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Abstract

The large-scale organization of the brain has features of complex networks that can be quantified 

using network measures from graph theory. However, many network measures were designed to 

be calculated on binary graphs, whereas functional brain organization is typically inferred from a 

continuous measure of correlations in temporal signal between brain regions. Thresholding is a 

necessary step to use binary graphs derived from functional connectivity data. However, there is 

no current consensus on what threshold to use, and network measures and group contrasts may be 

unstable across thresholds. Nevertheless, whole-brain network analyses are being applied widely 

with findings typically reported at an arbitrary threshold or range of thresholds. This study sought 

to evaluate the stability of network measures across thresholds in a large resting state functional 

connectivity dataset. Network measures were evaluated across absolute (correlation-based) and 

proportional (sparsity-based) thresholds, and compared between sex and age groups. Overall, 

network measures were found to be unstable across absolute thresholds. For example, the direction 

of group differences in a given network measure may change depending on the threshold. Network 

measures were found to be more stable across proportional thresholds. These results demonstrate 

that caution should be used when applying thresholds to functional connectivity data and when 

interpreting results from binary graph models.
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Introduction

The human brain is a large-scale system of functionally connected brain regions. This 

system can be modeled as a network, or graph, by dividing the brain into a set of regions, or 

“nodes,” and quantifying the strength of the connections between nodes, or “edges,” as the 

temporal correlation in their patterns of activity. Network analysis, a part of graph theory, 

provides a set of summary statistics that can be used to describe complex brain networks 

using a reduced number of observations that can be meaningfully compared between groups 

and/or related to behavior (Rubinov & Sporns, 2010). Recent studies have used this 

approach to characterize network properties as they relate to sex (Tian et al., 2011), age 

(Meunier et al., 2009), and cognition (Dosenbach et al., 2007), as well as in conditions such 

as addiction (Chanraud et al., 2011), Alzheimer’s disease (Supekar et al., 2008), 

schizophrenia (Alexander-Bloch et al., 2013; Bassett et al., 2008), and others (Bassett and 

Bullmore, 2006).

Network analyses of functional connectivity data are commonly based on the blood oxygen 

level-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI), but can 

also be derived from electroencephalography (EEG) or magnetoencephalography (MEG). 

For example, network analysis of fMRI data was used to show that more efficient global 

information processing (characteristic path length) in resting state was related to high 

intelligence quotient (IQ; van den Heuvel et al., 2009b). Another study used network 

analysis of MEG data to show that functional integration (characteristic path length) and 

functional segregation (clustering coefficient) were decreased in Alzheimer’s disease (Stam 

et al., 2009).

However, a central challenge of applying network analysis to functional connectivity data is 

that many network measures were designed to be calculated on binary graphs in which 

connections are either present or not, whereas temporal correlations in fMRI signal are 

continuous from −1 to 1. The typical approach is to: (1) define n non-overlapping nodes 

across the brain using an anatomical atlas or a functional parcellation method where nodes 

have voxels with similar time courses; (2) estimate the network by computing the entries of 

the n-by-n matrix representing the functional connections between node pairs, either by 

linear association such as correlation or by some other nonlinear measure such as mutual 

information; and (3) apply a threshold to produce an n-by-n binary adjacency matrix 

representing the network edges and to remove weak connections (Bullmore and Sporns, 

2009; Simpson et al., 2013). Thus a threshold is commonly applied to construct a binary 

graph from functional connectivity data.

The use of thresholded binary graphs is attractive because it facilitates the calculation of 

many network measures and reduces the computational burden of analyzing the graph. An 

alternative approach is to use weighted graphs that are not binary but instead allow edges to 

carry some sort of continuous weight value. With weighted graphs, all edges remain in the 

graph and any node is connected to every other node. However, some have argued that 

weighted graphs are not reasonable biological structures because brain regions have sparse 

anatomical connections only to other specific brain regions (Sporns, 2011). Weighted graphs 

are also less computationally efficient, especially in the analysis of large-scale networks 
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such as voxel-based functional connectivity networks (Telesford et al., 2011); the 

overwhelming number of connections makes it difficult to extract meaningful information 

(Serrano et al., 2009).

