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A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. 
Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal 
spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions 
from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was 
fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled 
the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector 
acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent 
index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The 
fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For 
wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the 
molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 
300 nm and 800 nm. 
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1.  Introduction 
 
      The measurement of absorption and scattering from micro particles is an important problem. Such 
measurements are used to characterize impurities in water [1], develop designs for bio threat detectors, and 
characterize aquatic particles [2]. A spectrophotometer which measures the decrease in the intensity of an 
incident collimated light beam can be used to make absorbance measurements. The decrease in the 
intensity of the incident light can be due to molecular absorption or the scattering of light out of the 
incident beam. In either case the spectrophotometer records an absorbance. A major problem in measuring 
the absorbance due to scattering is the finite aperture of the detector for forward scattered light. The 
spectrophotometer with an integrating sphere (IS) detector can be used to change the relative amount of 
scattered light which enters the detector. The IS with the sample cuvette holder inside accepts all light 
leaving the cuvette; it provides the least sensitivity to scatted light and greatest sensitivity to molecular 
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absorption. The conventionally located sample cuvette holder outside the IS detector yields a response 
which is sensitive to both the loss due to scattering and the loss due to molecular absorption. By combining 
the measurements in the two holders it is possible to separate the two sources of absorbance. The loss due 
to scattering can be related to the scattering cross section which, in the case of homogeneous spheres, is 
given by Lorenz- Mie (L-M) theory. The validity of the L-M theory has been demonstrated many times 
[3,4]. Recent measurements by He et. al. of the scattering cross section of microspheres [5] used a special 
spectrophotometer with an extremely small acceptance aperture to minimize the biases due to forward 
scattered light entering the detector. He’s measurements showed that the L-M theory gives a good 
description of scattering of light from microspheres. Therefore it is reasonable to assume that the L-M 
scattering theory is valid, and to examine the possibility of using a conventional spectrometer to measure 
the properties of microsphere suspensions. In this work we use a commercial spectrophotometer and 
include a finite acceptance aperture of the detector as a parameter in the interpretation of the measurements. 
The results suggest that the additional parameter (finite acceptance aperture) is sufficient to obtain a good 
fit between measurements and the predictions of L-M theory. Consequently a commercial 
spectrophotometer with an IS detector could be used to determine microsphere diameter, the concentration 
of microsphere suspension, and the wavelength dependence of the index of refraction of the microsphere 
material. This work applies the measurement model developed previously [6] to the measurement and 
interpretation of the scattering cross section of microspheres suspended in an aqueous solution. 
 
 
2.  Interpretation of Integrating Sphere (IS) Measurements 
 
      The proposed method for measuring the scattering cross section of microspheres utilizes a commercial 
spectrophotometer with an integrating sphere (IS) detector. The method was described previously [6] and 
here we provide only a short summary. The path of the light beam that probes the sample contains three 
mechanical cuvette holders labeled 1, 2, and 3 in Fig. 1. Two cuvette holders (1 and 2) are located outside 
of the IS detector while the third cuvette holder (3) is located inside the IS detector. The mirrors shape the 
light beam so that it passes unobstructed through the cuvette holders. Two measurements of absorption can 
be performed with the cuvette placed outside the IS, and the third measurement with the cuvette inside the 
IS. The response in holder 3 is complicated by the detection of fluorescence and the settling of suspensions 
due to inability to stir in holder 3. 
      Figure 2 shows a model of the expected response when a beam of light passes through a cuvette filled 
with the microsphere suspension. The two vertical lines in Fig. 2 represent the walls of the cuvette and the 
horizontal arrows represent the incident and transmitted light beam. The total absorbance coefficient, 
a Nσ= , is expressed as a product of the total absorbance cross section, σ , in units of cm2 and the 
concentration of microspheres, N, in units of cm-3. The path length through the cuvette is 1 cm. The total 
absorbance coefficient will be written as s ma a a= +  where s sa Nσ=  is the apparent absorption 
coefficient due to scattering, and m ma Nσ=  is the molecular absorption coefficient. This description 
assumes that a scattered photon is not detected and therefore appears to have been absorbed. The effect of 
the first cuvette wall is represented by a change in the incident photon flux, iΦ  to log10 t

