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Abstract

The exposome, defined as the totality of an individual’s exposures over the life course, is a 

seminal concept in the environmental health sciences. Although inherently geographic, the 

exposome as yet is unfamiliar to many geographers. This article proposes a place-based synthesis, 

genetic geographic information science (Genetic GISc) that is founded on the exposome, genome+ 

and behavome. It provides an improved understanding of human health in relation to biology (the 

genome+), environmental exposures (the exposome), and their social, societal and behavioral 

determinants (the behavome). Genetic GISc poses three key needs: First, a mathematical 

foundation for emergent theory; Second, process-based models that bridge biological and 

geographic scales; Third, biologically plausible estimates of space-time disease lags. 

Compartmental models are a possible solution; this article develops two models using pancreatic 

cancer as an exemplar. The first models carcinogenesis based on the cascade of mutations and 

cellular changes that lead to metastatic cancer. The second models cancer stages by diagnostic 

criteria. These provide empirical estimates of the distribution of latencies in cellular states and 

disease stages, and maps of the burden of yet to be diagnosed disease. This approach links our 

emerging knowledge of genomics to cancer progression at the cellular level, to individuals and 

their cancer stage at diagnosis, to geographic distributions of cancer in extant populations. These 

methodological developments and exemplar provide the basis for a new synthesis in health 

geography: genetic geographic information science.
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Introduction

Environment, social and individual factors all play a role in an individual’s health and 

wellbeing. Linking social and health data to a particular location is important because where 

we live can and does influence our health (Tunstall, Shaw, and Dorling 2004). Health 

outcomes are related to an individuals’ physical and social environment, including factors 

such as water, soil and air content, exposure to hazardous materials, tobacco smoke, 

occupation, marital status, social support, and characteristics of the home, in addition to the 

composition of the local built environment (Marmot 2000; Pickle, Waller, and Lawson 

2005).

Geographical epidemiology rests largely upon the assumption that the spatial incidence of 

diseases holds a key to their cause. However, high population mobility, long latent periods 

and environmental change complicate matters, distorting what might otherwise be a direct 

relationship between cause and effect (Jacquez 2004; Kwan 2009). This gives rise to what 

has been called the space-time lag (Dearwent, Jacobs, and Halbert 2001; Griffith and 

Paelinck 2009). From a geographical point of view, this means that the place or environment 

where the case is discovered and diagnosed is not necessarily the same place or environment 

where the exposure occurred (Picheral 1982; Sabel et al. 2003; Sabel et al. 2000).

Many studies examining associations between geographical patterns of health and disease 

and causal factors assume that current residence in an area can be equated with exposure to 

conditions that currently (and historically) pertain there (Bentham 1988). This is important, 

since the place of residence at the time of diagnosis or death is often adopted by 

epidemiologists and geographers as the location for further analysis of the disease in 

question. Yet people move, and hence previous exposure to pathogens will not be included 

in the study. The problems will be greater for diseases that have a long lag or latency period, 

allowing plenty of time for mobility of the population. By adopting only the current 

residential address, not only will an individual’s migration history be neglected, but 

additionally the daily “activity spaces” and associated uncertainties will be ignored (Jacquez 

2004; Kwan 2012). For chronic diseases such as cancer we often use the place of residence 

at diagnosis or death to record the health event. But where people reside at time of diagnosis 

may be far removed from where they lived when causative exposures occurred. This 

disconnect is widely recognized (Wheeler, Ward, and Waller 2012), yet techniques for 

estimating appropriate sampling distributions for latencies for the geographic modeling of 

human diseases that are biologically reasonable, based on observable disease states, and that 

incorporate knowledge of disease progression are seldom available. This article attempts to 

address this need using the construct of Genetic GISc.

Space-Time Geovisualization and Modeling

There is a long and rich history of geographers investigating Space-Time interaction from 

Hägerstrand through Forer to the present (Forer 1978; Hägerstraand 1970; Richardson et al. 

2013). Interest has focused on the Space-Time Cube. Space Time-Paths or geospatial life 

lines have largely been utilised to visualize (often neglecting modeling) individual mobilities 

through space, such as Forer’s work in Auckland visualising student lifestyles (Huisman and 
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Forer 1998). Kwan (2000) has used the cube – she uses the term space-time aquarium - to 

study accessibilities differences among gender and different ethnic groups in Portland 

(Kwan 2000). Miller (1999) applied its principles in trying to establish accessibility 

measures in an urban environment (Miller 1999). For physical environmental exposures, 

Hedley (1999) created an application in a GIS environment for radiological hazard exposure 

(Hedley et al. 1999), and Gulliver and Briggs (2005) modeled space-time interactions to 

traffic derived air-pollution (Gulliver and Briggs 2005). Others have assessed similarity in 

geospatial lifelines and clustered them to quantify disease patterns for mobile populations 

(Jacquez et al. 2013; Sinha and Mark 2005). However, modeling latency between exposure 

and disease outcomes largely remains neglected.

Recent improved data gathering techniques, including the wider availability of GPS, 

cellphone and social media data have renewed interest in Time geography and the Space-

Time-Cube. Dykes and Mountain (2003) discuss data collection techniques by mobile 

phone, GPS and location-based services and suggest a visual analytical method to deal with 

the data gathered (Dykes and Mountain 2003). Lam (2012) and Bian et al (2012) both 

discuss ongoing challenges to health risk assessment despite the wider availability of 

individual level data (Bian et al. 2012; Lam 2012).

The Exposome, Genome+ and Behavome

A new synthesis in health geography we are calling Genetic GISc seeks to document, 

quantify and model the relationships between place, the genome, exposome (Wild 2005b, 

2012), and behavome that are the determinants of illness and wellness (Figure 1). This 

builds on and extends prior constructs in human biology and ecology, such as the nature-

nurture debate and Meade’s Triangle of Human Ecology, which viewed health outcomes as 

the result of place and time specific interactions between populations, their environments 

and their behaviors (Meade 1977).

This paradigm requires an explicit understanding of how these determinants are related to 

space-time patterns of health outcomes in human populations. Because the genome, 

exposome and behavome are defined at the level of the individual, techniques for estimating 

disease latency – the time between the onset of disease and its diagnosis, are essential. A 

second key need is the ability to integrate and model the influence of the genome, exposome 

and behavome across biological scales and to then geographically map the results at local 

and regional scales. Finally, sound theory often requires a solid mathematical foundation, 

and one must be established for Genetic GISc. This article seeks to begin to mathematically 

formalize these requirements, and poses an example using one of the least understood 

cancers, pancreatic cancer.