To define binary graphs, the applied threshold is typically absolute (correlation-based) or 

sparsity-based (proportional). Each approach has advantages and disadvantages. Absolute 

thresholds set a value for the correlation coefficient between node pairs, above which they 

are considered connected and below which they are not. Proportional thresholds utilize a set 

percentage of the strongest connections (edges), such as the top 10% of correlation values in 

the network. For group comparisons, using a proportional threshold ensures that the 

networks in each group have the same number of nodes, or network size, and the same 

number of edges, or global degree. This allows for more meaningful comparisons of other 

network measures that rely on degree. However, proportional thresholds do not take into 

account absolute differences in correlation values, therefore information about overall group 

differences may be lost. Absolute thresholds retain this information, but may result in 

networks with different size or degree, or in a network that is connected in one group but 

disconnected in the other group. While a difference in node-connectedness between groups 

may be informative, it confounds the comparison of graph measures that vary significantly 

with degree (Alexander-Bloch et al., 2010). Moreover, absolute thresholds may be too large 

for low-average connectivity networks or too small for high-average connectivity networks, 

thus eliminating strong and significant connections or overemphasizing weak connections 

(van Wijk et al., 2010).

There is also no consensus in the literature as to what specific threshold should be used. A 

large range of absolute thresholds have been applied, from a correlation coefficient of r=0.1 

(Buckner et al., 2009) to r=0.8 (Tomasi and Volkow, 2010). Likewise a range of 

proportional thresholds have been reported, from 5–40% (e.g., Fornito et al., 2010). In 

attempts to show that results are not sensitive to the choice of threshold, findings are often 

reported across a narrow range of thresholds (e.g., Cole et al., 2013, top 2–10%; van den 

Heuvel et al., 2009a, r=0.3–0.5). However, this can lead to incomplete results or even 

misleading results if network properties are unstable across a larger range of thresholds, for 

example if there is a reversal of group differences in a network measure across thresholds 

(e.g., Scheinost et al., 2012). Lastly, even if a canonical threshold was determined and 

agreed upon, different preprocessing decisions such as whether to use global signal 

regression (GSR) may shift the distribution of correlations (Murphy et al., 2009), leading to 

binary graphs that are not comparable across studies.

Therefore, this study sought to characterize the (in)stability of network measures across 

thresholds. A large resting-state fMRI dataset was used to measure network properties 

across the full range of absolute and proportional thresholds. In addition, the effects of GSR 

on network measures across thresholds were tested in order to highlight how preprocessing 

decisions can influence the (in)stability of network measures.
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Methods

Participants

One hundred right-handed individuals participated in the study. All participants provided 

written informed consent in accordance with the Yale Human Investigations Committee at 

the Yale University School of Medicine. The analyses included 50 males (age 35 ± 10 years) 

and 50 females (age 34 ± 12 years). 99 of these were from a prior dataset of 103 subjects 

(Scheinost et al., 2015), 4 of whom were not included because they did not complete all 8 

runs, and 1 additional participant was scanned in order to have equal sex groups. A subset of 

the current sample was grouped by age as younger participants (age range 18–25 years, 

mean age 22 ± 3 years) and older participants (age range 44–66 years, mean age 51 ± 6 

years). Age groups were selected as the youngest and oldest participants matched by gender, 

and age groups were selected to have participants matched by age and gender. Younger 

participants included 10 males (age range 18–25 years, mean age 23 ± 3 years) and 10 

females (age range 18–25 years, mean age 22 ± 2 years). Older participants included 10 

males (age range 44–66 years, mean age 51 ± 6 years) and 10 females (age range 44–63 

years, mean age 51 ± 6 years).

Imaging Parameters

Data were acquired on two identical Siemens 3T Tim Trio MRI scanners, including a 

localizer, followed by a low-resolution sagittal scan for slice alignment and a T1-weighted 

axialoblique scan using a conventional spin-echo imaging sequence parallel to the AC-PC 

(25 slices, TR = 420 ms, TE = 11 ms; bandwidth = 130 Hz/pixel, flip angle = 90°, slice 

thickness = 6 mm; FOV = 200×200 mm, matrix = 256×256). Resting-state functional data 

was then obtained at the same slice locations using a T2*-weighted gradient-recalled single 

shot echo-planar imaging sequence (TR = 1550 ms, TE = 30 ms, flip angle = 80°, FOV = 

220×220 mm, matrix = 64×64, slice thickness = 6 mm). Participants were instructed to rest 

with their eyes open, not to think of anything in particular, and not to fall asleep. There were 

8 functional runs of 240 volumes each. The first 6 volumes were discarded to ensure the 

magnetization had reached steady state. Following the functional runs a high-resolution 

anatomical scan was obtained using a magnetization-prepared rapid gradient-echo 

(MPRAGE) imaging sequence (TR = 2530 ms, TE = 2.77 ms, TI = 1100 ms, flip angle = 7°, 

resolution = 1×1×1 mm).

Connectivity Preprocessing

Images were corrected for slice timing with sinc interpolation and realigned for motion 

correction using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/software/spm5). In order to 

preserve the boundaries of functional nodes, no spatial smoothing was applied. All further 

preprocessing steps used BioImage Suite (www.bioimagesuite.org; Joshi et al., 2011). 

