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Abstract

We investigated the development of spontaneous (resting state) cerebral electric fields and their 

network organization from early to late childhood in a large community sample of children. 

Critically, we examined electrocortical maturation across one-year windows rather than creating 

aggregate averages that can miss more subtle maturational trends. We implemented several novel 

methodological approaches including a more fine grained examination of spectral features across 

multiple electrodes, the use of phase-lagged functional connectivity to control for the confounding 

effects of volume conduction and applying topological network analyses to weighted cortical 

adjacency matrices. Overall, there were major decreases in absolute EEG spectral density 

(particularly in the slow wave range) across cortical lobes as a function of age. Moreover, the peak 

of the alpha frequency increased with chronological age and there was a redistribution of relative 

spectral density towards the higher frequency ranges, consistent with much of the previous 

literature. There were age differences in long range functional brain connectivity, particularly in 

the alpha frequency band, culminating in the most dense and spatially variable networks in the 

oldest children. We discovered age-related reductions in characteristic path lengths, modularity 

and homogeneity of alpha-band cortical networks from early to late childhood. In summary, there 

is evidence of large scale reorganization in endogenous brain electric fields from early to late 

childhood, suggesting reduced signal amplitudes in the presence of more functionally integrated 

and band limited coordination of neuronal activity across the cerebral cortex.

Spontaneous, ongoing fluctuations of large-scale neuronal activity are often the most 

directly visible features of electroencephalographic (EEG) and magnetoencephalographic 

(MEG) recordings of brain function. Traditionally viewed as indicating noise or non-

deterministic signal stochasticity, there is now increasing evidence that brains are 

autonomously active systems and that endogenous fluctuations exhibit a coherent functional 
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architecture that interacts with subsequent stimulus processing (Deco, Jirsa & McIntosh, 

2013; Northoff, Duncan, & Hayes, 2010; Raichle, 2010). The intrinsic activity of neuronal 

populations accounts for much of the variability in stimulus- and task-evoked responses 

(Arieli et al., 1996; Fontanini & Katz, 2008; Kenet et al., 2003; MacLean et al., 2005; 

Ringach, 2009) including the variability in neurovascular reactivity that is quantified by 

functional magnetic resonance imaging (fMRI) methods (Becker et al., 2011). Recent 

computational modeling evidence suggests that it is possible to mathematically represent 

large populations of cortical neurons as self-organizing coherent units that are governed by a 

set of dynamical equations with a rich spatiotemporal repertoire (Betzel et al., 2012; Hipp et 

al., 2012; Liu et al., 2010) in the absence of external perturbations (Deco, Jirsa, & McIntosh, 

2011, 2013). The diverse and continuously changing ensemble of states that is explored by 

cortical circuits in the absence of stimulus input is shaped both by the intrinsic oscillatory 

properties of neurons as well as by the spatial spreading of synchronization due to recurrent 

connectivity (Hipp et al.,2012; Sporns, 2011). Brain development is associated with a 

general increase in the diversity of spontaneous cortical states, a fact that may underlie 

increases in sophistication of information processing into adolescence and early adulthood 

(Vakorin et al., 2011, 2013; Koening et al., 2002; Lippé, Kovacevic, & McIntosh, 2009; 

McIntosh et al., 2008). Accordingly, charting the maturational profiles of spontaneous 

neuroelectrical activity and the development of large-scale cortical oscillatory networks has 

emerged as an active area of research inquiry (Palva & Palva, 2012; Uhlhaas et al., 2010), 

one that can reveal the neural infrastructure that underlies both healthy and disordered 

perceptual, cognitive and affective capacities.

To date, a substantial amount of evidence exists pertaining to age-dependent changes in 

spontaneous and event-related electrophysiological activity. In terms of spontaneous spectral 

EEG/MEG power, a general trend is for a decrease across all frequency bands, particularly 

in the amount of slow wave (delta and theta band) rhythmic activity (see Segalowitz, 

Santesso, & Jetha, 2010 and Uhlhaas et al., 2010 for substantive reviews). Simultaneously, 

there is a relative redistribution of power in the higher frequency bands (such as alpha and 

beta) along with a shift in the peak frequency of the dominant alpha-band with increased 

brain maturation (Chiang et al., 2011; Cragg et al., 2011; Dustman, Shearer, & Emmerson, 

1999; Somsen et al., 1997). Although the precise neurophysiological mechanisms that 

underlie these age-dependent changes in electrocortical activity are difficult to identify using 

in vivo recordings in healthy humans, convergent evidence using techniques with superior 

spatial resolution can furnish plausible hypotheses (Paus, 2007; Uhlhaas et al., 2010). In a 

unique study that recorded spontaneous EEG activity and structural MRI scans from the 

same subjects, ranging in age from 10 to 30 years of age, Whitford and colleagues (2007) 

observed parallel curvilinear age-related declines in the amount of slow wave EEG power 

and cortical grey matter density. The authors attributed the maturational decrease in slow 

wave EEG activity to a neurophysiological mechanism involving neuropil reduction, 

primarily owing to synaptic pruning (see also Buchmann et al., 2011). A putative causal link 

between grey matter density and EEG power is inherently plausible, since the latter emerges 

as the population-level result of highly synchronous post-synaptic potentials of cortical 

pyramidal neurons with tangential and radial dipolar moments (Nunez & Srinivasan, 2006).
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The diverse repertoire of spontaneous cortical activity emerges not only as a result of the 

intrinsic oscillatory activity of neurons and neuronal populations, but also as a result of 

dynamically changing “cortical clouds of connectivity” (Horton & Adams, 2005) that 

establish transient networks or assemblies of widespread neuronal populations (Varela et al., 

2001). Currently, there are two known neuronal intrinsic coupling modes – one is mediated 

by phase synchronization of band-limited brain signals and the other by the aperiodic 

fluctuations of amplitude envelopes (Engel et al., 2013). White matter pathways provide a 

structural basis for the sculpting of dynamic functional connectivity in the brain (Sporns, 

