microbial biotechnology

Minireview

Open Access

Metaproteomics of complex microbial communities in

biogas plants

Robert Heyer,"? Fabian Kohrs,"? Udo Reichl'? and
Dirk Benndorf'?*

'Bioprocess Engineering, Otto von Guericke University
Magdeburg, Universitétsplatz 2, Magdeburg 39106,
Germany.

2Max Planck Institute for Dynamics of Complex
Technical Systems, Sandtorstr. 1, Magdeburg 39106,
Germany.

Summary

Production of biogas from agricultural biomass or
organic wastes is an important source of renewable
energy. Although thousands of biogas plants (BGPs)
are operating in Germany, there is still a significant
potential to improve yields, e.g. from fibrous sub-
strates. In addition, process stability should be
optimized. Besides evaluating technical measures,
improving our understanding of microbial commu-
nities involved into the biogas process is considered
as key issue to achieve both goals. Microscopic and
genetic approaches to analyse community composi-
tion provide valuable experimental data, but fail to
detect presence of enzymes and overall meta-
bolic activity of microbial communities. Therefore,
metaproteomics can significantly contribute to eluci-
date critical steps in the conversion of biomass to
methane as it delivers combined functional and
phylogenetic data. Although metaproteomics analy-
ses are challenged by sample impurities, sample
complexity and redundant protein identification,
and are still limited by the availability of genome
sequences, recent studies have shown promising
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results. In the following, the workflow and potential
pitfalls for metaproteomics of samples from full-
scale BGP are discussed. In addition, the value of
metaproteomics to contribute to the further advance-
ment of microbial ecology is evaluated. Finally,
synergistic effects expected when metaproteomics
is combined with advanced imaging techniques,
metagenomics, metatranscriptomics and meta-
bolomics are addressed.

Introduction

Over the past 10 years, conversion of biomass to
methane in biogas plants (BGPs) has become a reliable
source of renewable energy. In 2013, about 7500 BGPs
produced 3.5% of the annual electricity demand in
Germany (Fachagentur Nachwachsende Rohstoffe e.V.
(FNR, 2013). In contrast to burning the biomass, the main
advantage of biogas production is the possibility to utilize
substrates with high water content.

In the future, the importance of biogas process might
even grow, because it could be used for energy storage
by biological methanation (Luo et al., 2012; Bensmann
etal., 2014) or for anaerobic treatment of wastewater
(Angelidaki et al., 2011). During the biogas process, a
complex microbial community degrades biomass or
organic waste including crop silage, dung, manure,
sludge from wastewater treatment plants, household
garbage or waste from food industry to methane. In the
first step, polymeric substrates are hydrolysed to mono-
mers by extracellular enzymes released by primary
fermenters, i.e. Clostridium thermocellum or Caldi-
cellulosiruptor  saccharolyticus. Afterwards, primary
fermenters such as Clostridium acetobutylicum convert
monomers to hydrogen, carbon dioxide, short-chain fatty
acids and primary alcohols. During the subsequent
acetogenesis, secondary fermenters including Syntro-
phomonas wolfei metabolize primary alcohols and short-
chain fatty acids to hydrogen, carbon dioxide and acetate.
The released hydrogen is captured by homoacetogenic
Bacteria and hydrogenotrophic methanogens such
as Acetobacterium woodii resp. Methanothermobacter
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thermoautotrophicus. This syntrophic interaction enables
the secondary fermenters to gain energy under thermo-
dynamically unfavourable conditions. Finally, acetoclastic
methanogens, i.e. Methanosarcina barkeri, consume
acetate and convert it to methane and carbon dioxide. For
a continuous high-yield biogas production, all of the meta-
bolic pathways of these four main steps of the biogas
process have to be finely tuned.

Previous attempts to optimize biogas production
focused on the impact of physicochemical and technical
process parameters on performance of BGPs (Appels
et al., 2008; Ward et al., 2008; Holm-Nielsen et al., 2009;
Weiland, 2010; Angelidaki et al., 2011). However, several
problems still impair the optimal conversion of biomass to
methane (Ward et al., 2008).

First, microbial communities degrade only 30—60% of
the fed biomass (Angelidaki et al., 2011), because lignin
and cellulose are resistant to hydrolysis. In contrast, the
microbial communities in the gut of sheep (Toyoda et al.,
2009) or termites (Burnum et al., 2011) are able to utilize
both lignin- and cellulose-rich grass and wood with high
efficiency.

Second, in order to avoid process disturbances, a lot of
energy and effort is spent to adjust optimal process con-
ditions for the microbial community, e.g. optimal ammonia
concentrations (Appels etal., 2008) or stable process
temperatures. However, microbial communities are able
to adapt to challenging process conditions, partially ques-
tioning these efforts (Chen et al., 2008).

Third, dynamic operation of BGPs would be favour-
able to produce electricity on demand and to stabilize
the electric grid, but is rarely applied due to risk of acidi-
fication (Munk etal, 2010) and missing control strat-
egies. Dynamic operation could be applied by different
feeding amounts easily, but more detailed knowledge
about the metabolic limits of the microbial communities
is required.

In summary, a lack of understanding concerning the
composition and performance of the microbial community
hinders further optimization of the biogas process
(Weiland, 2010). Therefore, improvement of space—time
yield of BPGs requires the clarification of the following
three key questions of applied microbial ecology: (i) who
is there, (ii) who is doing what with whom and (iii) how can
we adjust initial conditions and control the composition of
the microbial communities as previously suggested by
Verstraete and colleagues (2007).

In order to answer these questions, different
approaches namely microscopy, metagenomics, meta-
transcriptomics, metaproteomics and metabolomics are
available. In particular, metaproteomics, targeting the
identification of proteins/enzymes from the individual
species of the microbial community, represent a promising
approach. The main advantage of metaproteomics is the

possibility to link the function of proteins with a
certain taxonomy and to correlated their presence with
metabolic activity (Wilmes and Bond, 2006). However,
metaproteomics is challenged by four major problems
(Muth etal, 2013): (i) contamination by products of
biomass degradation, (ii) sample complexity, (iii) redun-
dant protein identifications and (iv) lack of detailed data-
bases. In this paper, the value of metaproteomics for
analyses of BGPs is discussed, and an optimized work-
flow comprising sampling, protein purification, separation,
mass spectrometry (MS), bioinformatics and result evalu-
ation is described.

Tools for the characterization of
microbial communities

For the analysis of complex microbial communities, a wide
spectrum of elaborated methods is available as shown in
Table 1. Besides the characterization of genes, mRNAs,
proteins and metabolites using dedicated assays, micro-
scopic analysis of microorganisms is also a valuable
option. Due to different targets, the methods provide
different levels of information concerning the spatial
organization, the taxonomic composition as well
as the function and metabolic activity of the individual
microbial species.

Microscopy is a well-known technology used to inves-
tigate the organization of microbial communities regarding
abundance and spatial distribution (Grotenhuis et al.,
1991). However, most microorganisms cannot be
classified by morphology alone. Nevertheless, in BGPs,
the F420 cofactor (Heine-Dobbernack etal., 1988) is
involved in methanogenesis and shows an intrinsic fluo-
rescence allowing specific detection of hydrogenotrophic
methanogens. For further differentiation, specific staining
methods such as fluorescence in situ hybridization (FISH)
can be used (Sekiguchi etal, 1999; Nettmann et al.,
2010). Nevertheless, strong background fluorescence
from sample impuirities, i.e. humic and fulvic acids (Senesi
etal, 1989), often interferes with staining procedures
(Hofman-Bang et al., 2003; Bastida et al., 2009). In addi-
tion to microscopy, flow cytometry can be applied to dis-
criminate between individual strains and to follow
dynamics of microbial communities (Mdller et al., 2012).
Molecular biological analysis of genes or mRNA is a more
robust and precise method for the phylogenetic or func-
tional characterization (Hofman-Bang et al., 2003; Klocke
et al., 2008; Nelson et al., 2011; Ziganshin et al., 2013). In
particular, the presence of 16S rRNA genes is frequently
used for phylogenetic studies (Amann et al., 1995). The
presence of functional genes or corresponding mRNA is
utilized for measuring the functional diversity. Due to its
low stability, the presence of mRNA is a good indicator of
gene expression. While the analysis of RNA requires a
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Table 1. Tools for the characterization of microbial communities.
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Spatial Metabolic  Analysed parameters Supplements
Method Target organization Taxonomy Function activity per run? metaproteomics
microscopy microorganisms  + - - 1 sample indicates successful
cell lysis
flow cytometry microorganisms =~ — + - - 1 sample/1-3 stainings
FISH microscopy microorganisms  + + + + 1 sample/1-3 stainings
TRFLP/DGGE genes/mRNA - + + - 1 sample/1 gene
TRFLP/DGGE + clone  genes/mRNA - + + - 1 sample/1 gene
library
metagenome genes - + + =~10,000 contigs database for
sequencing metaproteomics
metatranscriptome mRNA - + + + ~10,000 contigs database for
sequencing metaproteomics
metaproteomics proteins - + + + =~1,000 proteins Re-annotation of
genes by
proteogenomics
metabolomics intermediates - - + + =10-20 intermediates proves activity of
proteins
enzyme activity enzymes - - + + 1 enzyme activity values for

assays

genes/proteins

a. Numbers of analysed parameters per run are estimated. Actual numbers depend on the experimental setup.