Several covariates of no interest were regressed from the data including linear and quadratic 

drift, six rigid-body motion parameters, mean white matter signal, and mean cerebrospinal 

fluid (CSF) signal. To test the effects of global signal regression (GSR), in an identical 

dataset the mean overall global signal was regressed. All images were temporally smoothed 

using a zero mean unit Gaussian filter with an approximate cutoff frequency of 0.12 Hz.
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Network Construction

First, 278 nodes were defined by warping the functional brain atlas (http://

www.nitrc.org/frs/download.php/5785/shenetal_neuroimage2013_funcatlas.zip; Shen et al., 

2010; Shen et al., 2013) into single subject space via a concatenation of linear and nonlinear 

registrations: The functional images were linearly registered to the T1 axial-oblique (2D 

anatomical) images. The 2D anatomical images were linearly registered to the MPRAGE 

(3D anatomical) images. The 3D anatomical images were non-linearly registered to the 

template brain. All transformations were calculated and combined into a single transform 

and inverted, in order to reduce interpolation error by warping the atlas to an individual 

brain with only one transformation. All transformations were estimated using the intensity-

based registration algorithms in BioImage Suite.

For each participant, pairwise correlation coefficients were computed for the time courses of 

each pair of nodes with data from all runs. To test the stability of network measures across 

runs, pairwise correlation coefficients were computed for the time courses of each pair of 

nodes with data from each of the 8 runs. The correlation values were normalized to z-scores 

using the Fisher transformation, resulting in a 278×278 connectivity matrix. Because the 

matrices are Fisher-transformed correlations, no matrices have zero surviving edges. The 

connectivity matrices were then converted into a binary adjacency matrix by thresholding 

using Matlab (www.mathworks.org). Negative correlations were not included in the 

calculation of binary networks. An absolute threshold (τr) was applied from τr=0–1 at 0.01 

intervals. Using a Matlab function from Brain Connectivity Toolbox (https://

sites.google.com/site/bctnet; Rubinov and Sporns, 2010), a proportional threshold (τp) was 

applied from τp=0.01–0.99 at 0.01 intervals.

Comparing Network Measures

Network properties were calculated using Matlab functions from Brain Connectivity 

Toolbox, and included the commonly reported network-level measures: characteristic path 

length, global efficiency, transitivity, and modularity; and node-level measures: clustering 

coefficient, local efficiency, degree, betweenness centrality, and participation coefficient. 

Definitions are provided in Table 1 (also see: Rubinov and Sporns, 2010). For network 

measures based on distance, such as characteristic path length, disconnected nodes are 

removed from the calculation. For network measures based on the adjacency matrix, such as 

degree, disconnected nodes are assigned a value of 0 (Rubinov and Sporns, 2010).

To visualize the stability of network measures, a 'survival curve' was plotted to describe how 

the network measure changes with connection threshold, i.e., survival as a function of 

threshold. The network measure value can be estimated as a single point on the survival 

curve. Therefore, the shape of this curve can be used to provide a description of network 

measure stability across thresholds, for example a monotonic curve would indicate stability, 

whereas a U-shape would indicate instability. Survival curves are displayed for a range of 

thresholds from less to more conservative: 0–1 for absolute; 0.99–.01 for proportional 

thresholds. To test network measure stability across thresholds, independent t-tests were 

used to compare measures between sex or age groups at each threshold. Reversals in the 

direction of significant group differences across thresholds (‘sign reversals’) were also used 
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as an index of instability. In addition, correlations between each measure and age across all 

100 participants were computed. To test network measure stability across runs, repeated 

measures analyses of variance were used to test for an effect of run at each threshold. All 

analyses were performed on graphs derived with and without GSR. Statistical analyses were 

performed using SPSS 21 (http://www-01.ibm.com/software/analytics/spss) or Matlab, and a 

significance level of p<.05. All reported findings are significant at this level (specific 

thresholds are reported in Table 2–Table 3). Several example nodes are described.

Results

Network-Level Measures

Characteristic path length (L)

Absolute threshold: The survival curve for L has an inverted V-shape without GSR, with 

the maximum shifted to a lower threshold with GSR (Figure 1A–F). L was longer for 

females or males (depending on threshold) with and without GSR (Figure 1A–B). L did not 

differ by age without GSR; with GSR, L was longer for younger participants and was 

negatively correlated with age (Figure 1C–D, S1). The shape of the survival curve for L was 

consistent across runs, though an effect of run was found with and without GSR (Figure 1E–

F).