i itΦ = Φ  where t is 
the transmission of the cuvette wall. The differential equation can be solved to find the flux after the beam 
has traversed the fluid inside the cuvette. The result is 0.43410al al

i it e t− −Φ = Φ  where l is the path length 
which will be set to 1 cm. The second cuvette wall introduces another transmission coefficient t giving the 
final transmitted flux 2 0.43410t

al
it −Φ = Φ . Next, consider the scattered flux which originates from the 

scattering of the incident flux by the microspheres inside the cuvette. Some of the scattered flux will be in 
the forward direction and thus it will enter the detector since most detectors have a finite acceptance 
aperture. The scattered flux, which enters the detector, can be estimated by solving the model differential 
equations shown in Fig 2. The result is given in Eq. (1). 
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Fig. 1. A schematic of the Perkin Elmer dual beam Lambda 850 spectrophotometer sample holders. Holder 1 represents the normal 
cuvette holder. Holder 2 locates the cuvette in front of the entrance port of the integrating sphere (IS) detector. Holder 3 places the 
cuvette inside the IS detector. For all cuvette positions, the same reference beam enters the IS detector through a reference port and 
hits the wall of the IS detector. In practice, the same ‘auto zero’ is used for all cuvette holders. The reference beam also has a holder 
which is not shown in the diagram. 
 

 
 
Fig. 2. A model of the light fluxes present in the cuvette. The incident flux Φi is attenuated by the passage through the cuvette and 
exits the back of the cuvette as a flux Φt. Along the path of the incident flux, a scatter flux arises due to scattering from particles in the 
suspension. The scattered flux, Φs, exits the cuvette and some of the scattered flux may enter the IS detector. 
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Where the partial scattering cross section is given by Eq. (2) [7]. 
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Where r stands for the radius of the microsphere and the quantities 1( )S θ  and 2 ( )S θ  were calculated using 
Maetzler code Mie_S12 [8]. The total scattering and absorption cross sections sσ  and mσ  were obtained 
from Maetzler code mie(m,x) where m stands for the ratio of the index or refraction of the microsphere 
material and the index of refraction of the medium. The Maetzler code reflects the formalism presented by 
Bohren and Huffman [4]. The quantity spσ gives the flux scattered into an angle Δ which in practice is 
related to the detector acceptance aperture as seen from the location of the cuvette. Equation (1) assumes 
that there is no additional attenuation of the scattered photon flux, and that multiple scattering is not 
important. Therefore the expression in Eq. (1) is an approximation which is valid for dilute suspensions and 
suspensions with small molecular absorption. Finally the transmitted and the scattered fluxes can be written 
in terms of the incident flux and the properties of the cuvette to give the apparent absorbance, A, registered 
by the instrument as shown in Eq. (3). 
    

0.434( ) 0.434( )2 210 10 (1 10 )s m s mspa a a aA

s m

a
t t

a a
− + − +− = + −

+
   (3)  

 
The two terms in Eq. (3) represent the contributions from the transmitted flux and the scattered flux 
respectively. The value of observed absorbance, A, can be compared directly to the function given by the 
model in Eq. (3). If the cuvette is filled with a buffer which has no scattering ( as = 0) and no molecular 
absorption (am = 0) then Eq. (3) suggests that the transmission coefficient through the cuvette walls can be 
evaluated using Eq. (4). 
 

2 2 log10 10 bufAtt −= =      (4) 
 
A measurement of the absorption with buffer in the cuvette gives the absorption due to the finite 
transmittance at the cuvette walls, which can be used to estimate the t 

2 factor in Eq. (3). Multiplying both 
sides of Eq. (3) with 10 bufA yields the final expression for the measurement model with blank correction. 
 

