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Lung cancer is the leading cause of cancer death worldwide. Although several genetic variants 

associated with lung cancer have been identified in the past, stringent selection criteria of genome-

wide association studies (GWAS) can lead to missed variants. The objective of this study was to 

uncover missed variants by using the known association between lung cancer and first-degree 

family history of lung cancer to enrich the variant prioritization for lung cancer susceptibility 

regions. In this two-stage GWAS study, we first selected a list of variants associated with both 

lung cancer and family history of lung cancer in four GWAS (3,953 cases, 4,730 controls), then 

replicated our findings for 30 variants in a meta-analysis of four additional studies (7,510 cases, 

7,476 controls). The top ranked genetic variant rs12415204 in chr10q23.33 encoding FFAR4 in 

the Discovery set was validated in the Replication set with an overall OR of 1.09 (95% CI = 1.04, 

1.14, P = 1.63 × 10−4). When combining the two stages of the study, the strongest association was 

found in rs1158970 at Ch4p15.2 encoding KCNIP4 with an OR of 0.89 (95% CI = 0.85, 0.94, P = 

9.64 × 10−6). We performed a stratified analysis of rs12415204 and rs1158970 across all eight 

studies by age, gender, smoking status, and histology, and found consistent results across strata. 

Four of the 30 replicated variants act as expression quantitative trait loci (eQTL) sites in 1,111 

nontumor lung tissues and meet the genome-wide 10% FDR threshold.
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Introduction

Lung cancer is the leading cause of cancer death worldwide [Ferlay et al., 2010]. Genome-

wide association studies (GWAS) have identified several genetic susceptibility loci for lung 

cancer including ch15q25, 5p15, 6p21, 9p21, and 12p13 [Amos et al., 2008; Hung et al., 

2008; McKay et al., 2008; Shi et al., 2012; Timofeeva et al., 2012; Wang et al., 2008, 2014]. 

However, these loci only accounted for a small fraction of the heritability of lung cancer. A 

main issue in understanding the genetic architecture of complex diseases like lung cancer is 

rooted in the standard analytical approach currently used for GWAS, which typically 

involves identical statistical tests for each single marker and conservative multiple testing 

corrections to account for the large number of variants investigated in GWAS. 

Consequently, many genetic variants affecting lung cancer risk have gone undiscovered.

One way to unveil these hidden variants is to take additional phenotypes linked to lung 

cancer risk into consideration during the statistical testing process. Performing a secondary 

phenotype analysis in addition to the primary phenotype analysis allows for increased use of 

the information collected within each study. Secondary phenotype analysis may be used to 

gather information about variants potentially associated with the primary phenotype, for 

instance by reducing the number of variants investigated in the primary phenotype analysis 

or by giving priority to variants that are also consistently associated with the secondary 

phenotype.

For the genetics of lung cancer, a natural choice of secondary phenotype is family history of 

lung cancer among first-degree relatives, since it has been shown to be associated with lung 

Poirier et al. Page 2

Genet Epidemiol. Author manuscript; available in PMC 2015 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cancer risk and it would reflect the genetic component of lung cancer etiology [Cote et al., 

2012]. The genetic variants associated with family history of lung cancer would be 

considered to have a higher probability of being linked to lung cancer risk. In other words, 

all else being equal, the variants associated with both family history of lung cancer and lung 

cancer risk would have a higher probability of representing a true association compared to 

those associated with lung cancer risk alone.

A number of procedures have been proposed for the analysis of secondary phenotypes in 

case–control studies, such as the inverse-probability-of-sampling-weighted (IPW) regression 

and a likelihood-based method that takes into account the case–control sampling of the data 

[Lin and Zeng 2009; Monsees et al., 2009; Richardson 2007]. With IPW regression, the 

study base is approximated by upweighting each sampled subject such that he/she represents 

multiple subjects in the study base. This procedure has been shown to avoid the bias in 

regression estimates that is related to the nonrandom sampling of cases and controls from 

the population, but with the cost of reduced power [Monsees et al., 2009]. Alternatively, Lin 

and Zeng’s likelihood-based analysis for secondary phenotypes provides maximum 

likelihood estimates obtained by reflecting the case–control sampling in the analysis. In our 

analysis, we have chosen to use the method proposed by Lin and Zeng, because the resulting 

estimates are asymptotically unbiased, the procedure is both statistically and 

computationally efficient, and the online software offers ease of computation.

