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Abstract

We investigated whether the gut microbiota differed in 48 postmenopausal breast cancer case patients, pretreatment, vs 
48 control patients. Microbiota profiles in fecal DNA were determined by Illumina sequencing and taxonomy of 16S rRNA 
genes. Estrogens were quantified in urine. Case-control comparisons employed linear and unconditional logistic regression 
of microbiota α-diversity (PD_whole tree) and UniFrac analysis of β-diversity, with two-sided statistical tests. Total estrogens 
correlated with α-diversity in control patients (Spearman Rho = 0.37, P = .009) but not case patients (Spearman Rho = 0.04, 
P = .77). Compared with control patients, case patients had statistically significantly altered microbiota composition (β-
diversity, P = .006) and lower α-diversity (P = .004). Adjusted for estrogens and other covariates, odds ratio of cancer was 0.50 
(95% confidence interval = 0.30 to 0.85) per α-diversity tertile. Differences in specific taxa were not statistically significant 
when adjusted for multiple comparisons. This pilot study shows that postmenopausal women with breast cancer have 
altered composition and estrogen-independent low diversity of their gut microbiota. Whether these affect breast cancer 
risk and prognosis is unknown.

In addition to traditional factors (1–3), breast cancer risk for post-
menopausal women is directly related to level of endogenous 
estrogens and differences in estrogen metabolism (4–11). The 
gut microbiota modulates estrogen homeostasis through enter-
ohepatic circulation, with large differences among individuals 
(12–16). The microbiota also modulates many other metabolic 
and immunologic pathways (17–19). Independent of estrogen 
levels, cancer risk is increased with metabolic syndrome through 
growth factors like insulin (20,21). Inflammation probably also 
contributes (22), as use of nonsteroidal anti-inflammatory drugs 
was associated with a 20% to 30% reduced risk of postmeno-
pausal breast cancer in some studies, albeit with inconsistency 

by estrogen receptor (ER) tumor expression (23–29). Noting that 
gut microbial differences could affect breast cancer risk through 
several pathways, herein we tested the hypothesis that the gut 
microbiota of postmenopausal women with incident breast can-
cer, pretreatment, differs from control women.

Following review and approval by the respective institutional 
review boards, with signed informed consent 48 female mem-
bers of Kaiser Permanente Colorado ages 50 to 74 years who were 
scheduled for treatment of biopsy-proven breast cancer and 48 
normal-mammography women provided data, urine (without 
preservative), and feces (in RNAlater), frozen at home and there-
after below -80°C until use (30–33). Microbiota profiles in fecal 
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DNA were determined by amplification, Illumina sequencing, 
and taxonomy of 16S rRNA genes (34–38). Urinary estrogens 
and estrogen metabolites (EMs) were quantified by liquid chro-
matography/tandem mass spectrometry (39). Microbiota alpha 
diversity was estimated as follows. Richness: number of unique 
species-level taxa, unadjusted for their relative abundances. 
Chao1: richness, but bias-corrected for rare (singleton, doubleton) 
taxa. Phylogenetic diversity (PD)_whole tree: sum of the branch 
lengths of a phylogenetic tree constructed from all taxa in the 
sample. Shannon index: a conservative estimate that adjusts for 
relative abundance of each taxon and that is defined as (nega-
tive) the sum over taxa of the product of the relative abundance 
of each taxon times the natural logarithm of its relative abun-
dance. Estrogen associations with microbiota alpha diversity 
were tested by Spearman rank-order correlation. Alpha diversity 
associations with case-control status were tested by linear and 
unconditional logistic regression, with adjustment for age, body 
mass index (BMI), and total estrogens. Composition of the micro-
biota (beta diversity) was compared by unweighted and weighted 
UniFrac analysis of the distance matrix with 10 000 permutations 
(40). All statistical tests were two-sided, and a P value of less than 
.05 was considered statistically significant. Detailed methods can 
be found in the Supplementary Materials (available online).

Case patients and control patients were 86% non-Hispanic 
white with mean age 62 years (SD = 6.86), mean BMI of 28 (SD 
1.07), and equivalent reproductive and menstrual histories 
(Supplementary Table  1, available online). Two case patients 
(excluded from some analyses) and no control patient reported 
receiving an antibiotic within the previous two weeks. Two 

cancers were stage 3, ten at stage 2, 25 at stage 1, and 11 in situ 
(American Joint Committee on Cancer, Collaborative Staging 
Version 2.04) (41). Forty-two tumors were ER-positive, 37 were 
progesterone receptor–positive, and five were HER2-positive.