( ) 0.434( ) 0.434( )10 10 (1 10 )buf s m s mA A spa a a a

s m

a
a a

− − − + − += + −
+

                (5) 

 
The relation in Eq. (5) is applicable to measurements performed in any of the three holders. The measured 
absorbance should be very different for samples placed in cuvette holder 1, 2, and 3 since the detector 
acceptance angle is very different for the three holders. 
      In many applications the measured total absorbance is less than 0.2. In that case the analysis is 
simplified greatly by using a first order approximation 10 1 ln(10)x x− = − , which is valid for x<<1, and 
obtain the following approximate relation for Eq. (5). 
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Equation (6) can be used to describe the measured absorbance when a cuvette is placed in any of the three 
holders. (It is assumed that the buffer is also measured for each holder). To a good approximation, 0spa ≈  
for holder 1 and sp sa a′ ≈  for holder 3. The value of spa  for holder 2 has to be calculated using Eq. (2) and 
the known concentration of microspheres. Figure 3 shows results of a calculation using Eq. (2) and Eq. (6) 
for polystyrene (PS) microspheres with diameter of 3.1µm and an index or refraction of 1.59 + 0.007i. The 
buffer index of refraction was set to 1.334 (water). The solid trace in Fig. 3, labeled σs - σsp, is the predicted 
instrument response. The trace with short dashes gives σsp for an instrument with an assumed acceptance 
angle of 1.7°. The absorption cross section, σabs, is small and is neglected in the description of the 
instrument response. In order to compare the calculated cross section with the data, the values of the cross 
sections have to be multiplied by a concentration, a unit conversion factor, and 1 / 2.303 to obtain the total 
response. Assuming the validity of Eq. (6) and a cuvette path length of 1 cm, the relation between the 
measured absorbance and the calculated cross section is given by Eq. (7). 
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Fig. 3. Model calculations of Mie scattering and absorption cross sections. The long dashed trace labeled σs shows the calculated total 
scattering cross section for microspheres with a diameter of 3.1 µm and an index of refraction of 1.59 + 0.007i. The short dashed trace 
labeled σsp shows the partial scattering cross section for scattered photons entering the instrument acceptance aperture. The solid trace 
σs- σsp shows the expected instrument response, and the trace labeled σabs shows the expected molecular absorption cross section. 
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As an example, if measurements were performed on a cuvette with a suspension of microspheres with a 
nominal concentration of 2.0 106 cm-3, the trace labeled σs - σsp in Fig. 3 would be multiplied by a 
concentration 2.0 and 0.01/2.303 to give a predicted absorbance of about 0.13. In Eq. (7) and in the 
following, the calculated cross sections are presented in units of µm2, and the microsphere concentrations in 
units of 106 cm-3. 
 
 
3.  Measurement of the Concentration of Microspheres 
 
      The concentration of microspheres with a diameter of 3.1 µm was measured using an Aria II1 flow 
cytometer and a count standard provided by Beckman Dickinson Corporation. The count standard, with a 
trade name TruCount, was a vial containing a specified number of lyophilized microspheres. The TruCount 
standards were re suspended in 0.5 mL of the test microsphere suspension used in the absorbance 
measurements. The combined microsphere suspension was passed through a flow cytometer and the 
relative number of events associated with TruCount and test microspheres was recorded. The TruCount 
microspheres were smaller than the test microspheres so that the forward and side scattering signals 
provided by the flow cytometer could easily distinguish between the two types of microspheres. Figure 4 
shows the dot plot of scattering events recorded by the flow cytometer. SSC and FSC stand for side 
scattering channel and forward scattering channel respectively. Gate 1 in Fig. 4 contains the events 
associated with the TruCount microspheres, and Gate 2 contains the events associated with the test (3.1 µm 
diameter) microspheres. The associations were validated by passing the separate microsphere suspensions 
through the flow cytometer. The concentration of the test microspheres was obtained by assuming that the 
relative number of the two types of microspheres counted by the flow cytometer was the same as the 
relative number of the two types of microspheres in the vial. The assumption leads to the relation 