To enrich the GWAS analysis with a secondary phenotype, we conducted a two-stage 

analysis to uncover additional genetic loci for lung cancer risk, focusing on those that did 

not reach GWAS significance. In the first stage, we prioritized the variants based on their 

association with lung cancer risk, with higher prior probability assigned to those that were 

also associated with family history of lung cancer. In the second stage, we validated 

prioritized variants using an independent National Cancer Institute (NCI) lung cancer 

GWAS dataset from the database for Genotypes and Phenotypes (dbGaP) [Landi et al., 

2009] and three datasets newly genotyped with an Axiom array. Finally, the functional 

meaning of the newly identified lung cancer SNPs were extended to gene expression levels 

in human lung tissues.

Subjects and Methods

Stage 1

Four lung cancer GWAS in the International Lung Cancer Consortium were used to identify 

variants associated with both lung cancer and first-degree family history of lung cancer: the 

Toronto study [Hung et al., 2008; McKay et al., 2008], the Central Europe study [Hung et 

al., 2008], the MD Anderson study [Amos et al., 2008], and the Germany study [Landi et al., 

2009; Sauter et al., 2008]. A total of 3,953 lung cancer cases and 4,730 controls were 

included in the Discovery set from the four studies, and the study characteristics of these 

four studies are summarized in Table 1. Unconditional logistic regression was used to assess 

the association between genetic variants and lung cancer risk, adjusted by age, sex, ever/

never smoking (except in the MD Anderson study as all subjects were smokers) and center 

(for the Central Europe study) using PLINK software [Purcell et al., 2007]. The associations 

across all four studies were then summarized using a fixed effects logistic regression model 
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with GWAMA software [Magi and Morris, 2010]. Variants that were present in at least two 

studies were included in the Discovery meta-analysis.

To identify variants associated with first-degree family history of lung cancer we utilized a 

likelihood-based approach [Lin and Zeng, 2009] that takes into account the lung cancer 

case–control status. A standard analysis of a secondary phenotype from a case–control study 

using an unconditional logistic regression model may be biased if the primary and secondary 

phenotypes are associated with one another and if the variant under study is associated with 

each phenotype [Monsees et al., 2009]. For a dichotomous secondary phenotype, Lin and 

Zeng [2009] use the logistic regression model,

(1)

where Y denotes the secondary phenotype, X denotes the genotype score for some SNP, and 

we are interested in solving for β1. Furthermore, the secondary phenotype and the genotype 

are related to the primary phenotype (D) by

(2)

By inserting equations (1) and (2) into the retrospective likelihood,

(3)

where P (Di = 1) = Σy Σx P (Di = 1|x, y) P (y|x) P (x), P (Di = 0) = 1 − P (Di = 1), and P (Di 

= 0|XiYi) = 1 − P (Di = 1|XiYi). The Newton–Raphson algorithm may be used to maximize 

Equation (3) and inferences may be made on β1 using a Wald or a likelihood ratio statistic. 

Lin and Zeng [2009] provide a computationally efficient online software program called 

SPREG to implement this procedure.

To systematically incorporate the secondary phenotype association into the analysis of the 

primary phenotype, we used the Bayesian false discovery probability (BFDP) [Wakefield, 

2007, 2009]. Briefly, the BFDP estimates the false Discovery probability (or the probability 

of the null hypothesis given the data) to identify noteworthy associations. The BFDP was 

obtained for the association between variants and lung cancer by setting the on the null to 

prior = (1-p2) (weight), where p2 represents the secondary phenotype P value and the 

weight is set to the proportion of the four studies having the secondary phenotype ORs in the 

same direction. Thus, the greater the evidence of association between variant and family 

history, the greater was the prior odds on the null. The selected variants were sorted by the 

BFDP obtained using the primary and secondary phenotype results of the Discovery 

analysis.

Variants with associations at the 5% significance level with both lung cancer and family 

history of lung cancer in the same direction in each meta-analysis or variants highly 
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associated with family history of lung cancer with P values s 0.0001 in the meta-analysis of 

the secondary phenotype were selected to be validated. A total of 537 variants were selected 

for replication.

In addition, we further selected 215 of the 537 variants to be included in the custom panel of 

Axiom array for fine mapping and validation purposes. This selection was based on 

consistent direction of lung cancer odds ratios between the Discovery set of four studies 

(3,953 cases and 4,730 controls), the pilot Replication set based on an independent dbGaP 

lung cancer study (2,783 cases and 2,713 controls, accession no. pht000119) [Landi et al., 

2008], and the combined P values less than 0.05 based on the meta-analysis of all five 

studies. Of the 215 nominated variants, 203 were successfully included in the custom panel 

of the Axiom array after the design and quality control stage.