All mean urinary estrogens were two-fold higher in the case 
patients, although these were not statistically significant (P ≥ 
.10) (Table 1). In control patients, fecal microbiota alpha diver-
sity (phylogenetic diversity [PD]_whole tree) correlated directly 
with total estrogens (Spearman Rho  =  0.37, P  =  .009). In con-
trast, PD_whole tree was not correlated with total estrogens 
in case patients (Spearman Rho = 0.04, P =  .77). PD_whole tree 
was weakly correlated with EM:parent estrogen ratio in control 
patients (Spearman Rho = 0.26, P = .08). There was no such cor-
relation between PD_whole tree and EM:parent estrogen ratio in 
case patients (Rho = -0.11, P = .45).

The fecal microbiota of case patients, compared with con-
trol patients, had statistically significantly lower alpha diversity  
(P ≤ .004), except Shannon index (P = .09) (Table 1). Adjusted for 
age, BMI, and total urine estrogens, the breast cancer odds ratio 
(ORadj) per tertile category increase in PD_whole tree was 0.50 
(95% confidence interval [CI] = 0.30 to 0.85), and nearly identical 
for richness and Chao1 (Table 1). The association was not linear. 
Rather, compared with lowest-tertile levels, breast cancer ORadj 
was reduced 70% to 80% with both middle-tertile and highest-
tertile levels of these measures (Table 1 and Figure 1A).

Fecal microbiota composition (beta diversity) also dif-
fered between case patients and control patients overall 
(unweighted UniFrac P  =  .009), across all genus-level taxa 
(Figure  1B), and on the first principal coordinate (PC1) of the 

Table 1.  Urinary estrogens and estrogen metabolites (EM) and fecal microbiome alpha diversity in postmenopausal breast cancer cases and 
controls

Variable/outcome Case patients, N=48 Control patients, N=48 P*

Estrogen, EM levels, mean (SD)†
  Total estrogens and EM 45.40 (106.94) 22.36 (17.79) .12
  Parent estrogens 16.89 (44.38) 7.30 (5.93) .12
  Estrone 12.97 (31.76) 5.83 (4.81) .11
  Estradiol 3.92 (12.86) 1.47 (1.31) .17
  Total EM 28.51 (63.33) 15.07 (12.42) .15
  2-Hydroxylation pathway 12.94 (28.83) 6.51 (5.59) .10
  16-Hydroxylation pathway 14.43 (32.12) 7.99 (6.81) .21
  4-Hydroxylation pathway 1.13 (2.41) .56 (.47) .11
Estrogen, EM ratios
  EM/parent 2.15 (.87) 2.35 (2.01) .56
  2-pathway/parent .97 (.40) .96 (.44) .90
  16-pathway/parent 1.10 (.45) 1.30 (1.59) .41
  4-pathway/parent .09 (.04) .09 (.04) .95
  2-pathway/16-pathway .89 (.16) .85 (.15) .14

Fecal microbiome richness, alpha diversity, mean (SE)
  No. observed species 78.6 (23.1) 91.2 (16.6) .004
  Chao1 909.5 (24.4) 1053.8 (174.9) .001
  PD_whole tree 33.1 (7.9) 37.5 (6.1) .004
  Shannon index 6.0 (.7) 6.2 (.6) .09

Breast cancer risk, by tertile, odds ratio  
(95% confidence intervals)‡ Tertile 1 Tertile 2 Tertile 3

  No. observed species .50 (.30 to .84) Referent .24 .29
  Chao1 .53 (.31 to .89) Referent .28 .30
  PD_whole tree .50 (.30 to .85) Referent .20 .29
  Shannon index .83 (.50 to 1.37) Referent .89 .68

* Linear regression with (log-transformed estrogen and EM values) and adjustment for age.

† Picomoles/mg creatinine.