0.5s s T TN C C N= ⋅  where Ns  is the concentration of microspheres, NT  is the number of TruCount 
microspheres (given as 51085), Cs is the number of test microspheres recorded by the flow cytometer 
(events in Gate 2) , and CT  is the number of TruCount microspheres recorded by the flow cytometer (events 
in Gate 1). Using the numbers of events of each type, the concentration of the test microspheres was 
estimated at 1.04*106 cm-3. A detailed examination of the distribution of the events in Gate 2 shows that the 
standard deviation of the distribution is about 2.6 % of the mean forward scattering signal. This indicates 
that the microspheres are reasonably uniform and a calculation which assumes a unique microsphere 
diameter is reasonable. 
 
 
4.  Measurement of Absorbance in Scattering Suspensions 
 
      Measurements were performed on microspheres suspended in an aqueous PBS buffer or deionized 
water. The PerkinElmer Lambda 850 spectrophotometer was equipped with a 150 mm integrating sphere 
detector. The spectrometer was scanned from 210 nm to 800 nm in steps of 1 nm with an integration time 
of 0.52 s. The incident light monochromator was set to a resolution of 2 nm. A measurement sequence 
consisted of buffer measurements in holder 1 and 3 followed by the measurement of the microsphere 
suspension in holders 1 and 3. There was no stirring in holder 3, however effects due to settling were not 
observed during the measurement time (5 minutes) in holder 3. 
      The microsphere suspensions were sufficiently dilute so that the absorbance was less than 0.2, and the 
simplified analysis given by Eq. (6) and Eq. (7) could be used to model the data. The solid trace (H1) in 
Fig. 5a shows the measured PBS buffer absorbance in holder 1, the dotted trace (H2) and the dashed trace 
(H3) show the measured buffer absorbance in holders 2 and 3 respectively. The trace H2 in Fig. 5a is 

                                                
1 Certain commercial equipment, instruments, and materials are identified in this paper to foster understanding. Such identification 
does not imply recommendation or endorsement by the National Institute of Standards and Technology. 
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Fig. 4. A scatter plot of events detected by the ARIA II flow cytometer during the passage of a suspension containing both TruCount 
microspheres and test microspheres. SSC stands for the side scattering signal and FSC stands for the forward  scattering signal. Gate 1 
and Gate 2 show the events associated with TruCount and test microspheres respectively. The density of dots is not representative of 
the density of events. The table gives the number of events associated with each gate. 
 