Exposome

The term “exposome” was introduced by Wild (2005), to:

“… encompass life-course environmental exposures (including lifestyle factors), 

from the prenatal period onwards…the exposome is a highly variable entity that 

evolves throughout the lifetime of the individual.” (Wild, 2005, p 1848).
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The exposome concept recognises three broad categories on non-genetic exposures: internal 

(e.g. metabolism), specific external (e.g. air pollution) and general external (e.g. 

socioeconomic factors)(Wild 2012). While a person’s genome is fixed at conception, 

internal and external sources of exposure cause the human’s internal chemical environment 

to vary throughout life (Rappaport 2011; Miller and Jones 2014). Essentially, an individual 

will have a particular profile of exposure at any given point in time which makes the 

characterisation of the exposome so challenging (Wild 2012). It is a concept to measure 

effects of a lifelong exposure to environmental influences on human health and therefore 

requires longitudinal sampling especially during foetal development, early childhood, 

puberty and the reproductive years (Rappaport 2011). These measures include external 

monitoring and modelling of media such as air and water but also biomonitoring (i.e. 

measurements) of biological markers of exposure through methods such as blood or urine 

sampling (Lioy and Rappaport 2011). Rappaport (2011) prioritises a top down approach 

applying biomonitoring to identify all important exposures, over a bottom up approach 

which is based on air, water or soils samples to identify all exogenous exposures.

Van Tongeren and Cherrie (2012), on the other hand, support the aim of developing an 

integrated concept of exposomics taking all sources of available exposure information into 

account (van Tongeren and Cherrie 2012). Internal and external exposure data, personal 

behaviour and environmental measurements could thus be used to determine the exposome. 

This requires the collaboration of researchers from a variety of disciplines to promote the 

concept and unravel complex relationships between social interactions, biological effects 

and the risk of diseases (Wild, 2012), an endeavor suited to but largely unexploited by 

geographers.

The exposome has a public health orientated objective and the aim of its application is to 

aggregate up from a group of individuals to a population, providing the basis for public 

health decisions (Wild, 2012).

Genome+

The “Genome +” is comprised of the individual’s genome (genetic composition), regulome 

(which controls gene expression), proteome (their compliment of amino acids and proteins) 

and metabalome (the basis of metabolism and homeostasis). Together, these constitute a 

good portion of an individual’s biological makeup. The last few years have seen major 

advances in our ability to quantify the Genome+. Technology improvements have 

dramatically reduced genome sequencing costs. In 2000 the Human Genome Project 

equenced the first whole human genome, at a cost over USD$2 billion (Davies 2010). In 

2012 the 1000 genomes project released their phase 1 sequencing data (Pybus et al. 2014), 

documenting genetic variation in 1,000+ individuals from 25 populations from around the 

globe (The 1000 Genomes Project Consortium 2012). Genome sequencing costs continues 

to drop, and the USD$1,000 whole sequence genome is now available (Hayden 2014). In 

medical practice and research whole genome sequencing poses ethical challenges regarding 

information disclosure to the individual, especially given incomplete knowledge of the 

genetic basis of disease (Yu et al. 2013). Nonetheless, whole genome sequencing as a 

commodity will soon cost ~USD$100. Dramatic cost reductions are occurring in the exome, 

Jacquez et al. Page 4

Ann Assoc Am Geogr. Author manuscript; available in PMC 2015 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



epigenome, and other genome+ constituents (Zentner and Henikoff 2012; Weinhold 2012; 

Meissner 2012; Mefford 2012). It is clear that measurements of the genome+ will soon be 

widely and inexpensively available, and will be incorporated into individual electronic 

health records, notwithstanding the informatics and ethical challenges posed by their 

integration (Kho et al. 2013; Flintoft 2014; Tarczy-Hornoch et al. 2013; Hazin et al. 2013)

As our understanding of the genetic bases of disease has grown, the need for a systems 

biology approach that integrate across genetic, cellular, organ, individual and population-

level scales is increasingly recognized (Oreši 2014). How can we incorporate knowledge, 

for example, of the cascade of genetic mutations leading to pancreatic cancer into our 

understanding of cancer latency, and how might this impact estimates of the burden of 

cancer at the population level? How do changes manifested in pancreatic cells as a result of 

mutations translate into cancer progression, and can we construct models that capture 

biological nuance yet are suited to geographic information science? For geographers, how 

can systems biology approaches be integrated into space-time geographic disease models? 

This article addresses these needs by linking a model of carcinogenesis at the cellular level 

with a model of cancer stages at the individual and population level.

Behavome

The behavome is comprised of an individual’s health-related behaviors over their life 

course, and is the most inchoate of the Genetic GISc triad Genome+, exposome, and 

behavome. Recognition methods for assessing individual behaviors have been an important 

research topic for decades. With the advent of sensors in residences, health care facilities, 

and wearable on patients, the issue of multisensor data fusion for activity recognition has 

emerged. These technologies are already being deployed and assessed in nursing home and 

assisted living facilities, but as yet have little penetration in the geographic literature. Recent 

research has demonstrated these methods can identify risky behaviors with good accuracy 

and low deployment costs (Palumbo et al. 2013). The “internet of things” including smart 

homes, smart cars and smart workplaces, is in the early phase of what many predict to be 

explosive growth (Ashton 2009). In 2008 the number of devices on the Internet exceeded the 

number of people, and in 2020 will exceed 50 billion devices (Swan 2012). Information on 

when, where and how we use appliances, electronic devices, machinery and environmental 

controls in home and workplace settings, and while commuting, have yet to be used to 

quantify the behavome. The value of near real-time data on ambient temperatures and how 

often and when we use the refrigerator may have enormous value for quantifying, for 

example, personal energy budgets, a key problem in cancer etiology (Hursting 2014; 

Ballard-Barbash et al. 2013). A variety of different approaches for assessing health 

behaviors have been suggested using technologies such as inertial sensors, Global 

Positioning System, smart homes, Radio Frequency IDentification and others. Most 

promising is the sensor fusion approach that combines data from several sensors 

simultaneously (Lowe and ÓLaighin 2014). To our knowledge technologies such as Google 

Glass have yet to be used for capturing video images to chronicle dietary intake and other 

health-related activities. Other potential applications include quantification of personalized 

environmental metrics such as individual walkability (e.g. (Mayne et al. 2013)). Once 

health-related behaviors are known, the possibility of using gamification (Whitson 2013) 
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and other approaches to encourage salubrious behaviors become possible (Schoech et al. 

2013).