Comparison of standard methods for the investigation of microbial communities, concerning its target, effort, price as well as the type and amount
of information obtained (-, no information; +, qualitative information; +, quantitative information). The evaluation of these methods was done to the
best of our knowledge and refers to the number of analysed parameters per run. However, only a broad overview about available methods can

be given within the scope of this review.

DGGE, denaturing gradient gel electrophoresis; TRFLP, terminal restriction fragment length polymorphism.

previous reversed transcription to cDNA, DNA is directly
amplified by polymerase chain reaction (PCR) with
primers specific to phylogenetic groups or selected func-
tional genes. Afterwards, the equally sized PCR products
are separated by denaturing gradient gel electrophoresis
(DGGE) or terminal restriction fragment length polymor-
phism (TRFL) revealing the fingerprint. In the case of 16S
rBNA based community analysis, the individual microor-
ganisms can be identified by a clone library and the actual
community profile can be generated by normalization with
the species-specific abundance of the 16S rRNA gene
(Klappenbach et al., 2001). In BGPs, the functional analy-
sis was successfully applied for quantification of the
methyl CoM reductase gene and its mRNA (Munk et al.,
2012).

The development of 454 pyrosequencing (Margulies
et al., 2005) and illumina sequencing (Bentley et al., 2008)
enabled the investigation of the whole metagenome/
metatranscriptome of microbial communities instead of
analysing single genes or individual mRNA (Schliter et al.,
2008; Wirth et al., 2012; Zakrzewski et al., 2012). In con-
trast to a metagenome, representing the genetic potential
of a community, the metatranscriptome is a snapshot of the
actual gene expression.

However, final metabolic activity is determined, among
other factors, by the concentrations of proteins, which are
strongly influenced by their half-life periods. Thus, a
better description of the metabolic function of microbial
communities is expected from the abundance of the

microbial enzymes and proteins [metaproteome (Wilmes
and Bond, 2006)]. Most proteomic approaches, however,
are performed under denaturating conditions and there-
fore provide only information regarding the abundance of
proteins instead of enzyme activities. In addition, the
latter are influenced by temperature, pH value as well as
on the concentration of substrates and products. There-
fore, enzyme activity assays, e.g. enzymes of hydrolysis
(Gasch etal, 2013) or enzymes of methanogenesis
(Refai et al., 2014), were also established for analysis of
microbial communities from BGPs and could be applied
to confirm metaproteome data. Alternatively, concen-
trations of intracellular and extracellular metabolites
(metabolome) could be determined as they also repre-
sent the microbial activity. The currently performed
routine sampling of full-scale BGPs clearly provides only
a minimum of information regarding the metabolic activity
of microbial communities, e.g. the composition and
amount of the substrates, the volume and composition of
the gas, and the concentration of the short-chain fatty
acids in the digestate (Hill and Holmberg, 1988).
However, without expensive labelling of substrates with
stable isotopes, metabolites cannot be assigned to
phylogenetic groups.

Obviously, each method for microbial community char-
acterization has its own advantages. Only a combination
of different methods will allow to draw a more realistic
picture of the microbial conversion of biomass to
methane, and to derive successful measures for process
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design and further optimization. The problems and limits
of the individual methods should be carefully considered,
as done in the review of Hofman-Bang and colleagues
(2003) for molecular biological methods.

Metaproteomic workflow

The implementation of metaproteomics approaches
covering a wide range of BGP samples requires consid-
ering several key challenges: (i) experimental design, (ii)
sampling, (i) protein purification, (iv) protein separation,
(v) liquid chromatography (LC)-tandem mass spectrom-
etry MS/MS), (vi) bioinformatics and (vii) examining the
protein identification (Figure 1).

Reproducible scientific studies require carefully
planned and documented experiments. In order to corre-
late metaproteome data from different BGPs with process
data, at least a minimum set of meta-information has to be
provided, comprising BGP design, process temperature,
pH value, nitrogen content, inocula, gas composition and
volume as well as feed composition. In addition, technical
and biological replicates are required. However, for most
industrial scale BGPs, no true replicates exist, because
each BGP is individual concerning its construction and
operational parameters. An acceptable workaround would
be to sample at least two independent technical replicates
at close time points. Otherwise, investigations using lab-
scale equipment are required to complement studies.
Here, critical process conditions can be applied without
risking the crash of a full-scale fermenter. Depending on
the scientific question, simplifying the complex microbial
community by feeding a synthetic medium (Wilmes et al.,
2008; Abram et al., 2009) or the prior use of synthetic
communities could be useful (Laube and Martin, 1981;
Tatton et al., 1989; Scholten and Conrad, 2000; Plugge
etal., 2010)

A key issue for metaproteome studies is sample com-
plexity. Deeper insight into the metaproteome can be
gained through a combination of orthogonal separation
steps as shown by Kohrs and colleagues (2014).
However, higher resolution requires significantly higher
experimental effort. Researchers should consider this
before initiating a comprehensive study in which insight
into the metaproteome is often indispensable to validate
research hypotheses. As long as a sufficient number of
representative samples are retained, a more comprehen-
sive metaproteomics analysis or the sequencing of the
corresponding metagenome can be carried out.

Sampling is quite straightforward and representative as
long as the BGP is well mixed, the dead volume of the
sampling tube is discarded and the samples are frozen
immediately. When sampling full-scale BGPs, the follow-
ing issues have to be considered: (i) sampling before
feeding and at same time of the day, (ii) mixing the BGP

before sampling and (iii) discarding sufficient material
before sampling in order to flush the sample port.

Sample preparation includes cell lysis, protein extrac-
tion, protein quantification and separation. Main prob-
lems during cell lysis and protein extraction are the high
amount of sample impurities and the different levels of
microbial community organization, such as scattered
microorganisms, biofilms on the substrates or granules
(Hofman-Bang et al., 2003). Consequently, robust lysis of
all cells and removal of as many contaminants as pos-
sible is required. Phenol extraction followed by ammo-
nium acetate in methanol precipitation sometimes
combined with cell lysis in a ball mill has already been
successfully applied to characterize samples from acti-
vated sludge (Kuhn etal., 2011), soil (Benndorf et al.,
2007) and BGPs (Heyer et al., 2013). Phenol extraction
separates proteins and humic substances and is essen-
tial when extracting proteins from full-scale BGPs. For
lab-scale fermenters fed with synthetic media, cell lysis
with ultrasonic sound and separation of debris from pro-
teins by centrifugation is sufficient (Abram et al., 2009).
Subsequent dissolution of precipitated proteins in
buffers, especially after phenol extraction, is difficult but
high molar urea buffers delivered good results
(Keiblinger et al., 2012; Heyer et al., 2013). However, the
use of high molar urea buffer or the presence of remain-
ing humic substances may interfere with standard protein
assays (Kuhn etal.,, 2011), namely Bradford (Bradford,
1976), Lowry (Lowry et al., 1951) and BCA (Smith et al.,
1985) assays. In contrast, acceptable protein quantifica-
tion can be achieved by using the amido black assay
(Popov etal., 1975; Schweikl etal, 1989; Hanreich
etal.,, 2013) or by quantification of protein intensities in
sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE).