Tononi, & Edelman, 2000), although there is only partial overlap between structural and 

functional brain connectivity (Damoiseaux & Greicius, 2009). Complementing age-related 

thinning of cortical grey matter, there is a very linear increase of white matter density across 

age, related to the maturation of long-distance fascicular pathways (Casey, Galvan, & Hare, 

2005; Giedd et al., 1999; Gogtay et al., 2004; Paus, Kesavan, & Giedd, 2008). Increases in 

myelination and white matter density have been suggested to underlie shifts in the peak 

frequency of the posterior alpha-band rhythm that are observed across age (Segalowitz et al., 

2010). In addition to these regional changes in alpha-band cycling, maturation of white 

matter pathways and synaptic tuning is likely to be reflected in the organization of resting 

state cortical networks – i.e., functionally coupled brain networks that are detectable in the 

absence of explicit cognitive or affective tasks (Laufs, 2008). Indeed, evidence from fMRI 

studies suggests that functional connectivity within several resting state brain networks 

progresses from a more local organization in childhood to an increasingly integrated and 

spatially distributed architecture in adolescence and young adulthood (Fair et al., 2007, 

2009; Supekar, Musen, & Menon, 2009). A general finding across these studies is that short-

range functional connectivity is gradually replaced by more distant, long range functional 

connections. Using multivariate pattern analyses, Dosenbach and colleagues (2010) 

demonstrated that brain maturity could be predicted by the functional segregation of local 

regions combined with greater integration of distant cortical areas via links running along 

the anterior-posterior axis. Although functional connectivity within particular resting-state 

networks (e.g., fronto-parietal task control network) seems to strengthen across age (Fair et 

al., 2007), ontogeny seems to be associated primarily with increased integration between 

networks (Betzel et al., 2014).

Additional evidence for age-related changes in spontaneous functional brain network 

organization comes from EEG/MEG studies that are uniquely able to characterize phase-

dependent modes of intrinsic neuronal coupling (Engel et al., 2013). Preliminary evidence 

from multi-modal imaging studies suggests that electrophysiological measures of 

connectivity partially map onto the structural integrity of white matter tracts (Chu et al., 

2014; Teipel et al., 2009; Thatcher et al., 1998). In a large study spanning the ranges from 6 

months to 7 years of age, Thatcher (1992) reported cyclical increases in short- and long-

range EEG coherence that were punctuated by non-linear growth spurts. Subsequently these 

non-linear effects were formalized into a “predator-prey” model of cortico-cortical 

connections, in which the short and long-range association fibers compete for space in the 

supragranular layers of cortex, with the suggestion that the former expand and the latter 

contract in older children (Thatcher et al., 2008). However, contrary to this suggestion, and 

in agreement with recent fMRI studies (Betzel et al., 2014; Dosenbach et al., 2010; Fair et 
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al., 2007, 2009; Supekar et al., 2009), Barry and colleagues (2004) reported evidence that 

long range EEG coherence increases across multiple frequency bands from 8 to 12 years 

age. Similar age-related increases in functional connectivity have been demonstrated to 

continue up to 50 years of age, with some decline being observed in older adulthood (Smit et 

al., 2012). A pronounced increase in long distance – frontal to occipital – synchronization, 

specifically in the alpha EEG band, was reported when comparing a group of children and 

adults (Srinivasan et al., 1999). More recently, Bathelt and colleagues (2013) used high-

density EEG recordings combined with source reconstruction to demonstrate age-dependent 

increases in functional connectivity within wide-band frequency ranges from 2 to 5 years of 

age. In an attempt to establish a direct link between electromagnetic recordings of brain 

activity and the resting state networks identified in previous fMRI studies, inter-regional 

amplitude correlations were observed to increase continuously across childhood and 

adolescence, in multiple frequency bands (Schäfer et al., 2014). Similarly, an information 

theoretic analysis of EEG (Vakorin et al., 2011) provided evidence that the increased 

complexity of brain signals across infancy and childhood is related to greater integration of 

distributed neuronal populations. Although it is impossible to directly compare findings 

from fMRI and electrophysiological studies, given the sharp differences in signal origin 

(Horwitz, 2003; Singh, 2012), these disparate modalities may nonetheless reveal some 

shared topological characteristics of network development. Graph theory potentially 

provides a convenient mathematical framework for characterizing network topology and 

comparing network features across different recording modalities (Kaiser, 2011; Rubinov & 

Sporns, 2010; Stam & van Straaten, 2012). Graph theoretical methods have been 

increasingly applied to the study of human brain development to reveal the emergence of 

ordered, large-scale cerebral networks across ontogeny (Chu-Shore et al., 2011).

The Present Study

Our goals in the current study were to examine: (i) age-dependent differences in 

spontaneous EEG power spectral density and (ii) the development of band-limited functional 

brain network topology using weighted functional connectivity matrices. We focused on a 

large cross-sectional community sample of children between the ages of 7 to 11 years, 

grouped into one-year bands. This age range, encompassing early to late childhood, has been 

either under-sampled or collapsed and examined as a broad age group in many previous 

studies, despite the fact that it represents a critical developmental window that precedes the 

onset of adolescence. We simultaneously sought to address several methodological 

limitations of prior research examining EEG maturation. One major limitation of earlier 

work on age-related changes in spectral EEG content is the reliance on canonical, wide 

frequency bands (see Cragg et al., 2011 for a notable exception). For example, investigators 

often adapt traditional frequency band definitions from the adult EEG literature and 

subsequently average spectral content over bins containing multiple Hz of neuronal activity. 