A flow chart of the selection of variants in the Discovery and Replication sets is included in 

Figure 1.

Stage 2

The final Replication stage consisted of four studies: a large dbGaP lung cancer study 

(accession no. pht02220.v1.p1, an expansion of our pilot Replication set based on NCI 

dbGaP study accession no. pht000119) using in silico look up [Landi et al., 2009], and a 

custom Axiom array with variants nominated from our Discovery analysis genotyped in 

three studies: lung cancer case–control study conducted in Mount Sinai Hospital and 

Princess Margaret Hospital in Toronto (MSH-PMH study) [Wang et al., 2014], Nurses’ 

Health Study at Brigham and Woman’s Hospital and Harvard Medical School [Colditz et al., 

2007], and the Multi-Ethnic Cohort (MEC) study [Derby et al., 2008]. A total of 7,510 lung 

cancer cases and 7,476 controls were included in the Replication set based on the four 

studies, and the study characteristics are summarized in Table 1.

The in silico validation dataset from NCI study (dbGAP accession #: pht002220.v1.p1) 

contained 517 of the 537 variants selected for validation, while the Axiom custom panel 

genotyped in the Toronto, Harvard, and MEC studies contained 203 of the variants. All of 

the 537 variants were available from either the NCI in silico look up and/or the Axiom 

custom panel. An unconditional logistic regression model, adjusted for age, sex, and 

smoking status was used to detect variants associated with lung cancer in each Replication 

dataset. Note that the NCI dbGAP dataset was adjusted for age and sex only due to a lack of 

smoking information.

The results of the four Replication studies were summarized using a fixed effects meta-

analysis. The variants were considered validated if they (i) were statistically significant at 

the 5% level in the Replication meta-analysis, and (ii) had effect estimates in the same 

direction as those in the Discovery analysis.

We also conducted stratified analysis by age of onset, smoking status, and histology for the 

top variants of interests to assess the potential differential effects. The stratified analysis of 

histology and smoking status were adjusted for age and sex. This analysis was performed in 
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each of the eight datasets investigated, and the results were summarized using fixed-effects 

meta-analysis in GWAMA [Magi and Morris, 2010].

Finally, to gain better insight into the molecular mechanisms underlying these associations, 

we were interested in finding whether selected variants act as eQTL sites in lung tissue. We 

had access to a lung-specific eQTL study which reported cis- (within 1 Mb of transcript) and 

trans- (further than 1 Mb or on a different chromosome) acting eQTL. The study is a meta-

analysis of nontumor lung tissue eQTL data from Laval University, University of British-

Columbia, and University of Groningen based on 1,111 patients who underwent resectional 

surgery. Gene expression profiles were obtained using an Affymetrix array testing 51,627 

noncontrol probesets, and DNA genotyping was performed using the Illumina-Human 1M-

Duo BeadChip array. A robust linear model adjusted for age, gender, and smoking status 

was implemented to find associations between genetic variants and gene expression. The 

eQTLs identified at 10% false discovery rate (FDR) in each site as well as in the meta-

analysis of all sites were then reported. Further details of the methods and analysis have 

previously been reported [Hao et al., 2012; Lamontagne et al., 2013; Obeidat et al., 2013; 

Thun et al., 2013; Wain et al., 2014].

Results

Stage 1

A total of 317,924 variants were assayed in at least two Discovery datasets and were 

included in the Discovery meta-analysis. Among these variants, 537 variants were shown to 

be associated with both lung cancer risk and having a family history of lung cancer among 

first-degree relatives at P values < 0.05 with consistent direction of ORs. These 537 variants 

were selected to move forward into the Replication set.

Stage 2

Thirty of the 537 variants selected in Stage 1 were found to be statistically significantly 

associated with lung cancer at the 5% level in the replication analysis and had consistent 

effect direction with the Discovery analysis. Table 2 presents meta-analysis results for the 

association of the 30 variants. When ranked by BFDP, the evidence was strongest for 

ch10q23.33 encoding the gene FFAR4 marked by sequence variant rs12415204, which is a 

nucleotide change from C to A with minor allele frequency ranging from 21% to 25% across 

all studies. The A allele was positively associated with family history of lung cancer with an 

OR of 1.18 (95% CI = (1.02, 1.37), P = 2.55 × 10−2) and had an association with increased 

risk of lung cancer with an OR of 1.09 (95% CI = (1.04, 1.14), P = 1.63 × 10−4) in the 

Discovery set, with a BFDP of 0.047. It was replicated in the Replication datasets with an 

OR of 1.06 (95% CI = (1.00, 1.12), P = 4.14 × 10−2).

