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Abstract

Background: Genetic interactions play a critical role in cancer development. Existing knowledge about cancer genetic 
interactions is incomplete, especially lacking evidences derived from large-scale cancer genomics data. The Cancer Genome 
Atlas (TCGA) produces multimodal measurements across genomics and features of thousands of tumors, which provide an 
unprecedented opportunity to investigate the interplays of genes in cancer.

Methods: We introduce Zodiac, a computational tool and resource to integrate existing knowledge about cancer genetic 
interactions with new information contained in TCGA data. It is an evolution of existing knowledge by treating it as a prior 
graph, integrating it with a likelihood model derived by Bayesian graphical model based on TCGA data, and producing a 
posterior graph as updated and data-enhanced knowledge. In short, Zodiac realizes “Prior interaction map + TCGA data → 
Posterior interaction map.”

Results: Zodiac provides molecular interactions for about 200 million pairs of genes. All the results are generated from a 
big-data analysis and organized into a comprehensive database allowing customized search. In addition, Zodiac provides 
data processing and analysis tools that allow users to customize the prior networks and update the genetic pathways of 
their interest. Zodiac is publicly available at www.compgenome.org/ZODIAC.

Conclusions: Zodiac recapitulates and extends existing knowledge of molecular interactions in cancer. It can be used to 
explore novel gene-gene interactions, transcriptional regulation, and other types of molecular interplays in cancer.

Complex diseases such as cancer are rarely caused by an abnor-
mality in a single gene, but rather reflect multigene abnormali-
ties that perturb molecular interaction networks and attract 
cells to new malignant and carcinogenic states (1,2). For exam-
ple, dysregulation of molecular signaling pathways, such as 
the PI3K/AKT/mTOR signaling pathway and the MAPK signaling 

pathway, leads to excessive cell proliferation and evasion of 
apoptosis, forming the basis of carcinogenesis. Therefore, under-
standing genetic interactions inside cells is critical to elucidat-
ing the molecular mechanisms of cancer (3,4).

The Cancer Genome Atlas (TCGA) (5–8) has generated mul-
timodal genomic measurements, including DNA copy number 

http://www.oxfordjournals.org/
mailto:koaeraser@gmail.com?subject=
http://www.compgenome.org/ZODIAC
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(CN), DNA methylation (ME), gene expression (GE), and pro-
tein expression (PE), on a large collection of human tumors. 
Functional interactions between these features of the same gene 
(intragenic) or of different genes (intergenic) regulate important 
cellular and molecular events like replication, transcription, 
and cellular signaling. Therefore, TCGA data provide a unique 
opportunity for understanding cancer at multiple regulatory 
and molecular layers. Statistical models that integrate informa-
tion from different modalities are powerful tools for studying a 
biological system. Currently there are few resources based on 
integrative analysis of multiple genomics features using TCGA 
data. Most available tools focus on reporting existing data and 
knowledge (9,10) instead of analysis results about cancer genetic 
interactions. Integrating multilayer and pan-cancer TCGA data 
using Bayesian graphical models, we aim to generate a compre-
hensive database and provide powerful computational tools for 
the investigation of molecular interactions in cancer.

Methods

Zodiac is a result of a big-data integrative analysis on multimodal 
TCGA data with a goal to generate new knowledge of molecular 
interactions in cancer. Unlike correlation-based methods such 
as weighted correlation network analysis (WGCNA) (11), Zodiac 
is powered by Bayesian graphical models (12,13) that simulta-
neously account for conditional independence among multiple 
genomic features (Supplementary Materials, section “Bayesian 
Graphical Models,” available online). This gives Zodiac some 
advantage in capturing the network-type relationship in bio-
logical systems (Supplementary Figures 1–3, Supplementary 
Table 1, Supplementary Materials, section “Bayesian Graphical 
Models,” available online). Zodiac provides a whole-genome and 
pair-wise interaction map, which contains intragenic and inter-
genic interactions of all pairs of genes in cancer. Innovatively, 
Zodiac integrates multiple layers of molecular features such as 
CN, ME, and GE, which is markedly different from other systems 
such as STRING (14) that focuses on a single feature at a time for 
multiple genes. All the results in Zodiac are publicly accessible 
at http://www.compgenome.org/ZODIAC.