‡ Logistic regression, tertiles among controls, adjusted for age, body mass index, and total urine estrogen level.
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Figure 1.  Fecal microbiota differences between postmenopausal breast cancer case patients and control patients. A) Odds ratio (square) and 95% confidence interval 

(bar) of breast cancer by tertile of alpha diversity (phylogenetic diversity [PD]_whole tree). Odds ratios by tertile are presented. B) Beta diversity, quantile-quantile plot of 

two-sided Wilcoxon rank-sum P values for all genus-level taxa. The distribution (x-axis expected, y-axis observed) diverges from the null (diagonal line) for many taxa. 

C) Beta diversity, distribution of the first principal coordinate values (PC1, 11.5% of the variance*) of the unweighted UniFrac distance matrix. Boxes are the interquartile 

range; median values are bands within the boxes; whiskers are 1.5-times the IQR; open circle is an outlier value. CI = confidence interval; PD = phylogenetic diversity.
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beta diversity distance matrix (P = .01) (Figure 1C). The differ-
ence was larger with exclusion of the two antibiotic-exposed 
case patients (unweighted UniFrac P  =  .006). Without adjust-
ment for multiple comparisons, relative abundance of several 
taxa differed between case patients and control patients by 1% 
or more (Supplementary Table 2, available online). Particularly 
in the order Clostridiales, case patients had higher levels of 
Clostridiaceae, Faecalibacterium, and Ruminococcaceae; and they 
had lower levels of Dorea and Lachnospiraceae (Supplementary 
Figure 1, available online).

This population-based case-control study found that the 
fecal microbiota was less diverse and compositionally differ-
ent in postmenopausal women who were awaiting treatment 
for biopsy-proven breast cancer compared with similar women 
without breast cancer. As expected (5–11), the cancer case 
patients also had higher levels of systemic estrogens, although 
these were not statistically significant in this small study. 
Importantly, the difference in estrogens, and statistical adjust-
ment for this difference, did not alter the cancer-microbiota 
association.

Our findings are consistent with the 40-year literature on 
the gut microbiota’s effects on systemic estrogens (12–16) and 
with our previously observed correlations of alpha diversity 
with systemic estrogen level and EM:parent estrogen ratio 
(16,33). The novel implication of our current study is that breast 
cancer was statistically significantly associated with other 
functions of the gut microbiota, unrelated to systemic estro-
gen levels. Low gut microbial diversity occurs with adiposity, 
insulin resistance, dyslipidemia, leukocytosis, and elevated 
C-reactive protein (17), some of which are associated with 
breast cancer (20,42–47).

The infant’s gut microbial composition may influence breast 
cancer risk in adulthood. In both mice and people, microbiota 
composition is acquired directly from the mother during birth 
(48–53). The distinct microbiota of adults who were born by 
cesarean vs vaginal delivery (54), as well as the similarity of 
microbial composition within adult dizygotic twin pairs (55–57), 
implies that composition is stable for decades. Breast cancer risk 
is affected by obscure early-life effects that also are transmit-
ted through the maternal line (3). Such maternal effects could 
reflect differences in systemic estrogens, but genetic determi-
nants of estrogen levels have been inconsistent (58–60). We pos-
tulate an effect for maternal transmission of the microbiota.

The strengths of our study include representative control 
patients, careful clinical staging and histopathology, optimal 
specimens collected prior to treatment among case patients, 
state-of-the-art assays, and rigorous statistical analysis meth-
ods. Weaknesses include the small sample size, which pre-
cluded assessment of minor taxa and of interactions between 
microbiota metrics and known risk factors, particularly estro-
gens. Estrogen parameters were correlated with microbiota 
alpha diversity, although only in control patients (16,33). Our 
case-control design is another important weakness, precluding 
exclusion of reverse causality—that cancer caused the micro-
biota distinction. To minimize this possibility, our case patients 
received only an outpatient breast biopsy, no surgical or systemic 
therapy prior to specimen collection. Excluding case patients 
who reported antibiotic exposure, perhaps biopsy-related, had 
no major impact on the microbiota associations.

In summary, postmenopausal women with newly diagnosed 
breast cancer had a fecal microbiota that was less diverse and 
compositionally different compared with similar women with-
out breast cancer. The cancer case patients also had higher 

levels of urinary estrogens, but these were independent of 
microbiota differences. The findings imply that the gut micro-
biota may affect breast cancer risk and may do so through estro-
gen-independent pathways.
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