 
slightly smaller than the solid trace H1. The reduction is due to the change in IS response due to the 
placement of a reflecting surface in front of the entrance port of the IS detector. The dashed trace H3 in Fig. 
5a shows a small residual absorbance which is most likely due to incident light reflected from the front 
surface of the cuvette and escaping through the entrance port of the IS. The three buffer measurements 
shown in Fig. 5a were subtracted from the three corresponding microsphere suspension measurements to 
yield the traces shown in Fig. 5b. The solid trace, H1, and the dotted trace, H2, in Fig. 5b show the 
microsphere absorbance measured in holders 1 and 2 respectively. According to Eq. (6), the response is 
composed of contributions from scattering and molecular absorption. The dashed trace (H3) in Fig. 5b 
shows the absorbance measured in holder 3 which according to Eq. (6) is primarily due to molecular 
absorption. Thus trace H3 in Fig. 5b can be used to estimate the molecular absorption am which appears to 
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Fig. 5. (a) The labeled traces show the measured absorbance from a cuvette filled with PBS buffer and placed in the three holders H1, 
H2, and H3. Trace H2 is slightly smaller than trace H1 due to the additional reflection caused by the cuvette placed in front of the IS 
entrance port. The measured absorbance at wavelengths close to 200 nm is due to molecular absorption by the buffer. For wavelengths 
greater than 250 nm the absorbance recorded with PBS was identical to that recorded for distilled water. (b) The labeled traces show 
the measured absorbance from a cuvette filled with microspheres suspended in PBS buffer and places in the three holders H1, H2, and 
H3. In all cases the buffer contribution was subtracted. The three traces are dramatically different reflecting the different instrument 
acceptance angles as discussed in the text. The measured absorbance in H3 is due to molecular absorption for wavelengths less than 
300 nm, and backward scattered light escaping through the entrance aperture of the IS detector for wavelengths greater than 300 nm. 
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be significant only for wavelengths less than 300 nm. A closer examination of trace H3 for wavelengths 
greater than 300 nm suggests that the small observed absorbance in trace H3 is due to a large degree to 
backward scattered light escaping the IS through the input port. Assuming that the molecular absorption is 
negligible for wavelengths greater than 300 nm, trace H2 provides another estimate of am given by the 
component of the measured absorbance above a constant background due to scattering. The estimate of am 
from trace H3 is influenced by the presence of fluorescence, and the estimate of am from trace H2 assumes 
a constant scattering background. However the two estimates are consistent and the response recorded in 
H3 was used to subtract the molecular absorption contribution from trace H1 in Fig. 5b. The resulting trace, 
after division by the concentration factor (see Eq. (7)), is shown by the dotted traces in Fig. 6. The solid 
traces in Fig. 6 show the results of fitting the model to the data and are the subject of the following section. 
 
 
 

 
Fig. 6. The dotted traces show the measured apparent scattering cross section of microspheres of diameter 1.5 µm, 2.6 µm, 3.0 µm, 
and 4.5 µm. The traces were obtained by subtracting the molecular absorbance (trace H3 in Fig 5b) from the total absorbance (trace 
H1 in Fig 5b) and dividing by the parameter c described in the text. The solid traces in Fig 6 show the calculated scattering cross 
section for microspheres using parameters shown in Table 1. The difference between the dotted and solid traces was less than 3 % 
except for wavelengths near 300 nm. In the case of the 4.5 µm microspheres the correspondence between the data and the fit was 
unsatisfactory for wavelengths below 450 nm. 
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5.  Analysis of the Absorbance Due to Scattering 
 
      The dotted traces in Fig. 6 show the apparent scattering cross section for PS microspheres with a 
diameter of 1.5 µm, 2.6 µm , 3.0 µm, and 4.5 µm suspended in distilled water (DI). The solid traces in Fig. 
6 show the best fit to the model based on Lorenz-Mie calculation. The Mie calculations were performed 
using MatLab with Maetzler code for Lorenz-Mie scattering. The fit shown in Fig. 6 resulted from the 
minimization of residuals defined in Eq. (8). 
 

21 3

0

( , ) ( , , )

0.01/ 2.303

1

( )A A dResiduals Mie d n d n d
c d

c N
d diameter
n index of refraction
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λ

σ θ θ
θ

∆−
= − +

= ⋅
=
=

∆ =

∑ ∫

   (8) 

 
The quantities A1 and A3 stand for the measured absorbance in holders 1 and 3 respectively (with the buffer 
contributions subtracted). The quantity Mie(d,n) is the calculated total scattering cross section. The integral 
of the differential Mie scattering cross section was performed over the effective angle (symbol Δ in Eq. (8)) 
subtended by the instrument entrance aperture at the location of the cuvette in holder 1. Because of the 
finite detector aperture, some of the radiation scattered in the forward direction will enter the detector and 
reduce the absorbance. The purpose of the integral in Eq. (8) is to model this reduction. The acceptance 
angle was assumed to equal the acceptance angle determined for the optical system in air divided by the 
wavelength dependent index of refraction of water [9]. The index of refraction of water takes into account 
the refraction of light at the cuvette wall. Specifically: 
 

0
2 3(1.3128 0.015762 / 0.004382 / 0.00146 / )λ λ λ

∆
∆ =

+ − +
   (8a) 