Due to the high sample complexity, the proteins have to
be separated prior to MS analysis. Common approaches
are protein separation according to molecular weight or
isoelectric point, e.g. SDS-PAGE (Laemmli, 1970) or two-
dimensional polyacrylamide gel electrophoresis (2D-
PAGE) (Klose, 1975; O'Farrell, 1975). Subsequent protein
fractions are tryptically digested in-gel into peptides
(Shevchenko et al., 1996). A complete gel-free approach
involving separation of tryptic peptides by one or higher
dimensional LC appears feasible (Link etfal, 1999;
Washburn et al., 2001; Wolters et al., 2001). However,
running the proteins through a SDS-gel without separa-
tion and subsequent in-gel digest is useful because
sample impurities remain in the gels. Furthermore, such a
step prevents clogging of the columns and capillaries of
the chromatographic system (Kohrs et al., 2014). For rou-
tinely metaproteomics, SDS-PAGE procedures achieved
best results since remaining impurities from environmen-
tal samples seem to hinder reproducible separation of
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Fig. 1. Metaproteomics workflow comprising sampling, protein purification, separation, mass spectrometry, bioinformatic workflow and result
evaluation.
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proteins by 2D-PAGE. For improving resolution of
metaproteomics, liquid-isoelectric focusing (IEF) can be
carried out prior to SDS-PAGE (Kohrs et al., 2014). Alter-
natively, ultracentrifugation can be used to separate the
cellular and the extracellular fractions of proteins (Binner
etal., 2011).

MS, often combined with LC, is the standard approach
for protein identification. In MS, peptides are ionized and
separated according to their mass-to-charge ratio. In
order to distinguish between peptides with identical amino
acid composition but different amino acid order, peptide
ions are further fragmented. For protein identification,
these fragment spectra are compared against a protein
database. A complete overview about MS techniques can
be found in Wéhlbrand and colleagues (2013).

For samples with high complexity containing a large
number of peptides, separation of peptides by LC and
high-resolution MS are essential. Nevertheless, the prob-
ability that peptides with similar mass-to-charge ratio
coelute from the LC systems increases drastically. Finally,
the common fragmentation results in low-quality spectra
that fail in a database search. Worse, the number of
peptides with different mass-to-charge ratios is so high
that, due to the limited scan and separation speed of the
MS, only 5-30 of the most abundant peptide ions can be
analysed in one cycle. Although certain rules are applied
to carefully select peptides for fragmentation, this selec-
tion is still often random due to the high number of
peptides. Therefore, the reproducibility between such
LC-MS/MS experiments is low (Tabb etal, 2010).
Running technical replicates in LC-MS/MS and extending
the LC gradients are appropriate strategies to manage
this problem. Besides protein identification, quantification
of at least key proteins is often important for the
characterization of microbial communities. Common
quantification strategies include chemical labelling,
isotopic labelling, label-free quantification as well as
quantification of protein intensity in gels. Signals from
fluorescence labels, often used in gel-based approaches,
can be disturbed by intrinsic fluorescence of humic-like
sample impurities (Li et al., 2004). In addition, the remain-
ing humic compounds can also react with established
chemical labels (Gygi etal, 1999; Lottspeich and
Kellermann, 2011). Due to this uncertainty, label-free
quantification by peptide respective spectra abundance
remains the last option. However, normalization of abun-
dances is beneficial and the exponential modified protein
abundance index (Ishihama et al., 2005) or the normal-
ized spectra abundance factor (Zybailov etal., 2007)
are frequently applied. Another promising quantification
approach is the metabolic labelling with isotopically
labelled substrates (Jehmlich et al., 2008). Incorporation
of stable isotopes into proteins can be monitored by MS
and allows to draw conclusions about metabolic activity in

the microbial community. However, the application is
restricted to microcosm experiments due to the high costs
for fully labelled substrates.

Routinely, peptide and protein identification are carried
out by comparison of fragment spectra against theoretical
spectra from a database by algorithms, e.g. Mascot
(Perkins etal., 1999) or X!Tandem (Craig and Beavis,
2004). Standard databases for protein identification are
NCBInr (Acland et al.,, 2014), UniProtKB/Swiss-Prot or
UniProtKB/TrEMBL (Consortium, 2012). With respect to
metaproteomics, more specific databases or searches
against metagenomes from the same or similar samples
[e.g. for BGP samples (Schliter et al., 2008; Rademacher
etal., 2012; Wirth et al., 2012; Zakrzewski et al., 2012)]
resulted in the identification of more proteins and are
strongly recommended.

Raw data contains many low-quality spectra (Muth
etal,, 2013). During preprocessing, low-quality spectra
can be removed without any significant loss of information
(Ma et al., 2011). Recently, preprocessing and data han-
dling was embedded into complete bioinformatic plat-
forms, e.g. OpenMS (Sturm etal.,, 2008), Proteome
Discoverer or ProteinScape (Thiele et al., 2010).

Besides a probability-based score as a measure for
correctness of peptide identification, the false discovery
rate (FDR) evolved in the proteomic community as a
standard (Elias et al., 2005). FDR is mainly influenced by
database size, e.g. a doubling of the database size
doubles more or less the probability of false positive hits
and thus doubles the FDR. Therefore, searching against
large databases can cause the removal of valuable hits in
order to reach a low FDR (e.g. less than 5%).

The problem of metaproteomics in contrast to other
proteomics with pure or defined mixed cultures is that the
taxonomic composition of complex microbial communities
is not known and the database cannot be reduced to keep
the number of false positive hits low. In this context, the
idea of Jagtap and colleagues (2013) to repeat the search
in a qualified database with reduced size containing only
sequences from species identified in a first search round
seems to be an option. The number of false positive hits
decreases and consequently more spectra are regarded
as correctly identified. However, this strategy may lead to
an underestimation of the FDR and mask the lack of
suitable database entries for many microorganisms due to
cultivation problems (Amann et al., 1995) .

In the next step, protein identification is achieved based
on identified peptides (Bradshaw et al., 2006). Although
identifications based on two peptide per protein are
favoured in peer-reviewed journals, the so-called ‘single
hit wonders’ are not necessarily worse. In fact, identifica-
tions based on single peptides are also accepted when
using high-resolution MS because the quality of the
peptide identification is also considered important (Gupta
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and Pevzner, 2009). Nevertheless, reliability and number
of correctly identified peptides and proteins can be
increased by combining multiple algorithms (Ma et al.,
2011; Vaudel et al,, 2011). Even the best algorithm can
only identify proteins whose sequence is covered in a
database. An approach to overcome this pitfall is de novo
sequencing of peptides using acquired spectra (Frank
and Pevzner, 2005), and to search for homologue pro-
teins using the MS-driven basic local alignment search
tool (MS-BLAST) (Shevchenko et al., 2001). However, the
evaluation of de novo results requires manual inspection.
Therefore, a more straightforward strategy is sequencing
the metagenome of the analysed sample.

After successful protein identification, the importance of
a single identification can be improved by acquiring meta-
information concerning taxonomy and function from
repositories, e.g. UniProt (Consortium, 2012). Moreover,
redundant protein identifications due to similar peptides
from homologue proteins can be grouped based on a
similar peptide sets (Schneider et al., 2012), one shared
peptide (Kohrs etal, 2014; Lu etal, 2014) or by
sequence similarity [e.g. UniRef-Cluster (Suzek et al.,
2007)] to so called metaproteins (Muth etal, 2015).
Finally, protein taxonomy can be redefined by the
common ancestor taxonomy of all proteins in a group
(Huson et al.,, 2007). It allows a reliable phylogenetic
assignment of metaproteins avoiding risky assignments
on species or strains.

For a better survey, taxonomic composition can be
visualized in a Krona plot (e.g. Krona plot for a
mesophilic/thermophilic BGP: Figure 2; Fig. S1) (Ondov
etal., 2011) that is based on identified peptides or
spectra, and National Center for Biotechnology Informa-
tion taxonomy (Acland et al., 2014). For comparison of
taxonomic profiles from different samples or time points,
the richness of species, their community organization
and their dynamics can be calculated, as extensively
discussed in the concept of Microbial Resource Manage-
ment (Verstraete etal, 2007; Marzorati etal, 2008;
Wittebolle et al., 2009).