Contribution of this article

This article proposes a synthesis of the genome+, exposome and behavome that is place-

based and offers a promising new landscape for research in health geography—Genetic 

GISc. The potential research contributions this synthesis offers geographers are manifold, 

including health geography, quantitative methods, behavioral geography, visualization, 

space-time modeling and social geography. The exposome and behavome are new concepts 

with many unsolved gaps of their own, several of which are addressed in this article. First, 

we demonstrate how disease latencies may be estimated using compartmental models and 

data available from systems biology. Disease latency estimation is a key problem for space-

time lags in health geography. Second, space-time models that account for individual 

disease processes yet provide geographic estimates of disease burden are almost entirely 

lacking in health geography, a significant gap addressed by this article. Finally, as a 

motivating example we develop and apply a comprehensive modeling approach that 

estimates cancer latency, couples carcinogenesis and stage models, and that represents and 

links processes at the genomic level (e.g. mutation events, cascades of genetic changes that 

lead to cancer), cellular level (e.g. cell replication and death, DNA repair), organ level (e.g. 

carcinogenesis insitu and metastases to distant organs), individual level (e.g. cancer staging 

in the individual, progression of individuals through cancer stages), to the population level 

(e.g. predicted geographic distributions of undiagnosed cancers). While this by no means 

addresses all of the challenges and gaps posed by Genetic GISc, it hopefully illustrates the 

promise of this research direction and perhaps points the way forward.

It is important to note that the breadth of the concept and challenge represented in Figure 1 

is substantial. This aim of this contribution is to communicate its scope, identify key 

research problems, and propose a way forward. The example of pancreatic cancer presented 

here deals primarily with the genome+. At the time of this writing, measurement of the 

exposome is at a nascent stage; and the term “behavome” is new. When data from the 

exposome and behavome become available they can be incorporated into the modeling 

framework through place- and person-specific effects on model flow parameters, for 

example, DNA mutation and repair rates. Opportunities for such adaptation and extension of 

the modeling framework are identified in the discussion.

We begin with an introduction to the approach for the modeling and analysis of dynamic 

geographic systems using process-based temporal lags. This is followed by a brief 

background on latency estimation approaches that motivate the use of residence times in 

compartmental systems. A primer on compartmental analysis is presented, followed by a 

simple three stage model of disease, and results for distribution of residence times. Next, the 

specific example of pancreatic cancer is considered, and a five state model of carninogenesis 

is developed along with its biological foundation. A second model of progression through 

cancer stages based on diagnostic criteria used by the American Cancer Association follows. 

These models are linked using knowledge of the mapping of stage of diagnosis with 

progression of tumor growth and metastatic capacity. This is applied to data from the 
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Michigan cancer registry on stage at diagnosis for all incident pancreatic cancers in white 

males from 1985 to 2005 in the Detroit metropolitan area. Potential applications of this 

approach and next steps are then discussed.

The generalized approach (Figure 2, left) applies to any geographic system amenable to a 

compartmental representation. Here the emphasis is on the development of a minimally 

sufficient but mechanistically reasonable systems model. An example application to a 

dynamic geographic systems model of cancer using residence times to estimate latency is 

shown in Figure 2, right.

Ideally, Genetic GISc will be based on model-based theory with several characteristics. 

First, models must be biologically reasonable and capture relevant aspects of disease 

etiology and natural history. Second, they must provide estimates of the distributions of 

disease latency.

Third, they must be estimable from empirical data, so we can derive latency distributions 

from observable measures and based on the current state of knowledge of the disease. 

Fourth, they must provide for geographically referenced data on individuals. The derivation 

of biologically-based estimates of disease latency is a difficult problem, and we next 

consider alternative approaches to latency estimation.

Disease latency estimation

Several techniques exist for modeling disease latency, including representations of cohort 

exposures, developmental stages of vulnerability, models of empirical induction periods, and 

compartmental models. We summarize these before focusing on residence times in 

compartmental systems.

Cohort exposures arise when a common exposure occurs for group of individuals, resulting 

in an overall increase in disease risk. Here the temporal lag between the causal event and 

health outcomes is directly observable. For example, Chernobyl released radioactive iodide 

over Belarus and led to an increase in pediatric thyroid cancers. The latent period for tumor 

development was 4–6 years (Nikiforov and Gnepp 1994).

Developmental stages of vulnerability arise when the timing and characteristics of biological 

stages of development are associated with increased risk of an adverse health event in later 

years. For example, genetic risk accounts for approximately 10–15 percent of breast cancer 

cases, and the windows of vulnerability occur before a woman’s first birth, and during the 

development of breast tissues (Colditz and Frazier 1995). Here an average latency and its 

distribution may be estimated as the time from the developmental stage to disease diagnosis.

The Empirical Induction Period (EIP) models latency as the sum of induction and latent 

periods defined as the periods between causal action and disease initiation (induction), and 

between disease initiation and detection (latent). The sum of the induction and latent periods 

is the empirical induction period. The induction period is not estimable except in relation to 

specific etiologic factors, since different exposures have different levels of effect on disease 

expression (Rothman 1981).
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Residence times in compartmental models of disease may be obtained directly from the 

model itself. For a given compartmental model and parameter values the mean residence 

time and distribution of residence times in each compartment are known. This result holds 

for both deterministic and stochastic compartmental models, but has yet to be used in 

geographic models of human disease. When the compartments correspond to stages of 

disease, the compartmental residence times are estimates of disease latency. Compartmental 

models thus are best constructed so compartments correspond to known disease states (e.g. 

are biologically reasonable), and the coefficients governing transitions between 

compartments are formulated in terms of known biological and infection processes (e.g. the 

mechanics are process-based). Residence times from compartmental models thus convey the 

characteristics required at the beginning of this section; (1) they may be formulated in a 

biologically reasonable fashion. (2) They provide estimates of the distribution of latencies. 

(3) Whether a given model, and hence its residence times, is estimable is known once the 

model and observable measures are identified. The remainder of this article employs 

compartmental models. Refer to Appendix I for a Primer on compartmental models.

Residence times

Residence times are the time required for a particle to enter and then exit a compartment. 

Compartment residence times may be used in model validation by comparing residence 

times from the model to the observed residence times. For linear compartmental models the 

residence times are inverse exponential functions, and closed form solutions for calculating 

the probability density functions (pdf’s) are known (Jacquez 1996). In deterministic non-

linear compartmental systems the distributions of residence times are functions of the state 

variables, and hence of the compartments sizes. The probability density functions of linear 

stochastic models are the same as for their deterministic analog. However, the probability 

density functions of residence times for non-linear stochastic systems differ from those of 

their non-linear deterministic counterpart (Jacquez 2002). This article presents residence 

times linear deterministic stage-based models of cancer, which also apply to their linear 

stochastic counterparts.