 
The symbol 0∆  is the detector acceptance angle for the system in air. (The values of the coefficients in the 
expansion of the index of refraction in Eq. (8a) were changed to accommodate the µm units of wavelength 
which were used in the Mie calculation.) Detailed calculations based on geometric optics [10] have shown 
that the refraction at the cuvette wall is the most important correction to the collection efficiency in 
luminescence measurements. For the purpose of characterizing the collection efficiency, scattered photons 
can be viewed as luminescence. The main difference is that while luminescence is emitted approximately 
equally in all directions, the scattered photons are predominantly emitted in the forward direction. The 
estimate of the collection efficiency in Eq. (8) assumes optimal collection from all illuminated regions in 
the cuvette; this assumption may lead to an overestimate of the collection efficiency. 
      The residuals in Eq. (8) were summed over a selected range of wavelengths with the lower bound 
always set to a wavelength larger than 300 nm. It was possible to obtain an excellent fit for wavelength 
region between 500 nm and 800 nm with a constant value of the index of refraction for the microspheres. 
For fitting below 500 nm, it was necessary to introduce a wavelength dependent index of refraction given 
by Eq. (9). 
 

2 4( ) ( )B Cn Aλ
λ λ

= + +      (9) 

 
The imaginary part of the index of refraction was set to zero in accordance with observation of minimal 
absorption in holder 3 for wavelengths above 300 nm. The parameterization in Eq. (9) was based on 
observations in other materials which display an increased index of refraction at lower wavelengths. The 
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medium (water) index of refraction was set to 1.334. The values of n(λ) obtained from Eq. (9) are not 
directly equal to the PS index of refraction. Some algebra and the dependence on wavelength of the index 
of refraction of water are needed to extract the true PS index of refraction as discussed below. 
      The fit between the measured and calculated values shown in Fig. 6 was performed for wavelength 
range 300 nm to 800 nm. The values of the fit parameters which resulted in the best fits are shown in Table 
1. 
 
Table 1. Parameters of fits in Fig. 6 

 
 
The fits in Fig. 6 are excellent for wavelengths greater than 450 nm, the differences between the data and 
calculated values are less than 3 %. For the smaller microspheres the fit is still very good down to 300 nm, 
however the fit for 4.5 µm microsphere becomes poor for wavelengths less than 450 nm. In all cases, the 
diameter extracted from the fit was very close to the diameter quoted by the manufacturer. The poorer fit 
for λ < 400 nm suggests a need for a better representation of the detector collection efficiency. The 
relatively small difference between the calculated and measured values in Fig. 6 indicates that the modeling 
described in this work has validity. 
      The parameters in Table 1 were used to calculate the expected response if the detector acceptance angle 
was vanishingly small. The dashed traces in Fig. 7 show the resulting calculation which can be compared 
with the dotted and solid traces reproduced from Fig. 6 for the 1.5 µm and 4.5 µm microspheres. For the 
case of 1.5 µm microspheres, the difference between the dashed and solid traces in Fig. 7 is less than 16 %. 
Thus the acceptance angle correction is relatively small. For the case of 4.5 µm microspheres, the 
difference between the dashed and solid traces is on the average about 60 % suggesting that the collection 
efficiency estimate is an integral part of the measurement and cannot be treated as a “correction”. The 
modeling of the measured response could be enhanced by developing a better estimate of the detector 
collection efficiency. 
 
5.1  Estimate of Index of Refraction 
 
      The results from the fits to the microsphere data were used to estimate the PS index of refraction. Let 
nm(λ) correspond to the index of refraction obtained from the fit with the parameters discussed in Eq. (9). 
The index of refraction of PS can be obtained from the equality of the ratios given in Eq. (10). 
 