Shifting to protein functions, overview plots, such as a
Voronoi Treemap (Bernhardt et al., 2013) or a common
pie chart, based on gene ontologies (Ashburner et al.,
2000) or UniProt Keywords (Consortium, 2012) are
beneficial. Even more important is the assignment of
identified proteins to biochemical pathways. A straight-
forward mapping to MetaCyc pathways (Caspi etal.,
2014) or Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (Figure 3, Fig. S2) (Kanehisa and
Goto, 2000) can be achieved using KEGG ontologies or
enzyme commission numbers (Bairoch, 2000). Often,
proteome studies result in long lists of upregulated and
downregulated proteins confirmed by statistical tests
(Karp and Lilley, 2007). For better exploitation of data,
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correlation analysis between taxa, functions or process
parameters can reveal unexpected functional relation-
ships improving the knowledge about the microbial com-
munity. Moreover, differences between BGPs can be
monitored by principal component analysis or cluster
analysis of protein or taxonomic profiles, e.g. cluster of
different BGPs based on SDS-PAGE profiles (Heyer
etal, 2013). In the future, the use of machine learning
algorithms (Kelchtermans et al,, 2014) might result in
further improvements.

In microbial ecology, a wide mixture of different
methods are commonly applied to investigate a specific
problem. Hence, knowledge of how to combine these
methods is important. First of all, a standardization of
sample preparation is essential. With regard to the use of
multi-omic approaches, the sample preparation workflow
should comprise most analytes namely DNA, RNA, pro-
teins and metabolites in an adequate manner (Roume
etal., 2013). As previously discussed in Tools for the
characterization of microbial communities (Table 1),
metaproteomics delivers thorough information about
taxonomy and function while conclusions regarding
community organization and metabolic activity can only
be obtained to a limited degree. Further insight in micro-
bial communities could be gained by combining data
from advanced microscopy approaches, e.g. FISH and
metaproteomics. For instance, hypotheses regarding
syntrophic interaction of Coprothermobacter and Meth-
anothermobacter in a thermophilic reactor treating ther-
mally pretreated sludge (Gagliano etal, 2014) might
have benefited from an additional proteomic study. More-
over, protein identification in metaproteomics profits from
high-quality genome databases, making metagenomics/
metatranscriptomics and metaproteomics partners rather
than competitors. The fact that proteomics can also be
used to improve the quality of gene annotation in genome
studies (Gupta et al., 2007) indicates that this interac-
tion might not be an ‘one way road’. In particular,
‘proteogenomics’ approaches might be applied to assist
the annotation of metagenome data using the recently
published proteogenomic software Peppy (Risk etal,
2013). Another option might be the combination of flow
cytometry and metaproteomics (Jehmlich et al., 2010) as
cell sorting enriches microbial subpopulations and
therefore reduces complexity of samples prior to
metaproteome analysis.

Advances in the field enabled by metaproteomics

So far, only a few metaproteome studies of BGPs were
carried out (Table 2) (Abram et al., 2009; 2011; Hanreich
etal., 2012; 2013; Yan et al,, 2012; Heyer et al., 2013;
Kohrs et al., 2014; Li et al., 2014). Of those, only the work
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Mesophile BGP

Fig. 2. Krona plot of a mesophilic BGP, based on the data of Kohrs and colleagues (2014). The abundance of the taxonomic groups corre-
sponds to the percentage of spectra based on a total number of 9485 spectra.

of Hanreich and colleagues (2012), Heyer and colleagues
(2013) and Kohrs and colleagues (2014) analysed full-
scale BGPs. Most studies reported on the massive prob-
lems related to sample impurities, especially humic-like
substances, requiring extensive sample preparation with
phenol. As a consequence, the separation of proteins by
2D-PAGE, even with improvement by paper bridge
loading (Hanreich et al., 2012), sometimes failed (data not
shown). In order to reduce the high sample complexity,
proteins can be separated by SDS-PAGE as discussed in
Heyer and colleagues (2013) and Kohrs and colleagues

(2014). In addition to SDS-PAGE, LU and colleagues
(2014) used IEF to separate the proteins.

While in early metaproteome studies, only a few pro-
teins were detected (Abram et al., 2009; 2011; Hanreich
et al.,, 2012;2013; Yan et al., 2012), recent high-resolution
separations using liquid IEF and SDS-PAGE (Kohrs et al.,
2014; LU et al., 2014) enabled the identification of up to
1000 proteins (Table 2). Assignment of these 1000 protein
identifications to the biogas process enabled to cover the
main steps of hydrolysis, fermentation, acetogenesis
and methanogenesis. In addition, the most important
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CARBON METABOLIEM

X0 N4
171 Kawdan Labcovtres

Fig. 3. Carbon metabolism of a mesophilic biogas plant, based on the data of Kohrs and colleagues (2014). KEGG pathway map of the
carbon metabolism with the identified proteins for methanogenesis from different Archaea (red: Methanosarcinales, blue: Methanomicrobiales,
gold: both groups).

phylogenetic groups known to be involved in biomass groups. Archaeal proteins were dominated by the orders
conversion to methane were identified. Methanobacteria and Methanomicrobia. A comparison of

The majority of the identified bacterial proteins phylogenetic profiles derived from metaproteomics and
belonged to the orders Actinobacter, Bacteriodia, Bacilli, molecular biological studies revealed significant differ-
Chlostridiales, Thermotogae and different Proteobacter ences in the relative abundance of methanogens [about
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Table 2. Overview about previous metaproteome studies.

Process
Author Fermenter Substrate temperature Separation method Identified proteins
Abram et al. 3-5 L lab scale synthetic glucose-based 15°C 2D-PAGE (388 spots) 33 proteins
(2011) wastewater
Yan et al. 2 L lab scale blue algae, sludge 35°C 2D-PAGE (200-300 3 proteins
(2012) spots)
Hanreich etal. 8 L lab scale beet silage, chopped rye 55°C 2D-PAGE (350 spots) 7 enzymes of
(2012) methanogenesis +
several housekeeping
proteins
Hanreich etal. 500 ml batch test straw, hay, digestate from  38°C 2D-PAGE (300 spots) 80 proteins

(2013) maize fermentation
Heyer et al. 6 agricultural biogas mainly grain silage, slurry
(2013) plants and manure
Kohrs et al. mesophilic agricultural  maize silage, forage rye,
(2014) biogas plants cattle manure and slurry
thermophilic agricultural maize whole crop silage
biogas plants and poultry manure
LG et al 1 L bottle office paper + sludge +
(2014) buffer

43°C

52°C

55°C

5% mesophilic 1x SDS-PAGE 100-150 proteins
thermophilic
LC-MS/MS, SDS-PAGE, 757-1,639 proteins
Liquid-IEF + SDS-PAGE
LC-MS/MS, SDS-PAGE, 1,663—-2,091 proteins
Liquid-IEF + SDS-PAGE
LC-MS/MS, SDS-PAGE, 500 proteins

Liquid-IEF

20-30% in metaproteome data compared with the 4%
derived by metagenomics (Hanreich et al., 2013)]. Both
approaches may be subject to bias resulting from differ-
ences in cell lysis and extraction of proteins respective
genes. When comparing both results with predicted com-
munity structures based on modelling of the biogas
process, e.g. the Anaerobic Digestion Model number 1
(Batstone etal, 2002), abundance of methanogens
based on metaproteome data seems to be more correct.
Moreover, the difference between abundances based on
metaproteome and genomic data is not restricted to
methanogens. For example, Li and colleagues (2014)
were astonished about only a few proteins from the genus
Gelria by metaproteomics, although it was highly abun-
dant in the pyrosequencing data. In this case, the bias
might have been introduced by the lack of protein entries
for Gelria in the UniProt database.

Besides proteins from Archaea and Bacteria, several
proteins from plants and animals are frequently identified
in samples from BGPs. They are originated from plant
feedstock or manure and represent the incomplete usage
of substrate. In addition, a few proteins were identified to
belong to Fungi (Kohrs etal, 2014) and to Bacterio-
phages (LU et al., 2014). Most likely, the identified proteins
were not correctly assigned phylogenetically due to
homologous protein sequences. At present, however, it
cannot be ruled out completely that Fungi (Trinci et al.,
1994) or Bacteriophages (Suttle, 2007) have any rel-
evance in BGPs.

