

scores for GALA II Mexicans

Panel n MSE r

GALA II 2966 0.214 0.916

YRI 2572 1.11 0.499

MXL 2923 0.615 0.737

1KG-Genome 2836 0.484 0.807

1KG-Chrom 2898 0.451 0.818

1KG-Window 2836 0.438 0.824

1KG-No-MXL-PUR 2904 0.507 0.795

Table 2. Performance of each reference panel when imputing z-

scores for GALA II Puerto Ricans

Panel n MSE r

GALA II 3231 0.234 0.903

JPT 2572 0.884 0.626

PUR 3103 0.554 0.757

1KG-Genome 2759 0.587 0.760

1KG-Chrom 2906 0.473 0.800

1KG-Window 2839 0.467 0.804

1KG-No-MXL-PUR 2912 0.520 0.795

Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses i185



wrong reference panel resulted in MSE increasing over 400% in the

Mexicans and over 250% in the Puerto Ricans.

Next, z-scores were imputed using Adapt-Mix to estimate LD.

We found that for imputation in admixed individuals, locally opti-

mizing mixture frequencies over each window performs the best.

For z-scores imputed over the whole genome, there is a 28.8% de-

crease in MSE for the Mexicans and a decrease of 15.7% for the

Puerto Ricans (Tables 1 and 2). Similar decreases in MSE are seen

when optimizing frequencies over the chromosome and the entire

genome. Even when MXL and PUR were removed, we see that our

method approach to estimating R outperforms the ‘best guess’ panel.

We also see increases in the r of imputed and true z-scores in the

Mexicans and the Puerto Ricans when using Adapt-Mix. The in-

crease in r is equivalent to an increase of 25.0% and 12.8% in effect-

ive sample size for the Mexicans and Puerto Ricans, respectively.

Interestingly, the local optimization approach does not necessarily

find mixture frequencies that are closest to the study’s overall mix-

ture of ancestry. The results here indicate that using such a mixture

may not be the best for imputation accuracy and highlights the bene-

fits of using the correct objective function when optimizing mixture

frequencies for the selected summary statistics-based method.

3.1.3 Joint-test

Joint-testing of pairs of SNPs from summary statistics also relies on

estimates of the pairwise correlation between SNPs (Yang et al.,

2012). Using SNPs on chromosome 22, we computed true joint stat-

istics using R computed from the genotypes of the GALA II individ-

uals. The estimated joint statistics were computed using R estimated

using Adapt-Mix. The mixture frequency optimization strategies

were the same as those used in z-score imputation. We computed

Joint statistics for SNPS that had a MAF or mixture MAF � 0:05 in

all of the R estimation approaches. Tables 3 and 4 show that using a

R estimated from a mixture reference panel results in increased per-

formance over using a ‘best guess’ reference panel.

In both populations, the frequencies optimized per chromosome

(1KG-Chrom) performed the best. Compared with using a ‘best

guess’ panel, we observed a 73.7% decrease in MSE for the

Mexicans and a 70.2% decrease in MSE for the Puerto Ricans. We

plotted the estimated joint statistics versus the true joint statistics for

Mexicans and Puerto Ricans for different choices of R (Fig. 2). The

results show that joint statistics computed using the combined refer-

ence panel are in higher concordance with the truth than the ‘best

guess’ panel. Remarkably, even when MXL and PUR are removed

from the mixture, estimates of R improvements can be clearly seen

(Fig. 2c and d).

To show that the joint statistics produced by using our method

for estimating correlations are unbiased (i.e. E[Jij� Ĵij]¼0), we

looked at the mean difference between the true statistics and esti-

mated statistics. Tables 3 and 4 show that the mean difference is

closer to 0 when our approach is used in both the Mexicans and

Puerto Ricans. The 1KG-Chrom-based correlation estimates gener-

ated differences in true versus estimated that were the closest to zero

amongst all approaches. We can see from Tables 3 and 4 that 1KG-

Chrom has the smallest variance for the differences in true versus

estimated joint statistics. The ‘best guess’ panels had the highest

variance of all approaches except for 1KG-Genome in the Puerto

Ricans. Additionally, we examined all estimated joint statistics that

were more than 2 chi-squared units from the truth. In Mexicans, we

saw 122 such statistics for the MXL and 22 for 1KG-Chrom

(Fig. 3a). A similar trend is seen in Puerto Ricans as well, with 53

large deviations for the PUR and 3 for 1KG-Chrom (Fig. 3b). The

decrease in frequency and magnitude of large differences demon-

strates that using Adapt-Mix can help reduce the number of false

positives in a joint analysis using reference panels. However, high

deviations seen in both methods indicate that regardless of approach

there is potential to misestimate the pairwise correlation coefficients

of SNPs.

3.2 Real data
3.2.1 Population Frequencies

We applied our method to the C4D coronary artery disease dataset

from the CARDIoGRAMplusC4D consortium (CARDIoGRAM

plusC4D, Coronary Artery Disease (C4D) Genetics Consortium,

2011; Schunkert et al., 2011). In the C4D study, the discovery co-

hort consisted of 14 790 South Asians and 15 692 Europeans.

South Asians are known to have undergone admixture between two

ancestral populations, with one of the ancestral populations being

genetically similar to Europeans (Moorjani et al., 2013; Reich et al.,

2009). Consistent with the admixture seen in South Asians, we see

mixture frequencies for C4D that are assigned primarily to the

European and the South Asian panels (Fig. 1).