However, bands derived from the adult EEG literature may be inappropriate in 

developmental populations as indicated by previous work examining infants up to 4 years of 

age (Marshall, Bar-Haim, & Fox, 2002). As a result of this strategy, it is possible to miss the 

spectral microstructure of intrinsic EEG activity that may be better captured by a continuous 

parsing of spectral content (Cragg et al., 2011). Here, we decomposed the EEG spectrum 
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into a continuous range and used mass univariate statistical testing to explore maturational 

changes. Second, volume conduction is known to inflate estimates of EEG functional 

connectivity (Nunez & Srinivasan, 2006), particularly at short distances (< 10 cm). Indeed, 

in pediatric populations inter-electrode distance accounts for over 50% of the variance in 

connectivity estimates (Barry et al., 2005). To overcome this limitation we quantified EEG 

functional connectivity using a metric that suppresses instantaneous synchrony arising due 

to linear signal mixing at the scalp (Palva & Palva, 2012), which effectively eliminates 

connectivity stemming from volume conduction. Finally, unlike traditional graph theoretical 

approaches to the study of functional brain network topology which apply thresholds to 

create binary (unweighted) networks, we employed methods from network science that use 

weighted links, thus minimizing the likelihood that our findings might be biased by the 

selection of relatively arbitrary thresholds (Newman, 2004).

Method

Participants

Participants were a subset drawn from a larger study of children recruited from the 

community. The inclusion criteria for children included being between the ages of 7 and 11 

years. Exclusionary criteria were the presence of severe developmental or learning 

disabilities (e.g., autism) in children per parent report or parent symptoms of schizophrenia, 

alcohol or substance abuse or dependence within the last six months, or history of bipolar I 

disorder. Resting EEG data were available from a total of 276 children. After Z-scoring the 

average resting EEG spectrum across frequencies and electrode sites, 7 outliers (+/−3 S.D. 

units) were identified and eliminated from further analyses (2 seven year olds, 2 eight year 

olds, 2 nine year olds and 1 ten year old) resulting in a total of 269 participants for all 

analyses. The final number of participants included across all five age groups was as 

follows: 61 seven year olds (29 females), 53 eight year olds (25 females), 52 nine year olds 

(30 females), 56 ten year olds (25 females), and 47 eleven year olds (16 females). Of the 

children included in our sample, 67.7% were Caucasian (13.8% African American) and the 

median family income ranged from $35,000 to $40,000. There were no significant 

differences across age groups in terms of children’s sex, race, or family income (lowest p = .

47).

Procedure

Potential participants were recruited from the community through a variety of means (e.g., 

television, newspaper and bus ads, flyers). Parents responding to the recruitment 

advertisements were initially screened over the phone to determine potential eligibility. 

Upon arrival to the laboratory, parents were asked to provide informed consent and children 

were asked to provide assent to be in the study. Next, participants were seated quietly in the 

experimental room and instructed to remain still with their eyes closed for a full minute. 

Although participants also completed an eyes-open condition, we sought to more carefully 

isolate spontaneous cortical activity by focusing specifically on eyes-closed recordings. This 

decision is consistent with recent recommendations that recordings during eyes closed 

provides a more valid method for capturing spontaneous brain function since eye opening 

leads to demonstrable changes in arousal state (Barry et al., 2007; van Diessen et al., 2014) 
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and passive fixation introduces cognitive load effects in addition to evoking neuronal 

entrainment at the refresh rate of monitor displays (Logothetis et al., 2009).

EEG Recording

Continuous EEG was recorded using a custom cap and the BioSemi ActiveTwoBio system. 

Unreferenced EEG was digitized at 64-bit resolution with a sampling rate of 512 Hz. 

Recordings were taken from 34 sintered Ag/AgCl active scalp electrodes based on the 

International 10/20 system and evenly distributed across the head. Two additional electrodes 

were used in the study: an active Common Mode Sense (CMS) and a passive Driven Right 

Leg (DRL) electrode, located at the mid-line between C3 and CZ, and CZ and C4, 

respectively. Raw EEG were recorded relative to CMS. The CMS/DRL electrodes formed a 

loop that principally served as the ground for recordings through a feedback that subtracted 

the average potential of the subject (i.e. the Common Mode voltage) to drive EEG 

recordings as close as possible to the “zero” ADC reference voltage in the AD-box (please 

see, http://www.biosemi.com/faq/cms&drl.htm for further details). The electrooculogram 

was recorded from four facial electrodes to capture vertical and horizontal eye movements 

that were subsequently used to aid visual inspection of the EEG time series.

EEG Analysis and Data Reduction

Offline processing of EEG data was accomplished using a combination of EEGLAB 

(Delorme & Makeig, 2004) functions (for re-referencing, bandpass filtering and artifact 

rejection) and custom written, in-house MATLAB routines. After re-referencing the EEG 

data to Cz, a two-way least squares finite impulse response (FIR) filter was used to bandpass 

the time domain signal (low pass cut-off: 0.10 Hz, high pass cut-off: 35 Hz). Subsequently, 

visual inspection of eyes closed EEG data by trained observers was used to detect and 

remove segments contaminated by excessive noise or other gross artifacts (e.g., muscle 

movement, slow drift, line noise). A minimum of 30 seconds (s) of clean EEG data was 

considered necessary for inclusion in the final set of analyses reported in this paper. To 

ensure that there were no systematic differences in artifact-free epoch length as a function of 

age, we conducted pairwise contrasts for all of the age group comparisons. There were no 

group differences in the amount of artifact-free data that was retained for analysis, with the 

exception of a trend level (p = 0.06) effect for the eleven vs. seven years of age comparison 

(all other ps > 0.15). The mean duration of the artifact-free segments was well above 30 s for 

each age group (Meleven = 55.6 s, Mten = 54.1 s, Mnine = 54.3 s, Meight = 54.9 s, Mseven = 

53.4 s).