Combining the four studies in the Discovery set and four studies in the Replication set for 

the 30 validated variants, rs12415204 remained one of the top hits (OR = 1.09, P = 1.63 × 

10−4). When stratified by age, smoking status, and histology (Fig. 2), we observed 

nominally significant associations in both age groups, in females, and in never smokers. 

Furthermore, although the differences in ORs between strata for age, smoking status, and 
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histology were not statistically significant (P > 0.05), patients with young onset (<50 years 

old), females, and never smokers had more prominent associations between lung cancer and 

rs12415204, a variant in FFAR4.

All of the replicated variants in Table 2 would have been overlooked in the Discovery stage 

had we focused solely on statistically significant associations with lung cancer at the 

genome-wide level (P < 10−8) and not taken into consideration the secondary phenotype 

meta-analysis results. For instance, the strongest signal in the Replication stage was 

observed for ch4p15, which encodes KCNIP4, with an OR of 0.89 for rs1158970 (P = 1.63 

× 10−4). This variant had an OR of 0.90 (P = 1.30 × 10−2) for lung cancer and an OR of 0.78 

(P = 1.36 × 10−2) for first-degree family history of lung cancer in the Discovery analysis. 

When combining eight studies from both stages, the strongest observed signal of the top 30 

variants had an OR of 0.89 (95% CI = 0.85, 0.94, P value = 9.64 × 10−6) for lung cancer. 

Figure 3 displays the results of the association between rs1158970 and lung cancer in all 

eight studies, including a stratified analysis by age, gender, smoking, and histology. We 

observed consistent results across studies and across strata.

The replicated variants in Table 2 were then investigated to determine if they act as lung 

eQTLs. Table 3 presents the cis- and trans-eQTL analysis results for variants with at most 

10% FDR. Four of the thirty variants were found to be lung eQTLs, with the strongest 

signals coming from two variants on chromosome 11 (rs10831422 and rs11021302) that 

were associated with the expression of CEP57 (P = 1.61 × 10−19) (Fig. 4).

Discussion

In this analysis, we used the family history of lung cancer to enrich the analysis of lung 

cancer risk based on secondary phenotype regression and we identified 30 variants 

representing 25 independent loci, which were replicated in the two-stage analysis of eight 

studies with a total of 11,463 cases and 12,206 controls. The observed consistency and 

replication in the direction of the signals and in the strength of the signals across phenotypes 

provided increased evidence of true associations for a highly selected list of variants. The 

top ranked variant in the gene FFAR4 (rs12415204, ch10q23) was validated in the 

Replication set and it was ranked first by BFDP and second by overall P value after 

KCNIP4.

Classified as a fatty acid metabolism gene and previously named GPR120, FFAR4 has been 

shown to be associated with body mass index [Ichimura et al., 2012]. Although the 

expression of this gene has been identified as a tumor-promoting receptor in colorectal 

carcinoma [Wu et al., 2013], to our knowledge this gene has not previously been implicated 

in lung cancer carcinogenesis. Furthermore, our stratified analysis suggested a potentially 

greater effect among those with young onset (<50 years old) and those who never smoked. 

These observations are consistent with our expectations of the role of the genetic component 

in lung cancer etiology in these lower risk populations, which lends further evidence to a 

causal signal.
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Although the difference in ORs between strata within each category was not found to be 

statistically significant, confidence intervals suggested the potential for biologically relevant 

associations by strata, particularly among patients with young onset (<50 years old), 

females, and never smokers. The nonsignificant test for heterogeneity may be a consequence 

of low power for this test. Thus, further study is recommended to understand these potential 

differences between strata. Larger studies may also conduct discovery analyses among these 

strata and identify other genetic variants that may only have a signal in populations with 

increased genetic susceptibility.

The KCNIP4 gene encodes small calcium-binding proteins and is part of the family of 

voltage-gated potassium channel-interacting proteins [Burgoyne, 2007]. This gene was 

proposed to be a candidate gene for renal cell carcinoma [Boone et al., 2007] and asthma 

[Himes et al., 2013]. It was recently identified as a lung cancer susceptibility gene when 

using the biological function of the gene and functional significance of the variants as the 

prior weighting in hierarchical modeling [Brenner et al., unpubl. ms]. The fact that KCNIP4 

has been identified as a lung cancer susceptibility locus by two completely different 

approaches adds weight to the overall evidence of an association.