The construction of Zodiac is divided into four sequential 
steps (Figure  1), including data retrieval, computation, results 
assembly, and results dissemination. Step 1 is data retrieval 
(Figure 1A) that collected and assembled TCGA data into a well-
formatted data matrix via our own open-source software pipe-
line, called TCGA-Assembler (15). This step allows for automatic 
data retrieval directly from the TCGA data portal, ensuring the 
reproducibility of subsequent statistical analysis. Only samples 
with four types of molecular features (CN, GE, ME, PE) were used, 
and data from different cancer types were combined together 
as a pan-cancer analysis (Supplementary Materials, section 
“Analysis Details,” available online). In the end, we obtained a 
data set of 1448 samples from 11 cancers (Table 1), each sam-
ple characterized by up to four types of features on each of 19 
304 genes (Supplementary Table  2, Supplementary Materials, 
section “Analysis Details,” available online). In the second step 
(Figure  1B) we launched massively parallel computations and 
applied the Bayesian graphical models (BGMs) (12,13) to the 
multimodal data for each gene and each gene pair using all the 
1448 samples. The computation consisted of about 200 parallel 
jobs and was executed on the super computer Beagle (16). The 
entire computation took roughly 2.5 million CPU hours. Results 
from the analyses were stored and organized into a database 
(Figure  1C) in the third step. In the final step, a web interface 
was constructed at http://www.compgenome.org/ZODIAC to 

enable fast queries and visualizations of the analysis results 
(Figure 1D).

Statistical Analysis

Treating a known genetic map as a prior graph, Zodiac combines 
the prior with a likelihood function that describes TCGA data 
and produces posterior and data-enhanced interaction maps. 
The key innovation is the use of random graphs that allows for 
changes of the connectivities in graph. Some edges present in 
the prior graph can be eliminated in the posterior graph, and 
new edges absent in the prior may be added, all depending on 
the information contained in the data. In summary, Zodiac real-
izes the evolution of:

Prior Interaction Map + TCGA data → Posterior Interaction Map 
in Cancer
Statistical inference of genetic interactions is based on a class 
of Bayesian graphical models, treating the interaction networks 
of genomics features as random graphs. In this case, the net-
work topology of features is considered random, and a rigorous 
Bayesian posterior inference (Supplementary Materials, section 
“Bayesian Graphical Models,” available online) is performed 
to estimate the network topology as data-enhanced and new 
knowledge supported by TCGA data. This is different from tools 
that assume known and fixed network topology (17,18). More 
importantly, graphical models are known to be powerful at 
describing interactions of multiple variables (19), or genomics 
features in our case, which is otherwise challenging for tradi-
tional statistical models based on correlations or regressions. In 
addition, Bayesian statistical inference enforces stringent false 
discovery rate (FDR) thresholds in reported results based on pos-
terior probabilities, which is different from P value–based infer-
ence (20).

For validating the genetic interactions inferred by Zodiac, 
one-sided Fisher’s exact test has been used to evaluate the 
enrichment of known genetic interactions in Zodiac. The one-
sided test is used because scientifically we are only interested 
in the one-sided alternative. That is, interactions in Zodiac are 
more enriched with known genetic interactions than by random 
chance. Such one-sided enrichment tests are frequently used in 
the literature (21). A cutoff of .01 on P value is used to call statis-
tically significant enrichment.