As already discussed, the main advantage of
metaproteomics is the functional characterization of
microbial communities together with the phylogenetic
assignment. LU0 and colleagues (2014) showed, for
example, that hemicellulose was hydrolysed by the genus

Caldicellulosiruptor and that celluloses were degraded by
the cellulosome of Clostridium thermocellum. Surprisingly,
LU and colleagues (2014) also observed a high proteolytic
activity from Clostridium proteolyticus, indicating its func-
tion as predator or scavenger of dead biomass. The
observed proteolytic activity nicely confirmed a study
(Binner et al., 2011) demonstrating the fast degradation of
externally added cellulolytic enzymes.

For the subsequent fermentation step, mainly pro-
teins from sugar uptake, glycolysis and to some extent
from the pentose phosphate pathway were identified.
This is in accordance with carbohydrates as the major
substrate of biogas production. Whether the Entner—
Doudoroff pathway is of relevance for fermentation
(Abram et al., 2011) or not (Abram et al., 2011; LU et al.,
2014) depends on process conditions. Pyruvate, which
is produced during the glycolysis, is further converted to
ethanol, acetate, lactate (Kohrs et al., 2014) respectively
to propionate, butyrate and butanoate (LU et al., 2014).

Amino acids derived from feedstock proteins are fer-
mentable substrates and precursors for synthesis of
microbial biomass. Based on metaproteome data, Heyer
and colleagues (2013) reported about an imbalance of
amino acids available for microbial anabolism. On the one
hand, the enzyme glutamate dehydrogenase degrades
glutamate and represents catabolism; on the other hand,
enzymes like aspartokinase and dihydrodipicolinate
reductase represent anabolism and are involved in de
novo synthesis of methionine, lysine and threonine sur-
passing their low proportion in maize protein (Ridley et al.,
2002).

In contrast to the previous steps of the biogas
process, the investigation of acetogenesis is even more
challenging. In fact, Li and colleagues (2014) were able
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to identify the majority of key bacterial enzymes for the
acetyl-CoA pathway. However, this pathway not only
enables the production of acetate from hydrogen and
carbon dioxide but can also be used to oxidize acetate
to carbon dioxide. The impact of these two possibilities
on the biogas process is further discussed in the review
of Mdller and colleagues (2013). Consequently, the
direction of this pathway can only be determined based
on the presence of species identified by metaproteo-
mics or the absence of proteins from acetoclastic
methanogenesis.

Proteins involved in methanogenesis are highly abun-
dant in metaproteomes. Nearly all enzymes of the
hydrogenotrophic and the acetoclastic pathway were
identified. Under psychrophilic and mesophilic conditions,
the acetoclastic pathway is favoured (Abram etal.,
2011; Hanreich etal., 2013; Heyer etal., 2013; Kohrs
et al., 2014), whereas, under thermophilic conditions, the
hydrogenotrophic pathway is preferred (Kohrs et al.,
2014; Lu et al., 2014). The presence of the acetoclastic
pathway under thermophilic conditions was only identified
once (Hanreich et al., 2012), and seems to be an individ-
ual case. Furthermore, enzymes for methanogenesis
from single carbon atom compounds were detected
(Heyer et al., 2013; Kohrs et al., 2014) demonstrating the
usage of methanol and methylamines released from
biomass in BGPs.

Although MS-based metaproteomes of different
samples show some similarities due to high abundance
of methanogenic enzymes and also the presence of
similar dominating phylogenetic groups, each BGP
seems to have its own protein signature. Surprisingly,
separation of proteins by SDS-PAGE is sufficient
to produce individual protein patterns (Heyer etal,
2013). These protein patterns were stable for time
periods of several months and changes were correlated
to process disturbance, namely an acidification of the
BGP. Subsequent protein identification revealed a
drastic decrease of the concentration of the enzyme
methyl CoM reductase in advance of acidification.
Accordingly, this key enzyme of methanogenesis could
be used as a predictive biomarker. A low level of the
corresponding mRNA (from mcrA gene) was previously
reported to be correlated to disturbed methanogenesis
(Munk et al., 2012).

Conclusion and outlook

In depth, analysis of microbial communities in BGPs is
required to use their full potential for biogas production.
The comparison of methods for the characterization of
microbial communities and recent results regarding the
functional and taxonomic composition of these microbial
communities obtained by various research groups

Metaproteomics of biogas plants 759

showed that metaproteomics is developing into a power-
ful tool for the exploration of the biogas process. Besides
identifying major pathways of biomass degradation, it
links single metabolic pathways with microbial taxa. Each
BGP shows its own, time stable protein pattern. Strong
alterations in this pattern can be linked with process
disturbances, and some enzymes were identified as
potential biomarkers for process monitoring and fault
detection.

Metaproteome analysis of BGPs is still hampered,
however, by sample impurities, sample complexity, redun-
dancy of protein identifications and a lack of genome
sequences required for protein identifications. Neverthe-
less, the presented workflow overcomes at least parts of
these problems. In the future key issues to be addressed
include comprehensive sample preparation, a suitable
protein separation, grouping of redundant proteins and
the incorporation of meta-information from online reposi-
tories. In particular, more efficient protein extraction,
improved MS and new algorithms for the verification of
protein identification are urgently required to further
improve this workflow and to exploit the full potential of
metaproteomics. In addition, it has to be taken into
account that metaproteomics is no stand-alone approach.
For comprehensive analysis of microbial communities,
metaproteomics should be applied in concert with micros-
copy, cytometry, metagenomics, metatranscriptomics and
metabolomics.

Acknowledgements

We thank Clayton Wollner for critical reading of the
manuscript.

Conflict of interest

None declared.

References

Abram, F., Gunnigle, E., and O’Flaherty, V. (2009)
Optimisation of protein extraction and 2-DE for
metaproteomics of microbial communities from anaerobic
wastewater treatment biofilms. Electrophoresis 30: 4149—
4151.

Abram, F., Enright, A.M., O’'Reilly, J., Botting, C.H., Collins,
G., and O’Flaherty, V. (2011) A metaproteomic approach
gives functional insights into anaerobic digestion. J App/
Microbiol 110: 1550-1560.

Acland, A., Agarwala, R., Barrett, T., Beck, J., Benson, D.A.,
Bollin, C., et al. (2014) Database resources of the National
Center for Biotechnology Information. Nucleic Acids Res
42: D7-D17.

Amann, R.l., Ludwig, W., and Schleifer, K.H. (1995)
Phylogenetic identification and in-situ detection of individ-
ual microbial-cells without cultivation. Microbiol Rev 59:
143-169.

© 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology, Microbial

Biotechnology, 8, 749-763



760 R. Heyer, F. Kohrs, U. Reichl and D. Benndorf

Angelidaki, |., Karakashev, D., Batstone, D.J., Plugge, C.M.,
and Stams, A.J. (2011) Biomethanation and its potential.
Methods Enzymol 494: 327-351.

Appels, L., Baeyens, J., Degreve, J., and Dewil, R. (2008)
Principles and potential of the anaerobic digestion of
waste-activated sludge. Prog Energ Combust 34: 755—
781.

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H.,
Cherry, J.M., etal. (2000) Gene Ontology: tool for the
unification of biology. Nat Genet 25: 25-29.

Bairoch, A. (2000) The ENZYME database in 2000. Nucleic
Acids Res 28: 304-305.

Bastida, F., Moreno, J.L., Nicolas, C., Hernandez, T., and
Garcia, C. (2009) Soil metaproteomics: a review of an
emerging environmental science. Significance, methodol-
ogy and perspectives. Eur J Soil Sci 60: 845-859.

Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V,,
Pavlostathis, S.G., Rozzi, A., et al. (2002) The IWA Anaero-
bic Digestion Model No 1 (ADM1). Water Sci Technol 45:
65-73.

Benndorf, D., Balcke, G.U., Harms, H., and von Bergen, M.
(2007) Functional metaproteome analysis of protein
extracts from contaminated soil and groundwater. Isme J
1: 224-234.