Power density analyses—The artifact-free time domain data from each electrode were 

detrended by removing the best straight-line fit and submitted to a frequency analysis using 

the Welch periodogram method with Hanning tapered windows of 2 s duration and 50% 

window overlap. Power spectral density (µV2/Hz) was estimated for a continuous range 

from 0.5 to 30 Hz in steps of 0.50 Hz. We did not extend our analyses to frequencies higher 

than 30 Hz as initial visual inspection (prior to filtering) suggested very minimal 

contributions from those frequencies in the eyes-closed resting spectrum and we further 

wished to reduce the likelihood of contamination by electromyogenic artifacts. Prior to 

further analysis, spectra were transformed to decibel (dB) units in order to standardize 
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individual differences in EEG amplitude. Relative power was calculated in percentage (%) 

values by expressing density within each 0.5 Hz bin as a fraction of total density within the 

0.5-30 Hz range. In order to quantify an individual’s peak alpha frequency, we used an 

automated peak detection algorithm that searched for the maximum 0.50 Hz bin falling 

within a narrow band (7-14 Hz) range.

Functional connectivity analyses—To minimize the contribution of volume 

conduction to functional connectivity, we opted to use a measure (the imaginary component 

of coherency) that is immune to artificial synchrony arising from linear signal mixing (Nolte 

et al., 2004; Palva & Palva, 2012). Under the assumption that the effects of volume 

conduction at the scalp are instantaneous (electrical fields travel at the speed of light), with 

no phase distortion, measures that exclusively quantify time lagged synchronization while 

suppressing zero millisecond phase lag relations can help separate true brain interactions 

from artificial synchrony (Cohen, 2014). We quantified the absolute value of the imaginary 

part of a complex quantity, coherency (Cxy), at each specific frequency (f) with 1 Hz 

resolution as follows:

where Sxy is the cross power spectral density, while Sxx and Syy are the power spectral 

densities of time series x and y, respectively. The spectral and cross-spectral densities were 

estimated using Welch’s method, by equally dividing the artifact-free resting period into 

Hanning windows of 1 s duration (using longer windows risks introducing non-stationary 

activity and biasing functional connectivity estimates) with 50% overlap. Isolating the 

imaginary component produces non-vanishing values only for time-lagged coupling, 0 < θ 

(Cxy(f)) < 2π. As indicated in Figure 1, the imaginary component of coherency emphasized 

long-range functional connectivity while eliminating spurious connectivity estimates 

between spatially neighboring electrodes. Functional connectivity was estimated in the theta 

(4-7 Hz), alpha (8-13 Hz) and beta (14-30 Hz) wide-bands for all possible pairwise 

interactions of cephalic electrodes, leading to 33 × 33 weighted connectivity matrices for 

each individual participant. Note that in order to obtain reliable estimates of functional 

connectivity, we required that least four complete oscillatory cycles could fit within the 1 s 

periodogram window. Accordingly, the lower spectral edge being quantified was set at 4 Hz. 

There were several reasons for selecting wide frequency bands for functional connectivity 

analyses. Most importantly, time-lagged estimates of functional connectivity are highly 

prone to even minor non-stationarities in the frequency of neuronal oscillators (Cohen, 

2014b). For example, slight mismatches in peak frequency lead to a reduced ability to detect 

true oscillatory synchronization; as a result, using wider bands helps to minimize volatile 

fluctuations in connectivity estimates arising due to natural non-stationarity of EEG epochs. 

Second, to ease the computational burden of calculating N × N matrices of network 

connectivity for each 0.5 Hz increment, we estimated functional connectivity using the 

dominant bands that we could qualitatively observe in our mass univariate analyses.
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Subsequently, topological network measures were calculated on the basis of the N × N 

(weighted) adjacency matrices using functions from the Python package, NetworkX. For 

each adjacency matrix, we calculated the characteristic path length and the modularity (also 

called the Q-metric) as the topological metrics of the network. Characteristic path length is 

the arithmetic average of shortest path lengths between all pairs of nodes in the network. 

While this metric becomes infinite if there are disconnected components within the network, 

our data are weighted adjacency matrices where all node pairs are connected with some 

positive link weights. When calculating a path length, the link weights (functional 

connectivity strengths) are replaced by their reciprocals so that a stronger connectivity is 

mapped to a shorter path length. Therefore, shorter characteristic path length implies 

stronger overall functional connectivity in the network (Rubinov & Sporns, 2010).

A modularity of a network measures how well the network topology can be captured in 

several distinct groups of nodes (communities). It is defined as

where |E| is the total number of links, |Ein| the number of links that connect nodes within 

groups, and |Ein_r| is the number of such within-group links that would be expected if the 

network topology were randomized. For weighted networks like those in our data, the 

number of links are replaced by the total link weights of links. We used the Louvain method 

(Blondel et al., 2008) to find the optimal community structure, on which the maximal 

modularity is heuristically calculated.

In addition, we measured how homogeneous the nodes’ strengths (i.e., the sum of link 

weights connected to a particular node) are within a network, by measuring their Shannon 

entropy as

where i is the node (in this case, electrode) (i = 1, 2, … 33) and  with Di 

(or Dj) being the strength of node i (or j). This metric, which we call “strength homogeneity” 

takes its maximal value log2(33) = 5.04 if all nodes have the same strength, i.e., the strength 

distribution is perfectly homogenous. Conversely, it takes its minimal value, 0, if only one 

node has all of the strength while others have zero strength (which would never occur with 

empirical data). Therefore this metric captures how evenly the connectivity is distributed 

among nodes.