Results

Overview

The main function of Zodiac is to generate new hypotheses and 
validate existing discoveries in cancer based on posterior and 
data-enhanced inference on molecular interactions. For exam-
ple, depending on user query, Zodiac returns: 1) an intragenic 
interaction network (Figure  2A-i) for each single gene, 2)  an 
intra- and intergenic interaction network (Figure 2A-ii) for each 
pair of genes, and 3) a list of genes that possess intergenic inter-
actions with any single gene of interest (Figure 2A-iii). Each of 
the three types of queries provided by Zodiac returns important 
information. For example, Figure  2A-iii shows the list of top 
genes that could be potentially targeted by the regulator gene 
EZH2. Similar lists can be returned for other genes of interests, 
such as transcription factors, tumor suppressors, or oncogenes 
through the single gene query. Alternatively, a search of a gene 
pair in Zodiac returns a graph containing statistically signifi-
cant interactions between genomic features of the two genes 

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv129/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv129/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv129/-/DC1
http://www.compgenome.org/ZODIAC
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv129/-/DC1
http://www.compgenome.org/ZODIAC
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(Figure 2A-ii). In all cases, statistical significance is assessed by 
posterior probabilities for any edges and any graphs, and strin-
gent false discovery rate (FDR) thresholds are applied to select 
a list of reliable edges or graphs. The prior network used when 
inferring the intra- and intergenic networks applies the com-
mon biological consensus, assuming that within each gene copy 
number and methylation are connected with gene expression 
and gene expression is connected with protein expression. 
These edges in the prior network can be reinforced, weakened, 
or removed in the posterior network, depending on the informa-
tion contained in the observed data. This is an essential feature 
of the proposed Bayesian statistical inference.

The Bayesian graphical inference is distinctly different from 
correlation-based inference and provides insight on concurrent 
interactions between multiple genetic features. For example, the 
two intragenic graphs in Figure 2A-i represent the conditional 
independence between CN and GE (left) or between ME and GE 
(right). The two different graphical topologies provide two dif-
ferent transcription regulatory patterns. The left pattern implies 
that change in gene expression is independent of copy num-
ber variations given methylation events, and the right pattern 
implies the reverse relationship that change in gene expression 
is independent of methylation given copy number variations. 
These patterns may be associated with two hypothetical and 

Figure 1. Four steps to build Zodiac. A) Multimodal, multicancer The Cancer Genome Atlas (TCGA) data are prepared by TCGA-Assembler (15), open-source software 

designed to retrieve and process TCGA public data from TCGA Data Coordinating Centers (DCC). Each patient sample has multiple data files generated by different 

array or sequencing platforms. TCGA-Assembler automatically retrieves thousands of data files from TCGA DCC and assembles them into a single mega data table 

for subsequent analysis. B) Massively parallel computational jobs, one for each gene or gene pair, are conducted using Bayesian graphical models (12–13). Statistical 

inferences for a total of 19,304 genes and all possible gene pairs are performed based on posterior probabilities. A functional network involving multiple modalities of a 

gene or gene pair is treated as a Markov random field and Markov chain Monte Carlo simulations are used for statistical estimation (Supplementary Materials, section 

“Bayesian Graphical Models,” available online). C) All statistically significant intragenic and intergenic networks from the Bayesian inference are stored in database 

and accessible through a web server. D) A user-friendly web interface is built to allow fast queries and visualization of analysis results. CN = copy number; GE = gene 

expression; Me = methylation; PE = protein expression; TCGA = The Cancer Genome Atlas.
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different coregulation mechanisms of ME and CN on GE. For 
example, copy number amplification for a gene coupled with 
copy-ubiquitous methylation (Figure  2B-i) could explain the 
ME-dependent and CN-independent regulation on GE, while 

a copy number amplification with copy-specific methylation 
(Figure 2B-ii) may result in CN-dependent and ME-independent 
regulation on GE. We discovered many genes possessing these 
two patterns in Zodiac results (Supplementary Tables 3–4, 
Supplementary Materials, section “Additional Results,” available 
online). Hypotheses of this nature can only be generated under 
graphical models and the corresponding conditional depend-
ence/independence between all three genomics features. In 
contrast, a correlation-based inference of any two features (ME/
GE, or CN/GE) might yield misleading conclusions. For exam-
ple, when the true coregulation pattern agrees with Figure 2B-
i, measurements between copy numbers and gene expression 
could be negatively correlated because copy number gains actu-
ally do not lead to increased gene expression as the transcrip-
tion of each gene copy is silenced by DNA methylation.