Simplicity versus complexity, and implications for residence times

There is a tension between simplicity, which makes models more easy to understand and 

mathematically tractable, and complexity, which seeks to incorporate the nuances and 

details of a complex reality. Simplicity may correspond to a representation with fewer 

compartments; an implicit combining of compartments that has implications for the 

modeling of residence times. When the residence times for a compartment in a model are 

too short, the creation of sub-compartments to represent that compartment can be used to 

obtain longer average residence times (Jacquez and Simon 2002). Correspondence of 

residence times to those observed in the system under scrutiny thus can be used as a 

diagnostic for model over-simplification and misspecification.

Modeling carcinogenesis – cancer in the individual

For the geographic modeling of disease we are interested in identifying places and sub-

populations characterized by an excess of cancer for individuals in those states of 
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carcinogenesis when exposures to mutagens might have been causal. That is, we are looking 

for the geographic signature of the actions of past environmental exposures that gave rise to 

cancers. To do this we require biologically reasonable models of carcinogenesis (e.g. the 

biological events that have cancer as their sequelae) and cancer stages (how cancers progress 

once they have started). We begin with carcinogenesis.

The initial biological event leading to cancer is damage to DNA. Such damage occurs on 

one DNA strand, and repair mechanisms can reverse that damage. Whether the damage is 

maintained among daughter cells depends on the timing of replication and repair. If 

replication occurs before repair then the damaged DNA strand is passed on to the daughter 

cells (a fixed mutation). Notice that only some of these mutations are deleterious and lead to 

cancers.

Carcinogenesis models usually treat irreversible steps in the chain of mutations leading to 

cancer as comprised of sub-states with reversible damage attributable to DNA repair 

mechanisms (Kopp-Schneider, Portier, and Rippman 1991; Jacquez 1999). The last few 

years have seen dramatic advances in our understanding of tumor genetics, and it now is 

possible to sequence the genomes sampled from cancer tumors to elucidate the sequence of 

mutations that lead to cancer. The specific mutations vary from one tumor to another and 

from one patient to another, but the steps of mutation, repair, and fixation of deleterious 

mutations via replication events are largely the same. The sub-states of a model of 

carcinogenesis thus should be constructed to correspond to the observed tumor 

morphological characteristics, with flows corresponding to state transitions from mutation, 

repair, and replication.

Consider pancreatic cancer (Figure 3) and its corresponding compartmental model (Figure 

4). A cascade of specific mutation events lead to pancreatic cancer (Alian et al. 2014), 

although these differ from one patient to another (Maitra and Hruban 2008). These 

mutations include KRAS2, p16/CDKN2A, TP53, SMAD4/DPC4, and other genes, and 

result in genomic and transcriptomic alterations that lead to invasion, metastases, cell cycle 

deregulation, and enhanced cancer cell survival (Maitra and Hruban 2008). Precursor lesions 

include the mucinous cycstic neoplasm (MCN), the intraductal papillary mucinous neoplasm 

(IPMN) and the pancreatic intraepithelial neoplasia (PanIN). Here we consider the PanIN 

pathway, which is thought responsible for the majority of pancreatic cancers.

Carcinogenesis is initiated by a mutation in a normal cell that leads to accelerated cell 

proliferation. Waves of clonal expansion along with additional mutations progress to 

pancreatic intraepithelial neoplasia (PanIN) during time T1 (Figure 3). This corresponds to 

the sub-states q1 (normal cell) and q2 (PanIN) in the model in Figure 4. One founder cell 

from a PanIN lesion will start the parental clone that will initiate an infiltrating carcinoma; 

this is indicated by the irreversible flow (k32) from q2 to q3 in Figure 4. Here sub-state q3 is 

the parental clone, and sub-state q4 indicates sub clones with metastatic capacity. The flow 

k32 to sub-state q3 thus represents that replication that gives rise to the index pancreatic 

cancer lesion (the cells in q3), along with the mutation events that confer metastatic capacity 

(resulting in the cells in q4). The empirical residence time in sub-states q3 and q4 is T2. The 

irreversible flow k54 indicates a proliferation and spreading of cells with metastatic capacity, 
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with metastases (state q5) to other organs such as the liver occurring in time T3. The 

observed average times in each model state are T1=11.7 years, T2=6.8 years, and T3=2.7 

years (Campbell et al. 2010). These are the empirical residence times in those states 

describing pancreatic carcinogenesis, and were estimated from tumor histology and tumor 

genetics. This model is consistent with recent findings regarding mechanisms of pancreatic 

tumorigenesis. For example, inflammation and injury are implicated as a precursor event in 

some pancreatic cancers, leading to acinar-to-ductal metaplasia (ADM). ADM is reversible, 

but an oncogenic mutation in KRAS prevents this, and the injured cells enter the pathway to 

pancreatic intraepithelial neoplasia (PanIN). Additional mutation events then can result in 

pancreatic ductal adenocarcinoma (Seton-Rogers 2012), represented by the “pancreatic 

cancer” meta-compartment in Figure 4.

Details on model specification, system equations, parameter estimates and equilibrium 

conditions are in Appendix II.

Residence times

For an outflow connected system without inflow and comprised of n compartments (Figure 

5), the compartment sizes and density function of residence times, given an input of 1 unit at 

t=0 into compartment 1, are (Jacquez 2002):

Eqn 1

Eqn 2

Here ρ specifies the proportions of particles in the n compartments such that the first 

compartment has size 1, and the others have size 0. This means the initial conditions specify 

that all particles at time 0 are in compartment 1. These equations may be applied to solve for 

the density function of residence times in the compartmental model of pancreatic cancer 

(Figure 4) in the subsystems PanIN, pancreatic cancer, and metastatic pancreatic cancer, 

given certain simplifying assumptions.

Refer to Appendix III for the estimation of residence times in the compartmental model of 

pancreatic cancer.

Modeling cancer stages – cancer in populations

We now present a model of pancreatic cancer stages (Figure 6). Here, the unit of observation 

is the cancer patient, and we observe counts of patients in early and late stage pancreatic 

cancer, before and after diagnosis (Figure 7A and 7B). Counts of people in early and late 

stages prior to diagnosis are represented by q6 and q7. Compartment q8 is comprised of 

patients who have been diagnosed, either in early or late stage cancer. The flow of the 

number of health individuals entering early stage cancer is F60. The rate of progression from 
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early to late stage cancer is k76. Diagnosis events from early and late stage are given by the 

rates k86 and k87. Death from the compartments is represented by μ6, μ7, and μ8.

System Equations

The system equations for this stage-based model of pancreatic cancer are

Eqn 3

Equilibrium

Equilibrium occurs under the following conditions.

Eqn 4

Estimation

The number of incident early and late stage cancers (compartment q8) are directly 

observable in most of the states comprising the United States from cancer registry data. The 

flows q6k86 and q7k87 are observable as the number in a defined time period of early and late 

stage diagnoses. The mortality rate q8μ8 is directly observable as the number of diagnosed 

pancreatic patients who die in a defined time period. The quantities q6μ6 and q7μ7 are the 

number of deaths of people with early and late stage, but undiagnosed, pancreatic cancer. 