Both of these two top ranked variants would have been missed had they not been preselected 

using secondary phenotype association results. In fact, all of the 30 validated variants would 

have been missed at the genome-wide level of significance by ignoring secondary phenotype 

information.

Interestingly, a number of lung cancer associated variants were found to be lung eQTLs, 

suggesting that their effect on lung cancer risk is probably mediated through changes in gene 

expression, i.e., have regulatory function. The strongest eQTLs were for centrosomal protein 

57kDa (CEP57) and family with sequence similarity 76, member B (FAM76B); two 

neighboring genes on chromosome 11. CEP57 encodes a protein called translokin, and is 

involved in the centrosomal localization and microtubular stabilization [Momotani et al., 

2008], and in the trafficking of factors, such as fibroblast growth factor 2 (FGF2) [Meunier 

et al., 2009]. Mutations in CEP57 have been found to cause mosaic variegated aneuploidy 

syndrome [Snape et al., 2011]; a rare autosomal recessive disorder characterized by mosaic 

aneuploidies (a condition in which a person has one or a few chromosomes above or below 

the normal chromosome number), diverse phenotypic abnormalities, and predisposition to 

cancer. Little is known about FAM76B and its role in cancer. Other eQTL regulated genes 

include ZFP57 zinc finger protein (ZFP57), which is a stem cell transcription factor that has 

recently been found to induce insulin-like growth factor 2 (IGF2) and promote anchorage-

independent growth in cancer cells [Tada et al., 2014].

Although this approach of using the secondary phenotype can help to identify genetic 

variants associated with a primary phenotype, it does not eliminate the potential for false-

negative findings when the association with the secondary phenotype is not strong enough to 

be detected. Specifically, a variant could be associated with lung cancer risk even if it is not 

associated with a positive family history of lung cancer among first-degree relatives. The 

difference can be due to various mechanisms that would lead to lung cancer susceptibility. 

For example, if the effect of the genetic variant is more prominent in the presence of specific 
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environmental exposures, it would not necessarily be associated with family history of lung 

cancer if the environmental exposures were absent (or present at a minimum level) in past 

generations. The best example would be the known lung cancer region in Ch15q25, which is 

thought to be at least partially mediated through smoking behavior, and tends to have 

stronger association in patients with older age of onset; it is not associated with family 

history of lung cancer. In this case, this approach would not further inform what was already 

found in the standard GWAS analysis.

A limitation of our study is that the Replication datasets did not have family history 

information. In the Replication stage, an exploratory analysis of variants with first-degree 

family history would potentially lend even greater evidence to a causal relationship between 

variants and lung cancer. However, our outcome of primary interest was lung cancer in the 

Replication stage, so this was not considered to be a serious limitation.

Another limitation is the lack of histology information in the largest dataset available from 

dbGAP. Consequently our stratified analysis by histology did not include this study, 

potentially compromising the power to detect a statistically significant association for 

adenocarcinoma, small cell carcinoma, and squamous cell carcinoma.

Prior biological knowledge is a useful tool when investigating the genetics of lung cancer. 

We have used the well-known association between first-degree family history of lung cancer 

and lung cancer [Cote et al., 2012] to supplement our investigation of variants related to 

lung cancer. With the aid of our secondary phenotype analysis, we were able to overcome 

the strict selection criteria often used in GWAS analysis by giving priority to 537 variants 

with observed associations with the secondary phenotype. We were then able to identify a 

subset of 30 variants based on further selection in the Replication stage. This approach, 

combined with eQTL analysis of identified lung cancer variants in lung tissue, has identified 

a number of biologically relevant associations that would have been missed by traditional 

GWAS criteria.
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Figure 1. 
Flow chart of Discovery and Replication study design. The Discovery stage includes 

primary (lung cancer) and secondary (family history of lung cancer) phenotype analysis of 

four GWASs, with a meta-analysis for each phenotype. The Replication stage includes four 

additional studies which were used to validate associations between SNPs and lung cancer.
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Figure 2. 
Forest plot of the association between rs12415204 with lung cancer across eight studies, 

stratified by age, gender, smoking, and histology.
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Figure 3. 
Forest plot of the association between rs1158970 with lung cancer across eight studies, 

stratified by age, gender, smoking, and histology.