Statistical Analyses

Since we wished to avoid averaging spectral density across wide-band bins defined a priori, 

we adopted a mass univariate approach to testing for age-related changes in EEG power. To 

detect reliable spectral and spatial differences in EEG content as a function of age, we 

Miskovic et al. Page 8

Neuroimage. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



submitted the power density data to an independent samples, two-tailed permutation test 

based on the tmax statistic (Blair & Karniski, 1993; Groppe et al., 2011) using a family-wise 

alpha level of 0.05, effectively controlling for the inflation of Type I error rates. All 

frequency bins between 0.5 and 30 Hz at all 33 cephalic electrodes were included in the test 

(i.e., 754 total comparisons). We did not test for differences in frequencies exceeding 30 Hz 

due to the nature of band-pass filtering and since, consistent with other EEG studies, our 

sample exhibited minimal spectral density for frequencies in that range. Adopting a Monte 

Carlo approach, we used 1000 random between-participant permutations of the data to 

empirically approximate the distribution of the null hypothesis (i.e., no difference between 

age groups) for the contrasts of interest. The number of random permutations was based on 

previous suggestions in the literature (Manly, 1997). Based on this estimate, critical t-scores 

were derived and any between-group differences in the original data that exceeded the tmax 

statistic were deemed reliable. Statistical testing of the alpha peak frequency and graph 

theory metrics similarly used an approximative K-sample one-way randomization tests with 

1000 random between-participant permutations of the data. All statistical analyses were 

performed using MATLAB and R (R Development Core Team, 2008).

Results

Developmental Shifts in Absolute EEG Spectral Density

As highlighted by the statistical saliency maps (see Figure 2), there were significant (pperm < 

0.05) age-related changes in absolute EEG spectral density. Specifically, compared to the 11 

year olds, the 7 (Fig.2 inset, top left), 8 (Fig.2 inset, top right), 9 (Fig.2 inset, bottom left) 

and 10 (Fig.2 inset, bottom right) year olds all exhibited increased density of slow wave 

power from about 0.5 Hz extending to the border between the traditional alpha1 and alpha2 

EEG bands around 9 to 10 Hz. Interestingly, by 10 years of age, the spectral extent of this 

effect had contracted and appeared more confined to the traditional theta-band range (~ 4 to 

7 Hz). The remaining age contrasts are provided in the Supplementary Materials section 

(Fig. S1). There was no indication of spatial specificity to this effect, as the age-related 

decline in slow power was evident across all of the major regions from frontal to occipital.

To conduct a more fine grained chronological analysis we averaged a wide swath of slow 

wave spectral density encompassing the traditional delta and theta bandwidths (0.5 to 7 Hz) 

and pooled the data for separate regional electrode clusters along a posterior-anterior 

continuum (occipital, parietal, central and frontal). We then related this to a continuous 

measure of age, measured in years. The results of regionally specific linear fit models using 

continuous age as a predictor of slow wave power density are visualized in Fig. 3. To ensure 

the robustness of these effects we performed a permutation test of the association between 

continuous age and regional slow wave power density using approximative Spearman 

correlation tests with 9,999 replications. The results indicated significant negative 

correlations across all regional electrode clusters (all ps < 4 × 10−11).

A second trend evident in terms of our mass univariate spatio-spectral analyses concerns the 

age-related decrease in high frequency EEG spectral density (pperm < 0.05), roughly 

corresponding to an expanded beta band (~14 to 30 Hz). In contrast to the slow wave power 

findings, this effect seemed more regionally restricted to fronto-central sites. Contrasts of 
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the 9 and 10 year old age groups against the 11 year olds no longer revealed significant 

effects in this high frequency range suggesting that a slightly different EEG maturational 

trend compared to the slow wave spectral density range.

Developmental Shifts in Relative EEG Spectral Density

Our findings in terms of relative spectral EEG density changes across the age groups are 

illustrated in Fig. 4. The main advantage of computing relative spectral density, compared to 

absolute spectral density, is that it helps to control for individual differences in such physical 

parameters as skull thickness and cell density which can contribute to variability in estimates 

of absolute spectral density recorded at the scalp. Consistent with earlier findings, we 

observed age-related increases (pperm < 0.05) in the relative concentration of high frequency 

EEG density when contrasting 11 year olds with 7 (Fig.4 inset, top left) and 8 (Fig.4 inset, 

top right) year olds. This increase in relative spectral density largely encompassed the 

traditional alpha2 sub-bandwidth (~ 10 to 13 Hz) with some encroachment into the beta 

range (> 14 Hz) and they largely disappeared when contrasting the older age groups (9 and 

10 year olds). The remaining contrasts for relative spectral density are highlighted in 

Supplementary Materials (see Fig.S1).

Developmental Shifts in Alpha Peak Frequency

There was a significant difference (pperm < 3 × 10−16) among the age groups in the alpha 

peak frequency. As highlighted in Fig. 5, there was a linear increase from a mean value of 

8.89 Hz at 7 years of age to 9.79 Hz at 11 years of age. The alpha peak frequency in the 

group of 11 year olds was higher than in all of the other age groups. The results of post-hoc 

pairwise t-contrasts (with False Discovery Rate [FDR] correction) are provided in Table 1.

Developmental Shifts in EEG Network Organization

Theta-Band—There were no effects of age on the graph theoretic indices of theta-band 

(4-7 Hz) EEG network organization (all ps > 0.19).

Alpha-Band—As illustrated in Fig. 6, there was an age-dependent increase in the strength 

of long-range functional connectivity within the alpha band (8-13 Hz) that culminated with 

the most densely connected networks in the group of 11 year olds. This visual impression 

was confirmed by statistical analyses which revealed significant age effects on alpha-band 

network organization for each of the three graph theoretic measures under consideration 

including characteristic path length (pperm = 0.02), modularity index (Q-metric) (pperm < 2.2 

× 10−16) and strength homogeneity (pperm < 3 × 10−16). Table 2 lists the FDR corrected 

probability values of all pairwise t-contrasts. There was a strong linear trend apparent in the 

data, with shorter path lengths, decreased modularity and decreased network homogeneity 

across chronological age (see Fig. 7).

Beta-Band—There were no effects of age on the graph theoretic indices of beta-band 

(14-30 Hz) EEG network organization (all ps > 0.23).
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Exploratory Analyses of Sex Differences

Since our sample included children in the pre-adolescent stage of development we had no 

explicit hypotheses about sex. Nevertheless, to examine whether sex moderated any of the 

age-related effects observed in our mass univariate analyses we conducted a set of follow-up 

factorial ANOVAs (using Type III Sums of Squares) with the between-subject factors of 

Age and Sex and the within-subject factor of Region (posterior, parietal, central and frontal). 