The estimation of parameter values and the number of yet to be diagnosed cancer cases will 

be demonstrated below in the example of pancreatic cancer in Southeast Michigan.

Carcinogenesis and stage-based model of pancreatic cancer

The carcinogenesis model deals with pancreatic cancer cells in histological and genetic 

states as compartment members, whereas the stage-based model uses individuals and the 

stage of their pancreatic cancer to define compartment membership. The model of 

carcinogenesis informs the stage model through an equivalence of residence times and 

model states (Table 1, Table 2).

Application: Pancreatic cancer in Southeast Michigan

To demonstrate the approach we apply the stage-based model to incident pancreatic cancer 

cases in southeastern Michigan. We employ the four steps illustrated in Figure 2, customized 

to this specific application.

Step 1: Develop the minimally sufficient biologically reasonable systems model
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Step 2: Solve for residence times, compartment sizes and flows

Step 3: Map the data to identify local populations with excess risk

Step 4: Interpret the results

Background and Data

An analysis of pancreatic cancer mortality in white males in Michigan counties in two time 

periods from 1950–1970 and 1970–1995 found statistically significant clusters that persisted 

in Wayne county in both time periods and that expanded to include adjacent Macomb 

county in 1970–1995 (Jacquez 2009). This finding was confirmed using more recent 

incidence and mortality data from the Surveillance Epidemiology and End Results program, 

SEER (Ries et al. 2007). 17 registry/areas are included in the SEER program, including 

Atlanta, rural Georgia, California (Bay Area, San Francisco-Oakland, San Jose-Monterey, 

Los Angeles and Greater California), Connecticut, Hawaii, Iowa, Kentucky, Louisiana, New 

Jersey, New Mexico, Seattle-Puget Sound, Utah and Detroit. In 2000–2004 Detroit had the 

highest age-adjusted incidence rate for white males at 15.0 cases per 100,000 out of all of 

the 17 registry/areas, and the second highest mortality rate at 12.9 deaths per 100,000. In 

contrast, the SEER-wide averages for white males in this period were 12.8 incident cases 

and 12.0 deaths per 100,000. Notice the incidence is nearly equal to the deaths for the 

SEER-wide averages (12.8 vs 12.0), but the incident cases in Detroit exceed the mortality 

rate by a larger difference (15.0 vs. 12.9). This is consistent with the observation that 

pancreatic cancer incidence in Detroit is increasing, and that the Detroit system may not be 

in equilibrium. In terms of our compartmental model, it appears the flows in (F06) exceed 

the flows out due to mortality (q8μ8). Notably, the Detroit registry pancreatic cancer 

mortality for white males in 2000–2004 increased on average 0.9 percent per year 

(Calculated by SEER*Stat from the National Vital Statistics System public use data file). 

The population covered by the Detroit registry in this period was 1,365,315 white males. 

The finding of excess pancreatic mortality with increasing incidence was thus independently 

confirmed by data from SEER and found to persist from 1950 through 2004 (Jacquez 2009).

As a follow-up to this study we obtained annual incidence data from the Michigan Cancer 

Surveillance Program (MCSP) for the period 1985–2005. The Michigan Cancer Registry is a 

gold-standard registry whose completeness and accuracy is certified on an annual basis, and 

MCSP compiles cancer records for the state. Funded in part by the National Program of 

Cancer Registries of the Centers for Disease Control, the MCSP is nationally certified by the 

North American Association of Central Cancer Registries. External audits have found a 

completeness percentage of 95 percent or higher on the population-based data collected by 

the MCSP.

Data cleaning and processing

As a follow-up to this study we obtained annual incidence data from the Michigan Cancer 

Surveillance Program (MCSP) for the period 1985–2005. A gold-standard registry whose 

completeness and accuracy is certified on an annual basis, the MCSP compiles cancer 

records for the state. Funded in part by the National Program of Cancer Registries of the 

Centers for Disease Control, the MCSP is nationally certified by the North American 
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Association of Central Cancer Registries. External audits have found a completeness 

percentage of 95 percent or higher on the population-based data collected by the MCSP.

The geocoding budget and numbers of observations are as follows. A total of 11,068 

pancreatic cancer cases were diagnosed between 1 January 1985 through 31 December 

2005. Of these, 192 addresses of place of residence at diagnosis failed to geocode, leaving 

10,876 cases with known places of residence at diagnosis. Stage at diagnosis (insitu, local, 

regional, distant and unknown) was recorded as unknown for 2,250 of these, leaving 8,826 

cases with known place of residence and known stage at diagnosis. The head of pancreas 

and pancreas not otherwise specificed were the most frequent primary sites, with 4,496 and 

1,621 respectively. Males accounted for 4,202 cases and females 4,424. By race, 6,356 cases 

were whites, 2,192 blacks, and the balance American Indian (8 cases), Asian (61) and other 

or unknown groups (9).

Analysis Steps

Step 1: Describe the model

We employ the model of pancreatic cancer stages in Figure 7A and 7B, system equations in 

Eqn 14.

Step 2: Estimate flows, compartment sizes and residence times

The quantities directly observable are the incident flows into compartment 8 from early and 

late stage but not diagnosed cancers. We use the data for all incident pancreatic cases, 

whether they geocoded or not, and whether the stage at diagnosis was known or unknown. 

Let oe be the total number of cases from 1985 through 2005 observed in the early stage, oL 

be the number late stage, and ou be the number in unknown stage. Y is the number of years 

over which the observations accrued (21 years). We can then estimate the flows into 

compartment q8 for early and late stage cancers as

(Eqn 5)

The units on these are number of cases in the given stage diagnosed per year. According to 

the American Cancer Society, for all stages of pancreatic cancer combined, the one-year 

relative survival rate is 20 percent, and the five-year rate is 4 percent. For μ8 = 0.8 deaths/

diagnosed case-year, and assuming the equilibrium condition in equation 15, we estimate the 

size of compartment q8 as

(Eqn 6)
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This is the average number of diagnosed and surviving (not yet deceased) pancreatic cancer 

cases. For the late stage but not diagnosed cases in compartment q7 we note that at 

equilibrium

(Eqn 7)

The rate μ7 is deaths of late-stage but not diagnosed cases that are not diagnosed after the 

death event, and thus do not flow into compartment q8 (they would have to be diagnosed to 

enter this compartment). We impose μ7 = 0, under the assumption that all of the late-stage 

pancreatic cancer cases are diagnosed (this assumption can be relaxed but seems reasonable 

since late stage pancreatic cancers are by definition advanced and metastatic). Hence deaths 

for late stage but not yet diagnosed cases are diagnosed after they decease. This then yields

(Eqn 8)

Again, the units here are number of cases per year. Since q7k87 = q6k76 and q6k76 = 59.37,

(Eqn 9)

The age-adjusted annual mortality rate from all causes in Michigan in 2010 was 764.2 

deaths per 100,000 (Miniño and Murphy 2012), and has decreased from 1,027.10 deaths per 

100,000 in 1985 (MDCH 2012). We therefore estimated the background mortality rate from 

1985–2005 as the sum of the age-adjusted death rates for all races and sexes divided by the 

number of years being considered, yielding a 21 year average of 924.05 deaths per 100,000. 