Overlap With Existing Databases of Genomic 
Regulations

The multimodal integration of genomics features in Zodiac 
can be used to discover and validate regulatory relationships 

Table 1. Sample counts from 11 cancer types used in Zodiac analysis

Cancer types Number of samples

Bladder urothelial carcinoma [BLCA] 50
Breast invasive carcinoma [BRCA] 151
Colon adenocarcinoma [COAD] 20
Glioblastoma multiforme [GBM] 26
Head and neck squamous cell carcinoma 

[HNSC]
202

Kidney renal clear cell carcinoma [KIRC] 252
Lung adenocarcinoma [LUAD] 184
Lung squamous cell carcinoma [LUSC] 103
Skin cutaneous melanoma [SKCM] 162
Thyroid carcinoma [THCA] 204
Uterine corpus endometrioid carcinoma [UCEC] 94

Total 1448

Figure 2. Illustrations and summary of inference results on interaction networks. A) Illustrations of potential interactions. A-i) Illustrations of intragenic interactions 

between genomic features of a single gene. Two potential intragenic networks are presented, implying different coregulation of copy number (CN) and methylation (ME) on 

gene expression (GE). A green or red edge, ie, line connecting two genomics features, indicates a positive or negative interaction between them, respectively. The thickness 

of an edge indicates the interaction strength (Supplementary Materials, section “Bayesian Graphical Models,” available online). A-ii) illustrates a hypothetical intergenic 

network for two genes. One gene does not have any PE measurement, because in The Cancer Genome Atlas not all genes have protein expression (PE) data. Table (A-iii) 
gives an illustration of the gene list returned by searching for genes interacting with an input gene, EZH2 in this case (more details can be found in the Results section). B) 
Two hypothetical models that might explain the two different intragenic networks in panel (A-i), which are copy number amplifications coupled with (B-i) copy-ubiquitous 

methylation or (B-ii) copy-specific methylation. The two models require experimental validation. C) Numbers of statistically significant interactions (Bayesian false discovery 

rate ≤ 0.01) inferred by the analyses and grouped by interaction types. CN = copy number; GE = gene expression; Me = methylation; PE = protein expression.

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv129/-/DC1
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between genes. To examine the biological relevance of the com-
putational results in Zodiac, we chose 16 cancer related path-
ways from KEGG (22), categorized as Cancer Overview, Signal 
Transduction, and Cell Growth and Death (Supplementary 
Table 5, Supplementary Materials, section “Additional Results,” 
available online) and assessed the overlap between KEGG 
and Zodiac on these pathways (Supplementary Tables 6–7, 
Supplementary Materials, section “Additional Results,” available 
online). Since Zodiac reports results based on the integration of 
TCGA data across multiple cancer types, we expect an abundant 
overlap between Zodiac results and the type of findings in KEGG 
that are conserved and common across cancers. Therefore, can-
cer-specific KEGG pathways were not included for this assess-
ment. KEGG records various types of molecular interactions, 
such as protein-protein interaction and transcriptional regula-
tion. Similarly, Zodiac investigates intergenic GE-GE, GE-PE, and 
PE-PE interactions. Table 2 shows that the genomic regulations 
indicated by KEGG are statistically significantly enriched (P ≤ 
1 × 10−8) in the corresponding interactions inferred by Zodiac.