Instead of relying on traditional, a priori defined bands we focused primarily on the spectral 

regions that revealed significant age effects in our permutation controlled analyses. Thus, we 

created regional means of slow wave (0.5 to 7 Hz) and high frequency (14 to 30 Hz) bands. 

The only significant findings in terms of sex were differences in absolute spectral density. 

Specifically, there were sex differences in slow wave (0.5 to 7 Hz) [F(1,259) = 5.48, p = 0.02] 

and high frequency (14 to 30 Hz) [F(1,259) = 15.81, p < 0.001] bandwidths, with males 

exhibiting less absolute spectral density in each of these frequency range. None of the other 

Age × Sex interactions were significant for analyses focused on relative spectral density, 

alpha peak frequency and graph theoretic indices (all ps > 0.23).

Discussion

Our study explored the maturation of spectral density and long range synchronization of 

cerebral electric fields from early to late childhood in a large, cross-sectional community 

sample. Crucially, rather than averaging across this age range, as was often done in previous 

studies comparing children to adolescents and adults, we examined brain maturation in one 

year windows. We utilized several novel approaches in our investigation including 

performing a more fine grained analysis of spectral density maturation (in contrast to classic 

broad rhythms), employing a phase-lagged index of brain functional connectivity to estimate 

resting EEG cortical networks and applying a topological network analysis to weighted 

rather than binary brain connectivity matrices as traditionally implemented in the 

developmental literature.

Consistent with many previous studies (Segalowitz et al., 2010; Uhlhaas et al., 2010), we 

discovered age-related declines in the absolute spectral density of low frequency EEG 

oscillations. This complements existing research showing that rates of cerebral glucose 

utilization (Chugani, 1998), grey matter density (Giedd et al., 1999; Gogtay et al., 2004; 

Whitford et al., 2007) and spontaneous slow fluctuations of BOLD activity (Lüchinger et al., 

2012) all decrease with age, supporting the theory that the brain undergoes extensive 

maturational reorganization that is powerfully driven by “regressive” mechanisms where 

initial synaptic overproduction is followed by selective elimination and ultimately 

stabilization (Feinberg & Campbell, 2010). The results of our mass univariate analyses 

suggest that the spectral locus of brain electric maturation does not honor traditional 

separation of classical delta and theta bands, but rather extends in a spatially diffuse manner 

to the boundary between the alpha1 and alpha2 bandwidths. To a lesser extent, the age 

dependent decrease of absolute EEG spectral density was also present for higher frequencies 

(above 14 Hz), in close correspondence with recent findings of EEG maturation into the 

second and third decades of life (Cragg et al., 2011; Kurth et al., 2010; Michels et al., 2013; 

Rodríguez-Martínez et al., 2015; Whitford et al., 2007).
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On the basis of a statistical relation between reductions in cortical grey matter density and 

absolute EEG spectral power, particularly in the slow wave range, (Buchmann et al., 2011; 

Whitford et al., 2007), a plausible hypothesis is that cortical neuropil reduction actually 

drives decreased EEG power since the latter reflects the summed membrane potentials of 

pyramidal cells (Uhlhaas et al., 2010). However, it remains possible that these two 

phenomena (reductions in grey matter thickness and EEG spectral density) represent 

common correlates of cortical development without being causally linked. There are several 

observations that collectively argue against a direct causal link between reductions in grey 

matter volume and EEG spectral density (Lüchinger et al., 2012). First, developmental 

changes in grey matter thickness are regionally specific, exhibiting different longitudinal 

schedules across cortical lobes (Giedd, 2004; Giedd et al., 1998; Gogtay et al., 2004; Shaw 

et al., 2008). By contrast, we did not observe any topographic specificity in the reduction of 

low frequency EEG across age groups. Instead, there was a robust negative correlation 

between chronological age and spectral density across all of the major cortical lobes, 

consistent with other EEG studies (Cragg et al., 2011; Lüchinger et al., 2012; Whitford et 

al., 2007). Second, evidence from longitudinal studies of NREM sleep EEG suggests a 

slightly different maturational trajectory with relatively little changes in delta band power 

between 9 and 11 years age, followed by precipitous declines between 11 and 16 years of 

age (Campbell & Feinberg, 2009). This seems to suggest that the developmental timing of 

slow wave decline is partially state-dependent, which is not consistent with the hypothesis 

that EEG power reduction primarily reflects structural (volumetric) alterations.

An alternative explanation is that the spectral density of slow wave activity in resting state 

EEG is largely determined by resonant thalamo-cortical loops. Using a combination of in 

vitro and in vivo findings, Llinás and colleagues (2005) have advanced a model in which the 

intrinsic membrane electrophysiology of thalamic relay cells spreads to zones of cortex via 

recurrent projections that effectively entrain large neuronal populations. Specifically, during 

membrane hyperpolarization thalamic relay cells switch to a low frequency burst mode of 

firing that globally slows cortical electric rhythms, leading to increased delta and theta 

spectral density in surface recordings of electromagnetic brain function (Llinás et al., 1999, 

2005; see also Hughes & John, 1999). Interestingly, this model also predicts that low 

frequency oscillations in thalamo-cortical relay neurons lead to a disinhibitory “edge effect” 

in which there is a rebound that involves simultaneously increased spectral density of beta 

and gamma rhythms (Llinás et al., 2005), similar to what we observed in terms of our 

absolute power findings. The combination of excess delta and theta power, a slowing of the 

dominant alpha peak and a secondary increase of high frequency oscillations have been 

reported in a number of neurological and psychiatric conditions (Llinás et al., 1999; 

Schulman et al., 2011). Although this specific type of thalamo-cortical “dysrhythmia” has 

largely been discussed in the context of calcium channelopathies, a variety of mechanisms 

that increase low frequency thalamic rhythmicity are predicted to produce similar outcomes 

(Llinás et al., 2005). Recent findings using simultaneous EEG-fMRI recordings, have 

discovered marked differences in thalamo-cortical coupling between children and 

adolescents suggesting that it is possible to link typical brain maturation with other global 

states involving similar spectral signatures (Lüchinger et al., 2012). Since thalamic relay 
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cells project to cortical regions globally, this may account for the lack of topographic 

specificity in our EEG findings.