Bensmann, A., Hanke-Rauschenbach, R., Heyer, R., Kohrs,
F., Benndorf, D., Reichl, U., and Sundmacher, K. (2014)
Biological methanation of hydrogen within biogas plants: a
model-based feasibility study. Appl/ Energ 134: 413-
425,

Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., Smith,
G.P., Milton, J., Brown, C.G., et al. (2008) Accurate whole
human genome sequencing using reversible terminator
chemistry. Nature 456: 53-59.

Bernhardt, J., Michalik, S., Wollscheid, B., Volker, U., and
Schmidt, F. (2013) Proteomics approaches for the analysis
of enriched microbial subpopulations and visualization of
complex functional information. Curr Opin Biotechnol 24:
112-119.

Binner, R., Menath, V., Huber, H., Thomm, M., Bischof, F.,
Schmack, D., and Reuter, M. (2011) Comparative study of
stability and half-life of enzymes and enzyme aggregates
implemented in anaerobic biogas processes. Biomass
Conversion Biorefinery 1: 1-8.

Bradford, M.M. (1976) A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the
principle of protein-dye binding. Anal Biochem 72: 248—
254.

Bradshaw, R.A., Burlingame, A.L., Carr, S., and Aebersold,
R. (2006) Reporting protein identification data: the next
generation of guidelines. Mol Cell Proteomics 5: 787—
788.

Burnum, K.E., Callister, S.J., Nicora, C.D., Purvine, S.O.,
Hugenholtz, P., Warnecke, F., etal. (2011) Proteome
insights into the symbiotic relationship between a captive
colony of Nasutitermes corniger and its hindgut
microbiome. Isme J 5: 161-164.

Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H.,
Fulcher, C.A., etal. (2014) The MetaCyc database of
metabolic pathways and enzymes and the BioCyc collec-
tion of Pathway/Genome Databases. Nucleic Acids Res
42: D459-D471.

Chen, Y., Cheng, J.J., and Creamer, K.S. (2008) Inhibition of
anaerobic digestion process: a review. Bioresour Technol
99: 4044-4064.

Consortium, U. (2012) Reorganizing the protein space at the
Universal Protein Resource (UniProt). Nucleic Acids Res
40: D71-D75.

Craig, R., and Beavis, R.C. (2004) TANDEM: matching pro-
teins with tandem mass spectra. Bioinformatics 20: 1466—
1467.

Elias, J.E., Haas, W., Faherty, B.K., and Gygi, S.P. (2005)
Comparative evaluation of mass spectrometry platforms
used in large-scale proteomics investigations. Nat Methods
2: 667-675.

Fachagentur Nachwachsende Rohstoffe e.V. (FNR) (2013)
Basisdaten Bioenergie Deutschland.

Frank, A., and Pevzner, P. (2005) PepNovo: de novo peptide
sequencing via probabilistic network modeling. Anal Chem
77: 964-973.

Gagliano, M.C., Braguglia, C.M., Gianico, A., Mininni, G.,
Nakamura, K., and Rossetti, S. (2014) Thermophilic
anaerobic digestion of thermal pretreated sludge: role of
microbial community structure and correlation with process
performances. Water Res 68C: 498-509.

Gasch, C., Hildebrandt, I., Rebbe, F., and Roske, I. (2013)
Enzymatic monitoring and control of a two-phase batch
digester leaching system with integrated anaerobic filter.
Energy, Sustainability Soc 3: 1-11.

Grotenhuis, J., Smit, M., Plugge, C., Xu, Y., Van Lammeren,
A., Stams, A., and Zehnder, A. (1991) Bacteriological
composition and structure of granular sludge adapted to
different substrates. Appl Environ Microbiol 57: 1942—
1949.

Gupta, N., and Pevzner, P.A. (2009) False discovery rates of
protein identifications: a strike against the two-peptide rule.
J Proteome Res 8: 4173-4181.

Gupta, N., Tanner, S., Jaitly, N., Adkins, J.N., Lipton, M.,
Edwards, R., efal. (2007) Whole proteome analysis of
post-translational modifications: applications of mass-
spectrometry for proteogenomic annotation. Genome Res
17: 1362-1377.

Gygi, S.P, Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and
Aebersold, R. (1999) Quantitative analysis of complex
protein mixtures using isotope-coded affinity tags. Nat
Biotechnol 17: 994—-999.

Hanreich, A., Heyer, R., Benndorf, D., Rapp, E., Pioch, M.,
Reichl, U., and Klocke, M. (2012) Metaproteome
analysis to determine the metabolically active part of a
thermophilic microbial community producing biogas
from agricultural biomass. Can J Microbiol 58: 917—
922.

Hanreich, A., Schimpf, U., Zakrzewski, M., Schiuter, A.,
Benndorf, D., Heyer, R., etal. (2013) Metagenome and
metaproteome analyses of microbial communities in
mesophilic biogas-producing anaerobic batch fermenta-
tions indicate concerted plant carbohydrate degradation.
Syst Appl Microbiol 36: 330-338.

Heine-Dobbernack, E., Schoberth, S.M., and Sahm, H.
(1988) Relationship of intracellular coenzyme F(420)
content to growth and metabolic activity of methano-
bacterium bryantii and methanosarcina barkeri. Appl/
Environ Microbiol 54: 454—459.

© 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology, Microbial

Biotechnology, 8, 749-763



Heyer, R., Kohrs, F., Benndorf, D., Rapp, E., Kausmann, R.,
Heiermann, M., et al. (2013) Metaproteome analysis of the
microbial communities in agricultural biogas plants. New
Biotechnol 30: 614—622.

Hill, D., and Holmberg, R. (1988) Long chain volatile fatty acid
relationships in anaerobic digestion of swine waste. Bio-
logical Wastes 23: 195-214.

Hofman-Bang, J., Zheng, D., Westermann, P., Ahring, B.K.,
and Raskin, L. (2003) Molecular ecology of anaerobic
reactor systems. Adv Biochem Eng Biotechnol 81: 151—
203.

Holm-Nielsen, J.B., Al Seadi, T., and Oleskowicz-Popiel, P.
(2009) The future of anaerobic digestion and biogas utili-
zation. Bioresour Technol 100: 5478-5484.

Huson, D.H., Auch, A.F.,, Qi, J., and Schuster, S.C. (2007)
MEGAN analysis of metagenomic data. Genome Res 17:
377-386.

Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T,
Rappsilber, J., and Mann, M. (2005) Exponentially modi-
fied protein abundance index (emPAl) for estimation of
absolute protein amount in proteomics by the number of
sequenced peptides per protein. Mol Cell Proteomics 4:
1265-1272.

Jagtap, P., Goslinga, J., Kooren, J.A.,, McGowan, T.,
Wroblewski, M.S., Seymour, S.L., and Giriffin, T.J.
(2013) A two-step database search method improves
sensitivity in peptide sequence matches for metapro-
teomics and proteogenomics studies. Proteomics 13:
1352—-1357.

Jehmlich, N., Schmidt, F., Hartwich, M., von Bergen, M.,
Richnow, H.H., and Vogt, C. (2008) Incorporation of carbon
and nitrogen atoms into proteins measured by protein-
based stable isotope probing (Protein-SIP). Rapid
Commun Mass Spectrom 22: 2889—-2897.

Jehmlich, N., Hubschmann, T., Salazar, M.G., Volker, U.,
Benndorf, D., Muller, S., etal. (2010) Advanced tool for
characterization of microbial cultures by combining
cytomics and proteomics. Appl Microbiol Biotechnol 88:
575-584.

Kanehisa, M., and Goto, S. (2000) KEGG: kyoto encyclo-
pedia of genes and genomes. Nucleic Acids Res 28:
27-30.

Karp, N.A., and Lilley, K.S. (2007) Design and analysis
issues in quantitative proteomics studies. Proteomics 7
(Suppl. 1): 42-50.

Keiblinger, K.M., Wilhartitz, I.C., Schneider, T., Roschitzki, B.,
Schmid, E., Eberl, L., et al. (2012) Soil metaproteomics —
Comparative evaluation of protein extraction protocols. Soil
Biol Biochem 54: 14-24.

Kelchtermans, P., Bittremieux, W., De Grave, K., Degroeve,
S., Ramon, J., Laukens, K., et al. (2014) Machine learning
applications in proteomics research: how the past can
boost the future. Proteomics 14: 353-366.