Poirier et al. Page 14

Genet Epidemiol. Author manuscript; available in PMC 2015 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Boxplots of gene expression levels in the lung for CEP57 according to genotype groups for 

SNP rs10831422. The left y-axis shows the mRNA expression levels for CEP57. The x-axis 

represents the three genotyped groups for SNP rs10831422. The right y-axis shows the 

proportion of the gene expression variance explained by the SNP (gray bar). Each panel 

represents a different cohort: Laval (n = 408), UBC (n = 349), Groningen (n = 362). The 

eQTL P values were 6.2 × 10−05, 4.9 × 10−07, and 1.7 × 10−07, respectively.
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Table 1

Individual study characteristics among Caucasians according to primary phenotype (lung cancer)

Stage Study Location Study period Study design Case no. Control no. Genotyping platform

Discovery 
(3,953 
cases and
 4,730 
controls)

Toronto GTA, Canada 1997–2002 Population 
and Hospital 
CC

331 499 Illumina
HumanHap300

IARC Central Europe 1998–2002 Hospital CC 1,964 2,610 Illumina HumanHap300

MDACC Texas, USA 1997–2007 Hospital CC 1,154 1,137 Illumina HumanHap300

HMGU Germany 2000–2008 (LUCY) Population CC 504 484 Illumina HumanHap550

1990–1998 (KORA)

1997–2007 (Heidelberg)

Replication 
(7,510 
cases and 
7,476
 controls)

NCI (dbGaP) USA and Italy 1985–2005 Population CC 5,699 5,815 HumanHap550v3.0

Human610_Quadv_1_B

Human1M_Duov3_b

HumanHap300v1.1

HumanHap250Sv1.0

MSH-PMH Toronto, Canada 2009–2013 Clinic CC 1,073 939 Axiom array

MEC USA 1993–1996 Nested CC 215 225 Axiom array

Harvard USA 1990–2006 Nested CC 523 497 Axiom array
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Table 3

Variants acting as lung eQTLs and meeting genome-wide significance of 10% FDR

eQTL-
regulated gene

eQTL-
regulated probeSet

eQTL Z-statistic
eQTL meta

P value
Lung cancer overall

result OR, (95 CI%), P valueeQTL Laval Groningen UBC

rs2844680 LST1 100149313_TGI_at 2.87 2.60 2.11 1.04 × 10–5 1.07, (1.03, 1.12), 0.000855

G;T CDSN 100303039_TGI_at −3.60 −3.14 −4.29 3.18 × 10–10

ZFP57 100303994_TGI_at 1.46 6.20 3.51 1.21 × 10–10

100309580_TGI_at 2.83 5.15 3.24 8.29 × 10–11

rs10831422 100126872_TGI_at −3.43 −1.73 −3.65 3.37 × 10–7 0.93, (0.89, 0.97), 0.000976

T;C FAM76B 100129097_TGI_at −4.48 −3.81 −4.44 2.22 × 10–13

FAM76B 100141148_TGI_at −3.48 −4.67 −6.04 6.12 × 10–16

CEP57 100127730_TGI_at −4.39 −5.52 −5.81 1.61 × 10–19

FAM76B 100159174_TGI_at 5.31 0.85 3.08 3.90 × 10–8

rs11021302 100126872_TGI_at −3.43 −1.73 −3.69 3.03 × 10–7 0.94, (0.90, 0.98), 0.00127

G;A CEP57 100127730_TGI_at −4.39 −5.52 −5.81 1.61 × 10–19

FAM76B 100141148_TGI_at −3.48 −4.67 −6.08 5.46 × 10–16

FAM76B 100129097_TGI_at −4.48 −3.81 −4.49 1.84 × 10–13

FAM76B 100159174_TGI_at 5.31 0.85 3.08 3.82 × 10–8

rs2278637 VAMP2 100137040_TGI_at 3.85 2.50 5.52 7.10 × 10–12 0.94, (0.90, 0.98), 0.002478

T;G 100152407_TGI_at 2.88 2.89 2.03 6.22 × 10–6

TMEM107 100301520_TGI_at 3.78 2.58 4.78 1.07 × 10–10

Note that in the final column, the final two SNPs have different P values, yet the same ORs and CIs. The similarity in effect size is due to rounding. 
The eQTL test statistics are based on the major allele, as defined under each rs number in column 1 (major allele; minor allele).
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