We set person-specific annual death rate μ6 = 0.00924 and using the equilibrium condition 

for compartment q6 obtain

(Eqn 10)

Earlier we demonstrated an equivalence between residence times in early and late stage 

cancer stages (q6 and q7) and residence times in the carcinogenetic model of PanIN and its 

sequelae. Then the residence time in q6 is T2, and in q7 it is T3. It still remains to solve for 

the residence time in q8, T4. Consider a pulse of newly diagnosed cases entering q8 either 

from q6 (diagnosed in early stage) or q7 (diagnosed in late stage). Recall the median survival 

after diagnosis is 6 months, and that the one year survival rate is about 20 percent. 

Expressing time in days, we wish to fit the Erlang distribution such that CDF(182.5 

days)=0.5, and CDF(365 days)=0.8. We solved this using the formulation for a one 

compartment system with μ8 as the exit. At a daily mortality rate of μ8 = 0.0038 we find 

CDF(182.5 days)=0.5002, and CDF(365 days)=0.7502.
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Put another way, this states that for a pulse of cases diagnosed on the same day, about 50 

percent will be alive after 182.5 days, and about 25 percent will be alive after 1 year. This 

indicates our fairly simple model of compartment q8 is reasonably complete, at least in 

terms of its ability to represent observed 6 months and 1 year survival statistics.

Now that we have estimated μ8 we use the relationship

(Eqn 11)

to solve for the size of compartment 8 yielding 379.98, . This is the estimated 

average number of diagnosed but not deceased pancreatic cancer cases in the study area.

Earlier we solved for q6 and q7 using observed quantities such as incident early and late 

stage pancreatic cancer case diagnoses. It is interesting to note for q6 that an alternative 

solution is to use the observed residence time in early stage, T2, to then solve for q6. This 

provides a validation of the estimate.

Define k′ to be the sum of the outflow coefficients from compartment q6, k′ = k76 + k86 + μ6. 

Notice we can now estimate k′ using the methods developed earlier for the residence time of 

the Erlang distribution. Specifically, solve for k′ for a 1 compartment system such that the 

mean residence time is T2. This yields an estimate , which is the per case daily 

rate of exit from early stage but not-yet diagnosed pancreatic cancer, attributable to 

background mortality, progression to advanced cancer, and diagnosis. Multiplying by q6 and 

using hat notation to indicate values we can estimate from the observed data yields

(Eqn 12)

We now divide through by q6, rearrange and have an estimator for q6 as

(Eqn 13)

Using the values obtained earlier yields (written using annual time orientation)

(Eqn 14)

This is the estimated number of early stage cancers that are in the population but not yet 

diagnosed. We now use a similar approach to solve for the estimated number of undiagnosed 

advanced cancers, q7. Recall at equilibrium the inflows into this compartment must equal 

the outflows, hence q7k87 = q6k76. This is estimated as the observed number of diagnosed 

advanced stage cancers, and for our system , and . Again, we 
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estimate  using the Erlang distribution of residence times. Specifically, solve for  for a 

1 compartment system such that the mean residence time is T3. This gives , 

which is the estimated daily diagnosis rate per person with advanced stage pancreatic 

cancer. Using annual values we now estimate

(Eqn 15)

This is the number of individuals with undiagnosed advanced-stage pancreatic cancer.

Step 3: Map undiagnosed early and late stage pancreatic cancers; assess clustering of 
advanced stage cancers in age 55 and younger

We now estimated the numbers of undiagnosed cancers in total, and for both early and late 

stages. We define the estimated relative risks for total undiagnosed (TRR), early stage 

undiagnosed (ERR), and late stage undiagnosed (LRR) as the proportion of cases in each of 

these groups (total undiagnosed, early stage undiagnosed, late stage undiagnosed) relative to 

the total number of diagnosed cases,

(Eqn 16)

We find the total number of silent (yet to be diagnosed) case is more than 19 times the 

number diagnosed. Hence, for each case that is diagnosed we estimate there are 19 

pancreatic cancer cases in the at-risk population that have yet to be diagnosed. Of these, 

almost 15 are in the early stages of pancreatic cancer, and nearly 5 are advanced. This means 

that application of a screen for early stage pancreatic cancer could dramatically reduce 

pancreatic cancer mortality, since such a large proportion of undiagnosed cases are in the 

early stages.

The choropleth maps of pancreatic cancer cases are shown in Figure 7A and 7B. The map 

and the frequency distribution of the estimated count of silent (yet to be diagnosed) cases are 

in Figure 7C and 8.

Step 4: Interpret results

This analysis of pancreatic cancer in Michigan demonstrated several important findings. 

First, the burden of undiagnosed pancreatic cancers in this population is large, 

approximately 19 times the number of diagnosed pancreatic cancer cases. This indicates a 

screening test for detecting early stage pancreatic cancer, coupled with appropriate surgical 

and chemotherapeutic intervention, has the potential for dramatically reducing pancreatic 

cancer mortality in this population. Second, we estimate there are 1,822.6 undiagnosed 

advanced stage pancreatic cancer cases in this population. Some of these will be diagnosed 

prior to death, others will be diagnosed post-mortem. The demand on treatment resources in 

the last months of advanced pancreatic cancer are substantial and this estimate can be used 
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to predict the demand for health care resources and to predict care expenses. Third, there is 

some evidence that pancreatic cancer risk in this population is increasing. The SEER results 

place pancreatic cancer incidence and mortality among the highest in all SEER registries, 

and the change in the annual incidence rate is about 0.9 percent per year. We found a small 

but statistically significant relative risk of being 55 or younger and late stage at diagnosis 

when we consider years 1985–2005 combined. This suggests the possible action of a risk 

factor for pancreatic cancer that is impacting younger members of this population. However, 

demographic factors such as differential migration cannot be excluded without further 

analysis, and in any event the relative risk is not large. Finally, the map of silent (yet to be 

diagnosed pancreatic cancer cases) directly supports targeting of diagnostic services, 

planning for upcoming in-home health care needs, and the geographic allocation of future 

screening programs to local populations with high demand.