Klappenbach, J.A., Saxman, P.R., Cole, J.R., and Schmidt,
T.M. (2001) rrndb: the ribosomal RNA operon copy number
database. Nucleic Acids Res 29: 181-184.

Klocke, M., Nettmann, E., Bergmann, |., Mundt, K., Souidi, K.,
Mumme, J., and Linke, B. (2008) Characterization of the
methanogenic Archaea within two-phase biogas reactor
systems operated with plant biomass. Syst Appl Microbiol
31: 190-205.

Metaproteomics of biogas plants 761

Klose, J. (1975) Protein mapping by combined isoelectric
focusing and electrophoresis of mouse tissues. A novel
approach to testing for induced point mutations in
mammals. Humangenetik 26: 231-243.

Kohrs, F., Heyer, R., Magnussen, A., Benndorf, D., Muth, T,,
Behne, A., etal. (2014) Sample prefractionation with
liquid isoelectric focusing enables in depth microbial
metaproteome analysis of mesophilic and thermophilic
biogas plants. Anaerobe 29: 59-67.

Kuhn, R., Benndorf, D., Rapp, E., Reichl, U., Palese, L.L.,
and Pollice, A. (2011) Metaproteome analysis of sewage
sludge from membrane bioreactors. Proteomics 11: 2738—
2744,

Laemmli, U.K. (1970) Cleavage of structural proteins during
the assembly of the head of bacteriophage T4. Nature 227:
680—685.

Laube, V.M., and Martin, S.M. (1981) Conversion of cellulose
to methane and carbon dioxide by triculture of Acetivibrio
cellulolyticus, Desulfovibrio sp., and Methanosarcina
barkeri. Appl Environ Microbiol 42: 413—420.

Li, Y., Dick, W.A., and Tuovinen, O.H. (2004) Fluorescence
microscopy for visualization of soil microorganisms — a
review. Biol Fertil Soils 39: 301-311.

Link, A.J., Eng, J., Schieltz, D.M., Carmack, E., Mize, G.J.,
Morris, D.R., etal. (1999) Direct analysis of protein
complexes using mass spectrometry. Nat Biotechnol 17:
676—682.

Lottspeich, F., and Kellermann, J. (2011) ICPL labeling
strategies for proteome research. Methods Mol Biol 753:
55-64.

Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J.
(1951) Protein measurement with the Folin phenol reagent.
J Biol Chem 193: 265-275.

Luo, G., Johansson, S., Boe, K., Xie, L., Zhou, Q., and
Angelidaki, 1. (2012) Simultaneous hydrogen utilization
and in situ biogas upgrading in an anaerobic reactor.
Biotechnol Bioeng 109: 1088—1094.

La, F., Bize, A., Guillot, A., Monnet, V., Madigou, C.,
Chapleur, O., etal. (2014) Metaproteomics of cellulose
methanisation under thermophilic conditions reveals a
surprisingly high proteolytic activity. Isme J 8: 88—
102.

Ma, Z.Q., Chambers, M.C., Ham, A.J.L., Cheek, K.L.,
Whitwell, C.W., Aerni, H.R., etal. (2011) ScanRanker:
quality assessment of tandem mass spectra via sequence
tagging. J Proteome Res 10: 2896—2904.

Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader,
J.S., Bemben, L.A., etal. (2005) Genome sequencing in
microfabricated high-density picolitre reactors. Nature 437:
376-380.

Marzorati, M., Wittebolle, L., Boon, N., Daffonchio, D., and
Verstraete, W. (2008) How to get more out of molecular
fingerprints: practical tools for microbial ecology. Environ
Microbiol 10: 1571-1581.

Munk, B., Bauer, C., Gronauer, A., and Lebuhn, M. (2010)
Population dynamics of methanogens during acidification
of biogas fermenters fed with maize silage. Eng Life Sci10:
496-508.

Munk, B., Bauer, C., Gronauer, A., and Lebuhn, M. (2012) A
metabolic quotient for methanogenic Archaea. Water Sci
Technol 66: 2311-2317.

© 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology, Microbial

Biotechnology, 8, 749-763



762 R. Heyer, F. Kohrs, U. Reichl and D. Benndorf

Muth, T., Behne, A., Heyer, R., Kohrs, F., Benndorf, D.,
Hoffmann, M., Lehteva, M., Reichl, U., Martens, L., Rapp,
E. (2015) The MetaProteomeAnalyzer: a powerful open-
source software suite for metaproteomics data analysis
and interpretation. Journal of Proteome Research
14:1557-1565.

Muth, T., Benndorf, D., Reichl, U., Rapp, E., and Martens, L.
(2013) Searching for a needle in a stack of needles: chal-
lenges in metaproteomics data analysis. Mol Biosyst 9:
578-585.

Muller, B., Sun, L., and Schndrer, A. (2013) First insights into
the syntrophic acetate-oxidizing bacteria — a genetic study.
Microbiologyopen 2: 35-53.

Mller, S., Hubschmann, T., Kleinsteuber, S., and Vogt, C.
(2012) High resolution single cell analytics to follow micro-
bial community dynamics in anaerobic ecosystems.
Methods 57: 338—-349.

Nelson, M.C., Morrison, M., and Yu, Z.T. (2011) A meta-
analysis of the microbial diversity observed in anaerobic
digesters. Bioresour Technol 102: 3730-3739.

Nettmann, E., Bergmann, I., Pramschufer, S., Mundt, K.,
Plogsties, V., Herrmann, C., and Klocke, M. (2010)
Polyphasic analyses of methanogenic archaeal commu-
nities in agricultural biogas plants. Appl Environ Microbiol
76: 2540-2548.

O’Farrell, P.H. (1975) High resolution two-dimensional elec-
trophoresis of proteins. J Biol Chem 250: 4007—-4021.

Ondov, B.D., Bergman, N.H., and Phillippy, A.M. (2011) Inter-
active metagenomic visualization in a Web browser. BMC
Bioinformatics 12: 385.

Perkins, D.N., Pappin, D.J.C., Creasy, D.M., and Cottrell, J.S.
(1999) Probability-based protein identification by searching
sequence databases using mass spectrometry data. Elec-
trophoresis 20: 3551-3567.

Plugge, C.M., Scholten, J.C.M., Culley, D.E., Nie, L.,
Brockman, F.J., and Zhang, W.W. (2010) Gilobal
transcriptomics analysis of the Desulfovibrio vulgaris
change from syntrophic growth with Methanosarcina
barkeri to sulfidogenic metabolism. Microbiol-Sgm 156:
2746-2756.

Popov, N., Schmitt, M., Schulzeck, S., and Matthies, H.
(1975) Eine storungsfreie mikromethode zur bestimmung
des proteingehaltes in gewebehomogenaten. Acta Biol
Med Ger 34: 1441-1446.

Rademacher, A., Zakrzewski, M., Schluter, A., Schonberg,
M., Szczepanowski, R., Goesmann, A., et al. (2012) Char-
acterization of microbial biofilms in a thermophilic biogas
system by high-throughput metagenome sequencing.
FEMS Microbiol Ecol 79: 785-799.

Refai, S., Berger, S., Wassmann, K., and Deppenmeier, U.
(2014) AQuantification of methanogenic heterodisulfide
reductase activity in biogas sludge. J Biotechnol 180:
66—69.

Ridley, W.P., Sidhu, R.S., Pyla, P.D., Nemeth, M.A., Breeze,
M.L., and Astwood, J.D. (2002) Comparison of the nutri-
tional profile of glyphosate-tolerant corn event NK603 with
that of conventional corn (Zea mays L. J Agr Food Chem
50: 7235-7243.

Risk, B.A., Spitzer, W.J., and Giddings, M.C. (2013) Peppy:
proteogenomic search software. J Proteome Res 12:
3019-3025.

Roume, H., Muller, E.E.L., Cordes, T., Renaut, J., Hiller, K.,
and Wilmes, P. (2013) A biomolecular isolation framework
for eco-systems biology. Isme J 7: 110-121.