We also assessed genomic interactions in Zodiac using 
transcriptional regulations provided by the Transcriptional 
Regulatory Element Database (TRED) (23), which includes target 
genes of cancer-related transcription factor families. Statistically 
significant intergenic PE-GE or GE-GE edges in Zodiac are con-
sidered as evidence supporting transcription factor regulation 
on its target genes. A total of 11 (out of 45) transcription factors 
(with their target genes) were found statistically significantly 
enriched (P ≤ .01) in the PE-GE and GE-GE edges inferred by 
Zodiac (Supplementary Table 8, Supplementary Materials, sec-
tion “Additional Results,” available online).

Data-Enhanced Network Inference Using 
Zodiac Tools

Zodiac provides a unique functionality that allows researchers 
to perform data-enhanced Bayesian network inference. Existing 
results in Zodiac, although useful, might not be suitable for all 
users. For example, a user might be interested in a few genes and 
their interaction network in prostate cancer. The reported net-
work in Zodiac does not match such an interest. Instead, using 
the TCGA-Assembler (15) and BGM tools provided at the Zodiac 
website, the user can obtain posterior network for those genes 
enhanced by the prostate cancer data in TCGA. TCGA-Assembler 
allows for automatic and user-specified TCGA data retrieval and 
processing, while BGM performs subsequent network infer-
ence based on the retrieved data. The knowledge enhancement 
is in the fact that the posterior estimated network combines 
the prior network provided by the user (if available) and the 
information contained in TCGA data. Such an enhancement is 

realized by rigorous statistical inference through BGM analy-
sis. Figure 3 provides an example based on our own investiga-
tion. A signaling cascade in the prostate cancer pathway of the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database 
(Figure 3A) was used as the prior information in a BGM analy-
sis, through which a posterior network was obtained (Figure 3B; 
Supplementary Tables 9–10, Supplementary Materials, section 
“Additional Results,” available online). Therefore, using the pro-
vided tools, Zodiac allows for highly customable computation 
aiming for data enhanced network inference. The comprehen-
sive TCGA data and flexibility of the BGM tools will facilitate the 
community to generate posterior networks as data-enhanced 
and renewed knowledge about cancer. More broadly, the BGM 
tools can be applied to general data, such as users’ in-house 
data, in which any genes or genomic features are measured 
across matched biological samples.

Some Use Cases

EZH2 is frequently found overexpressed in a variety of can-
cers (24,25). It is a Polycomb protein that adds methyl groups 
to Lysine 27 of histone protein H3, leading to chromatin con-
densation and thus transcriptional repression of genes. Histone 
modification induced by EZH2 promotes cancer development 
by silencing the expression of tumor suppressor genes (26–28). 
A  previous study shows that EZH2 is a downstream target of 
E2F1, a transcription factor in control of cell cycle and also inter-
acting with tumor suppressor proteins (29). This indicates a pos-
sible connection between EZH2-mediated histone modification 
and E2F1-mediated cellular functions in cancer. Zodiac shows 
a statistically significant (Bayesian FDR ≤ 0.01) GE-GE edge con-
necting these two genes, confirming these previous findings 
(29,30).

Responding to a single-gene search, Zodiac reports all the 
other genes with statistically significant intergenic interactions 
with the given gene. Using this function for EZH2 (Figure  2A-
iii; Supplementary Table  11, Supplementary Materials, section 
“Additional Results,” available online), we notice that the top 
gene on the list is HIST1H2BH, which encodes a member of 
the histone H2B family. Interestingly, investigation on the link 
between EZH2 and histone genes has been centered on H3K27 
with numerous publications, but a recent paper (31) for the first 
time demonstrates the methylation by EZH2 on Lysine 120 of 
H2B—ie, EZH2 is related to H2BK120 methylation.