1.334
m PS

W

n n
n

=      (10) 

 
Where nPS and nW are the true indexes of refraction of polystyrene and water respectively. The ratio 

1.334mn was used to fit the data because it simplified the algorithm. However if the fit is good, then the 
ratio 1.334mn  should be equivalent to the ratio PS Wn n as indicated in Eq. (10). If the assumption is made 
that the index of refraction of water is real, then Eq. (10) holds for both the real and imaginary parts of the 
PS index of refraction. Using the real part of the measured index of refraction given in Eq. (9) and the 
known water index of refraction [9], the polystyrene index of refraction, PSn , is given by Eq. (11). 
  

Bead A B C d, µm c Δ0, deg 

1.5 µm 1.576 0.00130 0.000792 1.50 0.0486 5.24 

2.6 µm 1.588 0.000539 0.000667 2.45 0.0440 3.81 

3.0 µm 1.583 0.000477 0.000729 3.01 0.0100 3.85 

3.1 µm 1.585 0.000578 0.000631 3.06 0.0102 3.93 

4.5 µm 1.566 0.000272 0.00195 4.47 0.0043 4.03 
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Fig. 7. The dotted and solid traces are the same as in Fig 6. The dashed trace shows the calculated cross section with the detector 
acceptance angle set to zero. The dashed curve for the 1.5 µm data differs from the solid curve by at most 16 %. In contrast the 
difference for the 4.5µm microspheres averages to about 60 %. Clearly such a large difference is more than a correction and points to 
the need for an improved analysis of the instrument collection efficiency. 
 
 
 

    
6 2 12 4

2 6 310 / 10 /( ) (1.3128 15.762 / 4382 / 1.1455 10 / )
1.344PS

A B Cn λ λλ λ λ λ+ ⋅ + ⋅
= ⋅ + − + ⋅  (11) 

 
The values of A, B, and C were obtained from the fits to the data from Eq. (9), the factors 106 and 1012 

multiplying B and C convert the coefficients to a wavelength scale in nanometers. The PS index was 
computed in accordance to Eq. (11) and the computed values were fitted to a power expansion of the form 
c0 + c1λ-2 + c2λ-4. Table 2 gives the values of the coefficients obtained for three microspheres with diameters  
1.5 µm, 2.6 µm, and 3.0µm.The 5th column in Table 2 gives the results of Ma [11] for measurements of the 
index of refraction of PS microsphere with a diameter of 1 µm. 
 
Table 2. Comparison of the wavelength dependence of PS microsphere index of refraction 

 
 1.5 µm 2.6 µm 3.0 µm Ma [11]  

c0 1.567 1.579 1.574 1.573 

c1 3061 2503 2355 3108 

c2 9.64*108 8.22*108 8.91*108 3.48*108 
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The reasonably close results for the measurements on the three spheres give credence to the PS result which 
is valid above wavelengths of 300 nm. Ma’s results give less pronounced wavelength dependence. The 
values of the index of refraction at large wavelengths are identical to Ma’s value or the value given by 
Nikolov [12] for the index of refraction of bulk PS. The discrepancy in the wavelength dependence of the 
PS index of refraction is most likely due to the approximation in the estimate of the collection efficiency in 
Eq. (8). The parameters B and C in Eq. (9), and the collection efficiency affect the wavelength dependence 
of the calculated response, and are therefore coupled during the fitting process. Inaccuracies in the estimate 
of the collection efficiency would be offset by adjusting the values of the parameters B and C. 
 