Discussion

This research addresses several important topics in the modeling of space-time systems, 

cancer biology, and cancer surveillance. It has developed, to our knowledge, the first 

comprehensive modeling approach that estimates cancer latency, couples carcinogenesis and 

stage models, and that represents and links processes at the genomic level (e.g. mutation 

events, cascades of genetic changes that lead to cancer), cellular level (e.g. cell replication 

and death, DNA repair), organ level (e.g. carcinogenesis insitu and metastases to distant 

organs), individual level (e.g. cancer staging in the individual, progression of individuals 

through cancer stages), to the population level (e.g. geographic distributions of local 

populations in cancer stages, estimates of the predicted geographic distributions of 

undiagnosed cancers). Specific benefits of the approach include.

1. The Genetic GISc construct makes place explicit in the emerging exposome-

genome+-behavome synthesis, and demonstrates the vital contribution to be made 

by geography.

2. It is process-based, capturing the known biological characteristics and mechanics of 

the cancer process at multiple scales (e.g. genomic to population).

3. It provides estimates of cancer latency, based on the known genetic and histologic 

characteristics of the cancer.

4. The latency estimates are integrated into spatio-temporal models of cancer 

incidence, mortality and future cancer burden.

5. The impacts of cancer screening and diagnosis may be represented in the model by 

diagnosis events through which individuals progress from undiagnosed (silent) to 

diagnosed stages. This provides a ready mechanism for modeling improvements in 

pancreatic cancer screening.

6. It predicts the burden of silent cancer (yet to be diagnosed), and geographically 

allocates these silent cancers by cancer stages into local geographic populations. 

This provides the quantitative support necessary for forecasting the future cancer 

burden.
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7. The model is readily updatable. As knowledge of cancer genomics becomes more 

detailed it may be incorporated into the carcinogenesis model by updating the 

cascade of events that underpin the flows and stages.

8. It provides a quantitative basis for evaluating alternative treatments and for 

predicting treatment efficacy, provided by the equations and conditions for cancer 

progression, metastasis and remission.

Several caveats apply

Assumptions implicit in compartmental models include the homogeneity assumption, which 

states the particles being modeled behave in an identical fashion. This means the pancreatic 

cancer cells in each compartment of the carcinogenesis model, and the cases in each 

compartment of the stage model, are assumed to behave in fashions identical to other 

particles in the compartment under consideration. This assumption is typical of all modeling 

approaches (since all models involve simplification and abstraction), and can be relaxed 

when needed by adding additional compartments to capture important aspects of 

heterogeneity. A second assumption of the compartmental approach is that of instantaneous 

and complete mixing. This assures that the kinetics (e.g. necessary for calculation of transit 

and residence times) of each particle may be calculated without consideration of when they 

entered the compartment or the order in which they entered. A final assumption is that the 

particles in the compartments (e.g. cells or cases) are sub-dividable, such that a flow of 0.3 

cells is possible. This clearly is incorrect for cells and people, but in practice is not a bad 

assumption when the number of particles in any given compartment is large.

The parameter estimates for cell replication, cell death, DNA mutation rates, repair rates, 

metastases initiation, and cancer promotion and so on where extracted from the literature by 

the first author, who is not a trained oncologist or cell biologist. While the author believes 

the broad strokes are largely correct, the parameter estimates in this article are initial ones 

only, and the specific results may need to be revised. The overall mathematical and systems 

biology approach at this juncture appears sound, and it is their exposition that is the main 

contribution of this article (and not the initial parameter estimates).

There are several future directions for this research. First, knowledge of the exposome and 

its impacts on carcinogenesis may be incorporated by linking flows and coefficients related 

to specific exposures relevant to carcinogenetic events such as mutation, cell proliferation, 

replication and other biological mechanisms through which environmental exposures impact 

cancer initiation and progression. For example, nonmutational mechanisms (i.e. epigenetic 

events that turn genes on or off through methylation) can be incorporated into the model 

through those model coefficients that impact tumor initiation and progression. This requires 

knowledge or hypotheses regarding how the epigenetic event under consideration impacts 

carcinogenesis.

Second, the diversity of different pathways to cancer may be represented by fitting models 

for each pathway. For pancreatic cancers, precursor lesions include the mucinous cycstic 

neoplasm (MCN), the intraductal papillary mucinous neoplasm (IPMN) and the pancreatic 

intraepithelial neoplasia (PanIN). In this article we modeled the PanIN pathway, as it is the 
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one responsible for the majority of pancreatic cancers. Pathway-specific models could be 

developed for cancers that are initiated by MCN and IPMN lesions.

Third, the carcinogensis model provides specific conditions for cancer progression, 

metastasis and remission. These could be used to predict treatment efficacy, and to evaluate 

alternative treatments by incorporating information on how specific treatments impact those 

model coefficients describing cancer cell proliferation, death, and progression to distant 

sites. Information on how combinations of agents that differentially impact cancer cell 

proliferation, death and metastatic capacity could be used in the model to evaluate novel 

multi-chemothearaputic agent treatment regimes.

Fourth, latency itself may be influenced by place-based exposure profiles. Cancer might 

appear earlier at higher exposures, and causative exposures might vary from one place to 

another. In the carcinogenesis model for the individual this would be treated by making the 

mutation coefficients (presented in this article as parameters) as functions based on location 

history. Similarly, the underlying population of undiagnosed individuals likely would have 

diverse exposure histories, and such heterogeneity would result in a distribution of expected 

times to diagnosis. The key methodology underpinning these (and other) elaborations is the 

ability to realistically model disease latencies, a major contribution of this article.

Finally, the technique is readily extensible to different cancers, and also to other chronic 

diseases.

A note on latency modeling in geographic and dynamical systems is warranted. A frequently 

used approach available in most dynamical system modeling software is the incorporation of 

specific time lags, in which the model incorporates explicit delays, in the flow from one 

compartment to another. Hence one could simply represent cancer latency by explicitly 

delaying (e.g. holding back) the entry of particles in the model to a destination compartment 

once they have exited the source compartment. This has two disadvantages. First, apriori 

knowledge of the time lag is required, and second the use of explicit time lags implies the 

model is incomplete. When the compartmental system is properly specified a distribution of 

residence times is observed that is Erlang distributed and that is representative of the 

empirical latency times.

A primary objective of this article has been to introduce the construct of genetic GISc 

(Figure 1) and to illustrate how it may be used to inform our understanding of geographic 

variation in human health by incorporating knowledge of the Genome +, exposome and 

behavome. Geographers are largely being by-passed in the fast moving exposome initiative. 

This article tries to correct this, but more needs to be done. Can Geographers for example 

incorporate the social dimension more explicitly into the exposome?