As a follow-up investigation, we examined the E2F family. 
Bracken et al. (2003) reported several potential downstream tar-
gets of E2F1 (29), including genes essential for the entry into S 
phase of cell cycle, such as CCNE1 and CCNA2, and genes that 
are involved in the regulation of DNA replication, such as CDC6, 

Table 2. Overlaps between KEGG and Zodiac indicated by enrichments of two kinds of interactions recorded by KEGG pathways amongst the 
corresponding statistically significant (Bayesian false discovery rate ≤ 0.01) intergenic interactions inferred by Zodiac*

KEGG relationship (Corresponding zodiac relationship) Enrichment fold Enrichment P

Transcriptional Regulation † (PE-GE or GE-GE) 2.31 3.24E-17
Protein Phosphoregulation ‡ (PE-PE(phos) or GE-PE(phos)) 6.95 2.29E-09

* One-sided Fisher’s exact test and P value are used to measure the statistical confidence of enrichment. Enrichment fold evaluates the improvement on the abun-

dance of Kyoto Encyclopedia of Genes and Genomes–indicated interactions by selecting corresponding statistically significant interactions in Zodiac. See the “Ad-

ditional Results” in the Supplementary Materials (available online) for details of enrichment analysis. GE = gene expression; KEGG = Kyoto Encyclopedia of Genes and 

Genomes; PE = protein expression; PE(phos) = expression of phosphorylated protein.

† Transcriptional regulation in KEGG (involving a transcription factor and a target gene) can be characterized by a statistically significant intergenic PE-GE or GE-GE 

edge in Zodiac between the transcription factor and its target gene.

‡ Protein phosphoregulation between two genes in KEGG can be indicated in Zodiac by a statistically significant PE-PE(phos) or GE-PE(phos) edge between the kinase 

gene and its substrate.

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv129/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv129/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv129/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv129/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv129/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv129/-/DC1
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DHFR, and TK1 (32,33). All of these genes have statistically signifi-
cant intergenic GE-GE edges with E2F1 in Zodiac (Supplementary 
Figure 4, Supplementary Materials, section “Additional Results,” 
available online).

Zodiac contains nearly two hundred million interaction net-
works, and the above examples give promising indications of 
the potential utility and impact of Zodiac to the community.

Web Interface

The web interface (Figure 4) of Zodiac is simple with only one 
input box supporting multiple query modes (Figure 4A). Users 
type gene symbols separated by spaces or line breaks. If users 
enter one gene symbol, Zodiac returns a summary of the list 
of genes that possess statistically significant intergenic interac-
tions with the input gene (Figure 4B). If users input the same 
gene symbol twice, Zodiac returns a graph of intragenic interac-
tions for the gene (Figure 4C). Providing two different gene sym-
bols in the input box returns a graph with both intragenic and 
intergenic interactions of the two genes (Figure 4D). If multiple 
gene symbols are entered, Zodiac displays all statistically sig-
nificant intergenic interactions between any pair of the input 
genes in a Circos plot (34) (Figure 4E). Details are provided in the 
Supplementary Materials, section “Web Server and Interface” 
(available online).

Discussion

The cancer biology community does not lack large databases and 
tools that provide interaction networks across genes (9,22,35,36). 

However, few perform integration of multiple genomic features 
or collect computational results from a coherent probability 
model with FDR control. To our knowledge, Zodiac is the largest 
online resource reporting computational results based on the 
analyses of multimodal TCGA data. As a big-data integration, 
Zodiac is expected to generate new discoveries that penetrate 
deeper into the molecular mechanisms of cancer. Biologically, 
Zodiac yields a comprehensive map of interplays between mul-
tiple genetic factors of different genes. Such a map can provide 
critical information to disentangle the competing and con-
founding regulatory relationships. For example, the coregulation 
of CN and ME on GE within a gene can be revealed by examining 
the intragenic graph provided in Zodiac. Furthermore, investiga-
tors can perform customized network inference using provided 
software of TCGA-Assembler (15) and BGM on the Zodiac web-
site. These tools enable the community to utilize TCGA data and 
update existing knowledge about cancer genomic interactions.