In terms of relative spectra, our findings are consistent with previous developmental studies 

in suggesting a redistribution favoring higher frequency alpha and beta-band activity in 

older children (Bell & Wolfe, 2007; Cragg et al., 2011). However, these differences were 

less drastic compared to the reductions in absolute power – the group of eleven year olds did 

not differ appreciably when compared with the nine and ten year olds. By comparison, the 

peak of the dominant alpha rhythm continued to increase across age groups, spanning nearly 

an entire 1 Hz shift when contrasting the seven and eleven year old children and remained 

significant when comparing ten and eleven year olds (see also Cragg et al., 2011). Axonal 

myelination and the integrity of white matter pathways have been suggested to underlie 

alpha peak frequency shifts (Segalowitz et al., 2010; Valdés-Hernández et al., 2010).

A striking finding from structural magnetic resonance imaging of the developing cortex 

concerns the linear increase in white matter density across age (reviewed in Casey et al., 

2005 and Giedd, 2004). In addition to the peak of the oscillatory alpha rhythm, another 

electrophysiological marker of white matter maturation is found in patterns of long range 

neuronal synchronization (Chu et al., 2014; Teipel et al., 2009; Thatcher et al., 1998). 

Previous evidence indicates that long range EEG coherence increases across age (Barry et 

al., 2004), particularly in the alpha-band frequency range (Ghemlin et al., 2011; Schäfer et 

al., 2014; Srinivasan, 1999). One major limitation in inferring functional connectivity on the 

basis of extracranially recorded electric signals concerns the confounding effects of volume 

conduction, especially at short electrode distances (Barry et al., 2005). Accordingly, we 

implemented a measure of functional connectivity (the imaginary component of complex 

coherency) that removes zero phase lag relations emerging from volume conduction, while 

emphasizing more long range brain interactions. Consistent with some of the earlier reports 

utilizing much smaller sample sizes (Barry et al., 2004, but see Thatcher et al., 2008), our 

findings demonstrate that the oldest age group exhibited the densest patterns of functional 

connectivity across distant cortical regions, specifically within the alpha band. These 

findings are also broadly consistent with one of the more replicable fMRI results involving a 

trend toward increased integration among distant neural networks (Betzel et al., 2014; Fair et 

al., 2007, 2009; Supekar et al., 2009). Different imaging modalities have unique sensitivities 

for capturing phase-based versus amplitude-based intrinsic coupling modes (Engel et al., 

2013), and it remains to be determined how these distinct types of networks compare to each 

other (Schäfer et al., 2014).

On the basis of our network analyses, we can conclude that from early to late childhood, 

alpha-band electrocortical connectivity becomes more integrated (shorter characteristic path 

length), less functionally segregated (reduced modularity) and more spatially variable (less 

homogenous). One consequence of cortical networks with increased global integration 

appears to be their capacity to support a greater repertoire of functional cortical states 

(McIntosh et al., 2008; Vakorin et al., 2011, 2013). Indeed, in our data, older children 

exhibited functional alpha networks that were less spatially homogenous compared to those 

of younger children. Increased efficiency and variability of cortical states are related to 

improved performance on task-based measures, ranging from simple reaction time 
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(McIntosh et al., 2008) to more complex indices of intellectual performance (van den 

Heuvel et al., 2009).

The age-related reductions in characteristic path lengths reported here are consistent with 

recent data from high density EEG recordings employing cortical source reconstruction 

analyses (Bathelt et al., 2013), as well as fMRI studies of resting state cortical networks 

(Vértes & Bullmore, 2014). Although there is only partial overlap between structural and 

functional brain networks (Damoiseaux & Greicius, 2009), it is interesting to note that our 

results also align with those demonstrating reduced characteristic path lengths and 

modularity from 12 to 30 years of age on the basis of structural cortical connections (Dennis 

et al., 2013).

We should also note, however, our network findings are partially in conflict with previous 

EEG studies demonstrating that path lengths and clustering both increase across 

development (Boersma et al., 2011) peaking around 18 years of age (Smit et al., 2012). 

There are a number of methodological reasons that might account for these inconsistencies. 

First, different metrics of EEG functional connectivity were employed: we used zero phase 

lag removed coherency, while the other studies calculated synchronization likelihood 

(Boersma et al., 2011; Smit et al., 2012), a non-linear measure of brain connectivity that 

depends on time delayed embedding of neural signals. Phase-lagged indices of functional 

connectivity, which are primarily sensitive to more long range links, may de-emphasize 

clustering/modularity of functional brain networks. Second, at least one of the previous 

studies (Smith et al., 2012) used thresholding procedures to binarize the networks, while we 

applied network analyses to weighted connectivity matrices, which provides a more 

continuous approach to quantifying topology.

Conclusions

Overall, we demonstrated considerable differences in the spontaneous EEG spectrum as a 

function of age, from early to late childhood. The globally distributed reductions of absolute 

EEG spectral density – especially in the slow wave range – represented perhaps the most 

salient manifestations of neuronal maturation. Consistent with extant theoretical proposals 

(e.g., Stevens, 2009) reduced amplitude of brain activity seems to be accompanied by 

reorganization and refinement of long range functional connectivity. In particular, even after 

accounting for the effects of volume conduction on brain electric signals, the density and 

spatial variability of alpha-band cortical networks increased in late childhood – this trend 

likely continues to mature into young adulthood (Uhlhaas et al., 2010). Taken together, these 

findings are consistent with evidence demonstrating that the maturing brain is characterized 

by an enhanced ability to maintain phase synchronized brain oscillations within specific 

frequency ranges (Ehlers et al., 2014; Poulsen, Picton, & Paus, 2009; Uhlhaas et al., 2009). 