The example of pancreatic cancer was used to develop process-based approaches for 

estimating disease latency, a key problem that must be solved for effective disease mapping 

and surveillance. This relied heavily on the Genome + dimension of genetic GISc, and much 

work is needed to develop and exploit the exposome and behavome dimensions. The models 

developed can incorporate the exposome through their impact on mutation (e.g. through 

equation 29), although work is needed to make this more explicit and place-based. The use 
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of wearable sensors at the human boundary layer should prove useful in this regard. The 

behavome, defined as behaviors over an individual’s life course that impact health, are not 

explicitly modeled in this article, and the quantification, representation and modeling of the 

behavome is expected to be a rich future research area at the interface of human, physical, 

medical and behavioral geography.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic representation of genetic geographic information science (Genetic GIS). The 

three primary determinants of health, both in terms of illness and well being, are (1) an 

individual’s biology which may quantified as their “Genome +”, comprised of their genome 

(genetic composition), regulome (which controls gene expression), proteome (their 

compliment of amino acids and proteins) and metabalome (the basis of metabolism and 

homeostasis). (2) The environments they experience, which may be quantified as the 

exposome, is defined as the totality of exposures over the life course (Wild 2005a). (3) The 

totality of an individual’s health behaviors over the life course, which may be quantified as 

the behavome, mediate the exposome and interactions between the exposome and the 

genome +. These determinants of human health act through place, defined as the geographic, 

environmental, social and societal milieus experienced over a person’s life course. This 

synthesis is referred to as genetic geographic science, or genetic GIS.
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Figure 2. 
Steps in dynamic geographic systems analysis (left) and specific application to cancer using 

knowledge of residential history to budget excess risk (right).
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Figure 3. 
Schematic of the evolution of pancreatic cancer. Normal pancreatic duct epithelial cells 

undergo mutation events to become an initiated tumor cell. Additional mutations and clonal 

expansions lead eventually to a founder cell of the index pancreatic cancer clone. These 

produce subclones with metastatic capacity, eventually leading to dissemination to distant 

organs such as the liver. Times shown are the empirical residence times in each system state. 

Adapted from Yachida, Jones et al. (2010).
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Figure 4. 
Model of pancreatic cancer carcinogenesis.
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Figure 5. 
Outflow connected n compartment system useful for solving for the probability density 

function and cumulative distribution function of residence times.
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Figure 6. 
Stage-based model of pancreatic cancer. Here the compartment sizes are number of patients 

with early (q6) and late stage cancers (q7) prior to diagnosis, and the number diagnosed (q8).
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Figure 7. 
Choropleth maps of pancreatic cancer cases in southeast Michigan, 1985–2005: (A) incident 

cases; (B) stage-known cases; (C) silent (yet to be diagnosed) cases.
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Figure 8. 
Frequency histogram of silent (yet to be diagnosed) pancreatic cancer cases in the greater 

Detroit metropolitan area.
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Figure 9. 
ith compartment of a compartmental system with flows to (F0i(q,t)) and from (Ii(t)) outside 

the system. Flows to and from other compartments are Fji(q,t) and Fij(q,t), respectively. The 

size of the ith compartment at time t is qi(t). Source: Jacquez (Jacquez 1996).
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Figure 10. 
PanIN subsystem model for estimation of distributions of residence times. Original 

subsystem model (left); simplified model used for calculation of distributions of residence 

times (right).
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Table 1

Equivalence of model states and residence times between carcinogenesis- and stage-based models, using 

diagnostic pancreatic cancer staging according to the American Cancer Society American Joint Committee on 

Cancer (Edge et al. 2010).

Stage model compartment Carcinogenesis model compartment Description American 
Joint 
Committee on 
Cancer 
(AJCC) 
staging

Residence time

q6 q3, q4 Insitu, local, not diagnosed Insitu: AJCC 
Tis, N0, M0
Local: AJCC 
IA, IB, N0, 
M0

T2 : 6.8±3.4 yrs

q7 q5 Regional, distant, not 
diagnosed

Regional: 
AJCC IIA, IIB
Distant: AJCC 
IV

T3 : 2.7±1.2 yrs

q8 - Diagnosed pancreatic cancer May be in situ, 
local, regional, 
or distant; in 
most cases 
pancreatic 
cancer is 
diagnosed at 
an advanced 
stage

T4 : 0.5±0.25 yrs 
(2011 five-year 
survival rate < 
6% and average 
life expectancy 
after diagnosis is 
3 to 9 months.
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Table 3

Transfer coefficients and their biological mechanisms.

Coefficient Biological Mechanism

k21 Initiating DNA damage of normal pancreatic cancer cell

k34, k12 DNA repair

k32 Promotion to pancreatic cancer cell, by additional mutation and/or gene expression

k43 Promotion to pancreatic cancer with metastatic capacity, by additional mutation and/or gene expression

k54 Formation of metastases; spread of primary cancer to distant sites
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Table 4

Model parameter estimates. Notes. #1: Cell death rate equals the birth rate in a normal pancreas. #2: For 

carcinogenesis the death rate of pancreatic cancer cells must be less than their death rate. As a point of 

departure we assume the death rate for cancerous cells is 0.75 the replication rate. #3: Using an assumed 

mutation rate per base pair per generation of 5 x 10−10, Yachida and Jones et al. (2010) estimated the mutation 

rate per cell generation to be 0.016. We require the mutation rate per cell per unit time, and hence estimate k′ 

to be 0.016 mutations / cell-replication * 1 cell-replication / 2.3 cell days. #4 We set the repair rate to be equal 

to 99 percent of the mutation rate per cell per unit time; k″=0.99 x 0.16/2.3.

Parameter Description Units Estimate Reference/note

b′ replication of cells in PanIN Cell divisions per cell per unit 
time

1 replication / 2.3 cell days (Yachida et al. 2010)

b″ replication of pancreatic cancer 
cells

Cell divisions per cell per unit 
time

1 replications / 2.3 days per 
cell division

(Yachida et al. 2010)

b5 Replication of metastatic cancer 
cells

Cell divisions per cell per unit 
time

1 replication / 56 days (Yachida et al. 2010)

μ′ Normal cell death Deaths per cell per unit time 1 death / 2.3 cell days #1

μ″ Death of pancreatic cancer cells Deaths per cell per unit time μ″ < b″ – k54

~0.75 * 1/2.3 deaths / cell day
#2

k′ Mutation/initiation to reversible 
pre-cancerous or cancerous 
condition

Mutations per cell per unit 
time

k′=6.957*10−3 #3

k″ DNA repair to normal or earlier 
cancer state

Repair to prior cell state per 
cell per unit time

k″=6.887*10−3 #4

Ann Assoc Am Geogr. Author manuscript; available in PMC 2015 August 31.