Because of its integration over multiple genomics features, 
Zodiac can be used to facilitate research in a variety of areas, 
such as transcription regulation, gene co-expression, long-range 
interaction between two genes, protein interaction, and DNA 
comethylation (37). Zodiac can be incorporated and expanded to 
facilitate many other research efforts. Recent studies try to iden-
tify driver mutations (17,38) and stratify tumors (39) by imposing 
mutation profiles on existing functional interaction networks 
obtained from databases, like KEGG (22) and Pathway Commons 
(40). Highly mutated subnetworks can also be identified from 
the global network using this scheme (18). Zodiac can facili-
tate the identification of highly mutated subnetworks or driver 
mutations by providing high confidence interaction networks. 

Figure 3. Illustration of data-enhanced Bayesian network inference. A) A signaling cascade in the Kyoto Encyclopedia of Genes and Genomes (KEGG) prostate cancer 

pathway. Nodes in the signaling cascade indicate proteins or protein families. Arrow with a solid line indicates activation. +p indicates phosphrylation. Arrow with a 
dashed line indicates indirect effect. The androgen receptor (AR) regulation of prostate specific antigen (PSA) is through binding to DNA and transcriptional activation 

of KLK3, which encodes PSA. B) Data-enhanced Posterior network inferred by Bayesian graphical model (BGM) analysis. One measurement feature is selected to repre-

sent each of the proteins or protein families in the signaling cascade (Supplementary Materials, section “Additional Results,” available online). The network includes 

only edges with the highest posterior probabilities. The numbers besides the edges are the posterior probabilities of including the edges inferred by BGM analysis 

(Supplementary Materials, section “Bayesian Graphical Models,” available online). All the other potential interaction edges have very low posterior probabilities (≤ 0.1) 

and not presented. Gene expression (GE) or protein expression (PE) in the parenthesis of each feature indicates gene expression or protein expression of the genes, 

respectively, which are used for analysis. Some of the protein expressions measure the abundances of proteins phosphrylated at specific positions. Positive interactions 

are indicated by green color and negative interactions are indicated by red color. Ser338, Ser217, and Ser221 indicate phosphorylations on serine-338, -217, and -221, 

respectively. GE = gene expression; PE = protein expression; Thr202 = phosphorylation on threonine-202l; Tyr204 = phosphorylation on tyrosine-204.

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv129/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv129/-/DC1
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When combined with mutation data, which are also available 
through TCGA, subnetworks specific to mutations of genes can 
be elucidated.

Discoveries based on BGM analyses (12,13) produce formal 
probability inference of the interaction networks. The benefit of 
such inference is that it naturally produces FDR-type of uncer-
tainty measures on the network itself using posterior prob-
abilities. There is a fundamental difference in the interpretation 
of posterior probabilities and P values, as the latter cannot be 
directly interpreted as the probability of an event (41). Posterior 
inference based on FDR control is applied within the analysis 

of each gene or each gene pair over all potential interactions in 
the analysis. The use of FDR ensures the reliability of the sta-
tistical inference for each gene or gene pair over all the pos-
sible networks for the gene or gene pair. It does not, however, 
control the false discoveries across the approximately 200 mil-
lion analyses, each subject to its own multiplicity. Controlling 
the overall false discoveries over all the analyses is not com-
putationally feasible based on the graphical models because it 
would require evaluation of the uncertainty of roughly 1 × 1015 
networks, the computation cost for each of which is substan-
tially more expensive than many standard test-based analysis 