The ability to sustain precise patterns of neuronal coordination (i.e., more precisely “tuned” 

brain networks), even among distant cortical areas, likely expands the repertoire of 

functional cortical states and increases information integration within the brain (Vakorin et 

al., 2011), which ultimately may underlie ontogenetic changes in cognitive function (Casey 

et al., 2005). Although we used a symmetric measure of functional brain connectivity, in the 

future this can be supplemented with effective connectivity analyses to indicate directional 
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reversals in cortical information flow across different age groups (Michels et al., 2013). 

Moreover, it may be of interest to capture dynamic functional connectivity, fluctuating on 

varying time scales.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A comparison of the traditional, magnitude squared coherence (left) and a phase-lagged 

index (right) of functional connectivity in the alpha-band (8-13 Hz) of the EEG from a 

randomly selected experimental participant. For each of the two measures, only connectivity 

values exceeding the 95th percentile are plotted topographically. The phase-lagged index 

was based on quantifying the imaginary portion of complex coherency. By using this 

method, inter-electrode coherence values having a 0 ms. phase lag with respect to each other 

are ignored and the only non-vanishing values appear for synchronous pairs having a time 

lag. Note that the traditional index is sensitive to high coherence values for spatially 

neighboring electrodes (e.g., the connection links highlighted in red and indicated by 

arrows) which likely reflects artificial synchrony arising due to volume conduction.
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Figure 2. 
Spatio-spectral saliency maps for the 7 vs. 11 year old (top left), 8 vs. 11 year old (top right), 

9 vs. 11 year old (bottom left) and 10 vs. 11 year old (bottom right) mass univariate analyses 

using a tmax Monte Carlo method (with 1000 random between-subject data permutations). 

The dependent variable of interest is absolute spectral density. Regions outlined in black 

highlight the electrodes and frequencies that reached statistical significance using a 

permutation-controlled familywise alpha level of 0.05. Hot colors denote increased power in 

the comparison groups relative to the 11 year olds while cool colors indicate the opposite. 

Note that the electrodes are arranged in order from the most anterior (top portion of the y-

axis) to the most posterior (bottom portion of the y-axis); because of space constraints, not 

all electrode labels are shown.

Miskovic et al. Page 21

Neuroimage. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Regional scatter plots and regression lines using continuous chronological age to predict 

variability in absolute slow wave (0.5-7 Hz) EEG spectral density is shown across four 

separate electrode clusters.
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Figure 4. 
Spatio-spectral saliency maps for the 7 vs. 11 year old (top left), 8 vs. 11 year old (top right), 

9 vs. 11 year old (bottom left) and 10 vs. 11 year old (bottom right) mass univariate analyses 

using a tmax Monte Carlo method (with 1000 random between-subject data permutations). 

The dependent variable of interest was relative spectral density. Regions outlined in white 

highlight the electrodes and frequencies that reached statistical significance using a 

permutation-controlled familywise alpha level of 0.05. Hot colors denote increased power in 

the comparison groups relative to the 11 year olds while cool colors indicate the opposite. 

Note that the electrodes are arranged in order from the most anterior (top portion of the y-

axis) to the most posterior (bottom portion of the y-axis); because of space constraints, not 

all electrode labels are shown.
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Figure 5. 
The eyes-closed EEG spectrum (left) for a cluster of posterior electrodes (highlighted in the 

2D topographic inset) is shown both for single subjects (thin grey lines) and the overall 

group mean (bold black line) in the group of 11 year olds. Note the variation in individual 

alpha frequency (IAF). An automated peak detection algorithm was used to identify each 

individual’s peak within the IAF range (7-14 Hz). The mean alpha peak frequency across the 

five age groups is depicted on the right, indicating a progressive linear increase in the peak 

frequency across age. Error bars depict 95% confidence intervals estimated using 

bootstrapping with 1000 random iterations.
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Figure 6. 
Functional alpha-band (8-13 Hz) connectivity links that exceeded a threshold set at the 95th 

percentile of connectivity values (across all subjects) are depicted for visualization purposes, 

superimposed over spherical spline interpolated topographic maps that indicate the 

distribution of alpha-band power spectral density. Note that thresholding was applied here 

purely for visualization purposes; all statistical tests reported in the paper were conducted on 

graph theoretic measures derived from weighted connectivity networks.
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Figure 7. 
Graph theoretic metrics estimated on the basis of a weighted alpha-band (8-13 Hz) EEG 

functional connectivity networks. Error bars depict 95% confidence intervals estimated 

using bootstrapping with 1000 random iterations.
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Table 1

Probability values (FDR corrected) for individual alpha peak frequency contrasts

Contrast Alpha Peak

7 vs. 8 0.25

7 vs. 9 0.02*

7 vs. 10 0.02*

7 vs. 11 <0.001**

8 vs. 9 0.41

8 vs. 10 0.32

8 vs. 11 0.004**

9 vs. 10 0.72

9 vs. 11 0.01*

10 vs. 11 0.03*
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Table 2

Probability values (FDR corrected) for contrasts of characteristic path length (CPL), modularity index and 

strength of homogeneity in alpha-band EEG networks

Contrast CPL Modularity Strength Homogeneity

7 vs. 8 0.97 0.95 0.62

7 vs. 9 0.32 0.95 0.62

7 vs. 10 0.09+ 0.59 0.31

7 vs. 11 0.02* <0.01** <0.01**

8 vs. 9 0.38 0.95 0.99

8 vs. 10 0.14 0.63 0.62

8 vs. 11 0.04* 0.01* 0.03*

9 vs. 10 0.32 0.59 0.62

9 vs. 11 0.06+ <0.01** 0.01*

10 vs. 11 0.32 0.05* 0.07+
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