Schliter, A., Bekel, T., Diaz, N.N., Dondrup, M., Eichenlaub,
R., Gartemann, K.H., etal (2008) The metagenome
of a biogas-producing microbial community of a
production-scale biogas plant fermenter analysed by the
454-pyrosequencing technology. J Biotechnol 136:
77-90.

Schneider, T., Keiblinger, K.M., Schmid, E., Sterflinger-
Gleixner, K., Ellersdorfer, G., Roschitzki, B., et al. (2012)
Who is who in litter decomposition? Metaproteomics
reveals major microbial players and their biogeochemical
functions. Isme J 6: 1749-1762.

Scholten, J.C.M., and Conrad, R. (2000) Energetics of
syntrophic propionate oxidation in defined batch and
chemostat cocultures. Appl Environ Microbiol 66: 2934—
2942.

Schweikl, H., Klein, U., Schindlbeck, M., and Wieczorek, H.
(1989) A vacuolar-type ATPase, partially purified from
potassium transporting plasma membranes of tobacco
hornworm midgut. J Biol Chem 264: 11136—-11142.

Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A., and
Harada, H. (1999) Fluorescence in situ hybridization using
16S rRNA-targeted oligonucleotides reveals localization
of methanogens and selected uncultured bacteria in
mesophilic and thermophilic sludge granules. App! Environ
Microbiol 65: 1280-1288.

Senesi, N., Miano, T., Provenzano, M., and Brunetti, G.
(1989) Spectroscopic and compositional comparative char-
acterization of IHSS reference and standard fulvic and
humic acids of various origin. Sci Total Environ 81: 143—
156.

Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996)
Mass spectrometric sequencing of proteins from silver
stained polyacrylamide gels. Anal Chem 68: 850—-858.

Shevchenko, A., Sunyaev, S., Loboda, A., Shevehenko, A.,
Bork, P., Ens, W., and Standing, K.G. (2001) Charting the
proteomes of organisms with unsequenced genomes by
MALDI-quadrupole time of flight mass spectrometry and
BLAST homology searching. Anal Chem 73: 1917—-1926.

Smith, P., Krohn, R.l., Hermanson, G., Mallia, A., Gartner, F.,
Provenzano, M., etal. (1985) Measurement of protein
using bicinchoninic acid. Anal Biochem 150: 76-85.

Sturm, M., Bertsch, A., Gropl, C., Hildebrandt, A., Hussong,
R., Lange, E., etal. (2008) OpenMS-An open-source
software framework for mass spectrometry. BMC
Bioinformatics 9: 163.

Suttle, C.A. (2007) Marine viruses — major players in the
global ecosystem. Nat Rev Microbiol 5: 801-812.

Suzek, B.E., Huang, H.Z., McGarvey, P., Mazumder, R., and
Wu, C.H. (2007) UniRef: comprehensive and non-
redundant UniProt reference clusters. Bioinformatics 23:
1282-1288.

Tabb, D.L., Vega-Montoto, L., Rudnick, P.A., Variyath, A.M.,
Ham, A.J.L., Bunk, D.M., etal. (2010) Repeatability and
reproducibility in proteomic identifications by liquid
chromatography-tandem mass spectrometry. J Proteome
Res 9: 761-776.

Tatton, M.J., Archer, D.B., Powell, G.E., and Parker, M.L.
(1989) Methanogenesis from ethanol by defined mixed

© 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology, Microbial

Biotechnology, 8, 749-763



continuous cultures. Appl Environ Microbiol 55: 440-
445.

Thiele, H., Glandorf, J., and Hufnagel, P. (2010)
Bioinformatics strategies in life sciences: from data pro-
cessing and data warehousing to biological knowledge
extraction. J Integr Bioinform 7: 141.

Toyoda, A., lio, W., Mitsumori, M., and Minato, H. (2009)
Isolation and identification of cellulose-binding proteins
from sheep rumen contents. Appl Environ Microbiol 75:
1667—-1673.

Trinci, A.P.J., Davies, D.R., Gull, K., Lawrence, M.I., Nielsen,
B.B., Rickers, A., and Theodorou, M.K. (1994) Anaerobic
Fungi in Herbivorous Animals. Mycol Res 98: 129—-152.

Vaudel, M., Barsnes, H., Berven, F.S., Sickmann, A., and
Martens, L. (2011) SearchGUI: an open-source graphical
user interface for simultaneous OMSSA and X!Tandem
searches. Proteomics 11: 996-999.

Verstraete, W., Wittelbolle, L., Heylen, K., Vanparys, B., de
Vos, P., van de Wiele, T., and Boon, N. (2007) Microbial
resource management: the road to go for environmental
biotechnology. Eng Life Sci 7: 117-126.

Ward, A.J., Hobbs, P.J., Holliman, P.J., and Jones, D.L.
(2008) Optimisation of the anaerobic digestion of agricul-
tural resources. Bioresour Technol 99: 7928-7940.

Washburn, M.P., Wolters, D., and Yates, J.R. (2001) Large-
scale analysis of the yeast proteome by multidimensional
protein identification technology. Nat Biotechnol 19: 242—
247.

Weiland, P. (2010) Biogas production: current state and per-
spectives. Appl Microbiol Biotechnol 85: 849—-860.

Wilmes, P., and Bond, P.L. (2006) Metaproteomics: studying
functional gene expression in microbial ecosystems.
Trends Microbiol 14: 92-97.

Wilmes, P., Andersson, A.F., Lefsrud, M.G., Wexler, M.,
Shah, M., Zhang, B., etal (2008) Community
proteogenomics highlights microbial strain-variant protein
expression within activated sludge performing enhanced
biological phosphorus removal. Isme J 2: 853-864.

Wirth, R., Kovacs, E., Maroti, G., Bagi, Z., Rakhely, G., and
Kovacs, K.L. (2012) Characterization of a biogas-
producing microbial community by short-read next genera-
tion DNA sequencing. Biotechnol Biofuels 5: 41.

Wittebolle, L., Marzorati, M., Clement, L., Balloi, A,
Daffonchio, D., Heylen, K., et al. (2009) Initial community
evenness favours functionality under selective stress.
Nature 458: 623-626.

Metaproteomics of biogas plants 763

Wolters, D.A., Washburn, M.P., and Yates, J.R. (2001)
An automated multidimensional protein identification tech-
nology for shotgun proteomics. Anal Chem 73: 5683—
5690.

Wohlbrand, L., Trautwein, K., and Rabus, R. (2013)
Proteomic tools for environmental microbiology-A roadmap
from sample preparation to protein identification and quan-
tification. Proteomics 13: 2700-2730.

Yan, Q., Li, Y.C., Huang, B., Wang, A.J., Zou, H., Miao, H.F.,
and Li, R.Q. (2012) Proteomic profiing of the acid
tolerance response (ATR) during the enhanced biome-
thanation process from Taihu Blue Algae with butyrate
stress on anaerobic sludge. J Hazard Mater 235: 286—
290.

Zakrzewski, M., Goesmann, A., Jaenicke, S., Junemann, S.,
Eikmeyer, F., Szczepanowski, R., et al. (2012) Profiling of
the metabolically active community from a production-
scale biogas plant by means of high-throughput
metatranscriptome sequencing. J Biotechnol 158: 248—
258.

Ziganshin, A.M., Liebetrau, J., Proter, J., and Kleinsteuber, S.
(2013) Microbial community structure and dynamics during
anaerobic digestion of various agricultural waste materials.
Appl Microbiol Biotechnol 97: 5161-5174.

Zybailov, B.L., Florens, L., and Washburn, M.P. (2007) Quan-
titative shotgun proteomics using a protease with broad
specificity and normalized spectral abundance factors. Mo/
Biosyst 3: 354-360.

Supporting information

Additional Supporting Information may be found in the
online version of this article at the publisher’'s web-site:

Fig. S1. Krona plot of a thermophilic BGP, based on the
data of Kohrs and colleagues (2014) for a thermophilic
BGP. The abundance of the taxonomic groups corresponds
to the percentage of spectra based on a total number of
18139 specitra.

Fig. S2. Carbon metabolism of a thermophilic BGP, based
on the data of Kohrs and colleagues (2014). KEGG pathway
map of the carbon metabolism with the identified proteins for
methanogenesis from different Archaea (red: Methano-
sarcinales, blue: Methanomicrobiales, green: proteins of
anabolism).
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