3.2.2 Imputation

The C4D data provided us with an opportunity to assess how our

method affects the performance of z-score imputation in the context

of a dataset with different population structure than that used in the

simulations. Unlike our simulations, where everybody was admixed,

the summary statistics in C4D were generated using a mixture of in-

dividuals with homogenous ancestries (Europeans) and heteroge-

neous ancestries (South Asians). As we did for the simulated data,

we used MSE and r of the imputed z-scores as our performance met-

rics. Here, we estimated R using a ‘best guess’ reference panel, 1KG-

Chrom and 1KG-Window. We chose to optimize frequencies for the

1KG reference panels over each chromosome and each window be-

cause these two approaches performed the best in our simulations.

We imputed the 100th SNP in each window and we restricted our

analyses here to SNPs that had (mixture) MAF � 0:01.

As the ‘best guess’ reference panel for C4D, we used GIH and

CEU because the C4D discovery cohort was composed of roughly

an equal number of individuals with a European or South Asian

Table 4. Performance of each panel for the joint statistics on

chromosome 22 of the GALA II Puerto Ricans (n¼ 43 715)

Panel MSE r Mean diff. Var. of diff.

PUR 0.057 0.994 0.023 0.057

1KG-Chrom 0.017 0.998 0.004 0.017

1KG-Genome 0.070 0.993 0.018 0.069

1KG-Window 0.042 0.995 0.012 0.042

1KG-No-MXL-PUR 0.032 0.997 0.008 0.032

Table 3. Performance of each panel for the joint statistics on

chromosome 22 of the GALA II Mexicans (n¼ 41 758)

Panel MSE r Mean diff. Var. of diff.

MXL 0.116 0.988 0.042 0.114

1KG-Chrom 0.031 0.997 0.004 0.031

1KG-Genome 0.048 0.995 0.008 0.048

1KG-Window 0.05 0.994 0.006 0.049

1KG-No-MXL-PUR 0.057 0.994 0.005 0.057
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ancestry. When imputing we saw similar results to our simulations.

Compared to using CEU or GIH, there was a decrease of 30.1% or

36% in MSE, respectively (Table 5). In terms of r, we saw increases

of about 7% over CEU and about 9% over GIH for both 1KG-

Window and 1KG-Chrom. The increase in correlation is equivalent

to an increase of 15% in effective sample size compared to CEU.

4 Discussion

Summary statistics-based methods requiring an estimate of the gen-

etic correlation matrix are becoming increasingly popular; however,

very few GWAS include LD information in their released data. In

prior work, this information has been approximated by using LD in-

formation from ‘best guess’ reference panels, but here we show that

this can lead to high error rates even when a population closely

matching the study population is available (Zaitlen et al., 2009).

Our method can be used to improve the accuracy of any summary

statistics-based method that requires LD information by more accur-

ately estimating the local genetic correlation structure using infor-

mation available across several reference populations.

Our simulations have demonstrated the importance of accurately

estimating the genetic correlation matrix. Using Adapt-Mix to esti-

mate LD for summary statistics methods can increase their power

and decrease their false positive rates. For example, for z-score im-

putation, Pasaniuc et al. (2014) showed that as long as there is a

best guess reference panel available, there is no increase in false posi-

tive rate when imputing summary statistics. However, in the case

that there is no best guess panel available, we have shown that there

Fig. 2. Estimated joint statistic (x axis) versus the true joint statistic (y axis) in the GALA II individuals using R estimated from a ‘best guess’ reference panel and

Adapt-Mix. (a) Joint statistics for the GALA II Mexicans using MXL (red) and 1KG-Chrom (blue). (b) Joint statistics for the GALA II Puerto Ricans using PUR (or-

ange) and 1KG-Chrom (blue). (c) Joint statistics for the GALA II Mexicans using MXL (red) and 1KG-No-MXL-PUR (gray). (d) Joint statistics for the GALA II Puerto

Ricans using PUR (orange) and 1KG-No-MXL-PUR (gray)
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is a potential for increased false positives by using the wrong refer-

ence panel.

One of the biggest benefits of our method is allowing the analysis

of arbitrary populations when a matching reference panel is not

available. We were able impute z-scores and compute joint statistics

with better precision ‘best guess’ panels alone even after leaving out

the relevant ‘best guess’ panels from our computation of R. For data-

sets with admixed individuals, the high variability of ancestry pro-

portions may make it harder to consistently model LD in an

accurate manner with a single reference panel. For example, in the

Native American component Latinos, there is a high level of popula-

tion substructure (Wang et al., 2008). In the 1000 Genomes refer-

ence panels, there are currently no Native American reference panels

available. Although proxy populations such as CHB and JPT are

often used, they are unlikely to capture the full resolution of each

underlying sub-population. Accounting for all the fine scale differ-

ences seen in admixed individuals will improve with the collection

of additional reference panels.

In this work, we aimed to minimize the MSE of imputed sum-

mary statistics in our objective function because imputation was one

of our main focuses. For other purposes, it may be more appropriate

to use a different objective depending on how the pairwise correl-

ation estimates will ultimately be used. For example, Hormozdiari

et al. (2014) use summary statistics to fine map causal variants by

finding the set of variants that maximize the likelihood of a multi-

variate normal distribution. In this case, optimizing frequencies for

reference panels by using the multivariate normal likelihood may

improve performance.

Improvements to Adapt-Mix may be made by using an out-of-

sample approach to learning the mixture frequencies due to the

potential of overfitting. Typically, overfitting will cause high

prediction error variances. We have shown though, with the ex-

ample of joint-testing, that overfitting should not be a major concern

as the error variances are smaller when using Adapt-Mix compared

with a ‘best guess’ panel. Another enhancement could be made to

Adapt-Mix by using partial correlations. Often covariates such as

principal components are included in GWAS, which alter the genetic

correlation structure of the individuals being studied. Partial correl-

ations which account for these covariates may provide even more

accurate estimates of the R for use in summary statistics methods.
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