5.2  Estimate of Diameter and Concentration 
 
      The value of the microsphere diameter was obtained directly from the fit to the data. The diameters 
obtained for the three microspheres matched reasonably well the nominal values given by the supplier. It 
has been observed that the analysis of Lorenz-Mie scattering provides good estimates of particle diameters 
either from angular dependence measurements [13] or wavelength dependence measurements [14]. The 
structure present in the wavelength dependence of the scattering cross section provides a strong constrain to 
the microsphere diameter fit parameter. 
      The microsphere concentration, N, can in principle be obtained from the relation 230.3N c= ⋅  where c 
is the fit parameter given in Eq. (8). The parameter c provides a scaling of the entire cross section without 
changing the shape of the wavelength dependence. If the initial guess of the parameters gives a reasonable 
representation of the data then the fit converges to unique values of d, c, and n. If the initial guess is too far 
off, then it is possible for the c and d parameters to become coupled during the fit giving unreasonable 
results. The value of the parameter c in row labeled “3.1 µm” in Table 1, gives a concentration of 2.35*106 
cm-3 . This value can be compared with the estimated concentration 1.04*106 cm-3 obtained using the flow 
cytometer and the BD count standard. The flow cytometer measurement has its own systematic 
uncertainties; however the difference between the flow cytometer measurement and the scattering 
measurement is outside any reasonable estimate of uncertainty. The concentration of the 3.1 µm 
microspheres was also estimated by using the concentration of the stock suspension provided by the 
manufacturer; the result was 1.67*106 cm-3. In the case of 1.5 µm and 2.6 µm microspheres, the estimated 
concentration from the manufacturer’s values was about 7 *106 cm-3 while the estimates from parameter c 
were about 11*106 cm-3. The values of concentration obtained from the fit parameter c exceed the 
concentration values obtained from the flow cytometer or from the manufacturer by a factor of 
approximately 1.6. Clearly there is a systematic bias between the different methods for measuring 
concentration. In the case of scattering measurements, the collection efficiency estimate influences the 
overall magnitude of the calculated cross section and thus has a significant effect on the value of the 
parameter c. A reduction in the collection efficiency of 60 % would reconcile the concentrations obtained 
from the parameter c with those obtained from flow cytometer and manufacturer’s estimates. Such a 
reduction in the collection efficiency is reasonable. In order to obtain a more accurate estimate of the 
concentration, the collection efficiency estimate in Eq. (8) has to be modified to include the decrease in 
collection efficiency from the illuminated regions in the cuvette which are not located at the image of the 
detector aperture inside the cuvette. In addition, an estimate is needed of the “effective transmittance” of 
the scattered light for the cuvette placed inside the IS detector. 
 
 
6.  Conclusion 
 
      A careful analysis of the measurement process in a spectrometer with an integrating sphere (IS) detector 
led to a procedure for separating the measured absorbance into components due to scattering and molecular 
absorption. The analysis hinged on the interpretation of absorbance measured for a cuvette placed at two 
different holders in the spectrometer. Holder 1 corresponds to the normal position and holder 3 locates the 
cuvette inside the IS detector. Equation (7) and Eq. (8) give the relationship between the measured 
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responses ( 1 3,A A ) and the analyte properties ( , ,s m spa a a ). Approximate forms of the measurement model 
equations were used to analyze the absorbance from polystyrene spheres suspended in phosphate buffer 
saline (PBS) and distilled water (DI). The results suggest that the model is valid and that it is indeed 
possible to separate the two contributions. The two quantities, ,s ma a , are independent characteristics of the 
microsphere suspension. The quantity ma  gives information about the electronic states of the absorbing 
styrene molecules, while the quantity sa  provides information about the microsphere diameter, the 
concentration, and the wavelength dependence of the index of refraction of the material inside the 
microsphere. Further work is needed to clarify the systematic uncertainties inherent in the measurement 
model. The most significant of these uncertainties is in the estimation of the partial cross section spa  which 
depends on both the collection efficiency of the detector and the angular distribution of the scattered 
radiation. For wavelengths greater than 300 nm, the measurement and analysis of the scattering cross 
section provides estimates of the microsphere diameter, the microsphere concentration, and the wavelength 
dependence of the index of refraction of the microsphere material. It is likely that the poor fit between the 
data and calculation at wavelengths approaching 300 nm and large microsphere diameters is due to 
approximations in the estimate of the collection efficiency of the forward scattered light. More accurate 
estimates of the collection efficiency would provide a robust technique to measure the properties of 
suspensions of homogeneous microspheres. 
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