Figure 4. Web interface for querying and viewing results in Zodiac. A) The main query page is at http://www.compgenome.org/ZODIAC. B) Summary of genes that 

have statistically significant intergenic interactions with a single input gene. C) Intragenic interactions of a single input gene. D) Interaction network of two input 

genes. E) Statistically significant intergenic interactions of all gene pairs among multiple input genes are displayed as a Circos plot (34). The following features are 

provided in different query modes: First, a table of brief annotations of genes is provided with clickable links on gene symbols that connect to the genes’ descriptions 

at the National Center for Biotechnology Information. Second, by default the graphs only report edges that have the highest posterior inclusion probabilities so that 

the estimated false discovery rate is no larger than a statistical significance threshold. Third, all the results will be returned on screen and a link will be provided for 

downloading the results. CN = copy number; GE = gene expression; Me = methylation; PE = protein expression.

http://www.compgenome.org/ZODIAC
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(such as differential expression). Therefore, we choose to con-
trol the FDR for the interactions within individual analysis of a 
gene and a gene pair. The results presented in the manuscript 
are based on thresholding Bayesian FDR at 0.01. The graphical 
model devises conditional independence of multiple genom-
ics features, providing a systemic and accurate depiction of co-
existing interactions of multiple factors, such as CN, ME, and 
GE. In conclusion, the use of BGM and conditional independence 
inference highlights the analytical differences between Zodiac 
and many existing quantitative models for integration of multi-
modal cancer genomics data.

The inferred edges in Zodiac are subject to many potential 
noises that are intrinsic to TCGA data, such as batch/lab bias. 
We have performed careful data preprocessing (Supplementary 
Materials, section “Analysis Details,” available online) to mini-
mize these biases, but they might still have effects on certain 
gene pairs. Nevertheless, such biases might not severely affect 
the statistical inference on interactions of the genomics fea-
tures. For example, we have performed additional investigation 
and found that the inferred network is robust to random shifts 
or scaling changes to the simulated data. It is important to note 
that results in Zodiac are based on computational analyses 
rather than experimental validations. A  big-data computation 
like this will surely encompass unexpected or unconventional 
findings. Also, many relationships (such as intergenic CN-ME 
edges) are results of indirect interactions or confounders. 
Nonetheless, we believe that Zodiac, as an expanding resource, 
will benefit researchers in different areas because of its rigor in 
statistical modeling and fidelity to TCGA data. More importantly, 
the proposed integration of TCGA data will motivate more 
efforts and help improve understanding of the cancer biological 
systems using computational means.

There are some limitations of our current work. Zodiac cur-
rently is a pan-cancer project that investigates molecular inter-
actions shared across multiple tissues. It lacks cancer-specific 
analysis of genetic interactions. In addition, not all molecular 
measurements are included in analysis, such as miRNA expres-
sion. Despite the large computational effort, Zodiac is merely 
an initial step towards more ambitious and exciting future 
investigations.

Our future plan includes using BGM to identify genetic inter-
actions of individual cancer types and differential interactions 
between cancer types. Such analyses will require substantially 
more computation depending on the number of cancer types 
selected. In addition, we are looking into expanding the num-
ber of data modalities (such as including miRNA expressions 
and gene mutations) and the number of genes in each graph 
(to be greater than two), although such expansions result in an 
exponential increase in the computational burden, as the size 
of graphical space increases exponentially over the numbers of 
modalities and genes. We are attempting various optimization 
approaches to speed up the computation aiming for a future 
launch of genome-wide gene triplet analysis with more data 
modalities. Nevertheless, for important cancer-related path-
ways that involve far fewer genes, analysis of three or more 
genes is feasible based on our current BGM software, available 
for download on the Zodiac website. Zodiac currently is based 
on TCGA data retrieved and assembled in April, 2013, which are 
also available for download at the Zodiac website. Since then, 
TCGA has been adding new data with more patient samples. 
We plan to carry out analyses incorporating the new data in 
future Zodiac expansion and make results available. Especially, 
The Clinical Proteomic Tumor Analysis Consortium (CPTAC) (42) 
has been generating whole-genome proteomics data of TCGA 

patient samples, which can be used for studying interactions 
involving protein expressions for future Zodiac analysis of spe-
cific cancer types.
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