Proportional threshold: The survival curve for L increases smoothly without GSR, or is 

flat and then increases smoothly with GSR (Figure 1G–L). L was longer for males with and 

without GSR (Figure 1G–H). L did not differ between age groups without GSR, yet was 

negatively or positively correlated with age; with GSR, L did not differ between age groups, 

yet was negatively correlated with age (Figure 1I–J, S1). The shape of the survival curve for 

L was consistent across runs, though an effect of run was found with and without GSR 

(Figure 1K–L).

Global efficiency (Eglob)

Absolute threshold: The survival curve for Eglob is monotonic and decreases without GSR, 

with the minimum shifted to a lower threshold with GSR (Figure S2A–F). Eglob was higher 

for males with and without GSR (Figure S2A–B). Eglob did not differ by age with or without 

GSR (Figure S2C–D, S1). The shape of the survival curve for Eglob was consistent across 

runs, though an effect of run was found with and without GSR (Figure S2E–F).

Proportional threshold: The survival curve for Eglob is monotonic and decreases without 

GSR, or is flat and then decreases with GSR (Figure S2G–L). Eglob did not differ between 

sex groups without GSR; with GSR, Eglob was higher for females (Figure S2G–H). Eglob did 

not differ between age groups without GSR, yet was negatively correlated with age; with 

GSR, Eglob did not differ between age groups, yet was positively correlated with age (Figure 

S2I–J, S1). The shape of the survival curve for Eglob was consistent across runs, though an 

effect of run was found without GSR (Figure S2K–L).
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Transitivity (T)

Absolute threshold: The survival curve for T is U-shaped without GSR, with the minimum 

shifted to a lower threshold and J-shaped with GSR (Figure S3A–F). T was higher for males 

or females with and without GSR (Figure S3A–B). T did not differ between age groups 

without GSR, yet was positively correlated with age; with GSR, T did not differ by age 

(Figure S3C–D, S1). The shape of the survival curve for T was consistent across runs, 

though an effect of run was found without GSR (Figure S3E–F).

Proportional threshold: The survival curve for T is monotonic and decreases without GSR, 

or is flat and then decreases with GSR (Figure S3G–L). T did not differ between sex groups 

without GSR; with GSR, T was higher for males (Figure S3G–H). T did not differ between 

age groups without GSR, yet was positively correlated with age; with GSR, T did not differ 

by age (Figure S3I–J, S1). The shape of the survival curve for T was consistent across runs, 

though an effect of run was found without GSR (Figure S3K–L).

Modularity (M)

Absolute threshold: The survival curve for M is S-shaped without GSR, with the maximum 

shifted to a lower threshold and inverted J-shaped with GSR (Figure S4A–F). M did not 

differ between sex groups without GSR; with GSR, M was higher for males or females 

(Figure S4A–B). M was higher for younger participants without GSR and negatively 

correlated with age; with GSR, M was higher for younger participants and negatively 

correlated with age (Figure S4C–D, S1). The shape of the survival curve for M was 

consistent across runs, though an effect of run was found with and without GSR (Figure 

S4E–F).

Proportional threshold: The survival curve for M increases smoothly to a final sharp peak 

without GSR, or is flat and then increases to a sharp peak with GSR (Figure S4G–L). M did 

not differ between sex groups without GSR; with GSR, M was higher for males (Figure 

S4G–H). M was higher for younger participants without GSR and negatively correlated with 

age; with GSR, M was higher for younger participants and negatively correlated with age 

(Figure S4I–J, S1). The shape of the survival curve for M was consistent across runs, though 

an effect of run was found with GSR (Figure S4K–L).

Node-Level Measures

Clustering coefficient (C)

Absolute threshold: The number of nodes showing a difference in C between sex groups is 

skewed toward low thresholds without GSR, with the peak shifted toward lower thresholds 

with GSR (Figure 2). Seventy-six nodes showed sign reversals between sex groups without 

GSR; 97 nodes showed sign reversals with GSR (Figure 4). The survival curve for C is 

typically U- or S-shaped at a given node. At node 15, C was higher for males or females 

with and without GSR (Figure 5A–B). The number of nodes showing a difference in C 

between age groups is minimal at low thresholds then increases without GSR, and higher at 

low thresholds and variable with GSR (Figure 3). Twenty-two nodes showed sign reversals 

between age groups without GSR; 67 nodes showed sign reversals with GSR (Figure 4). At 
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node 174, C was higher for older or younger participants with and without GSR (Figure 5E–

F).

Proportional threshold: The number of nodes showing a difference in C between sex 

groups is minimal at high thresholds then increases without GSR, and with GSR is flat and 

then peaks (Figure 2). Three nodes showed sign reversals between sex groups without GSR; 

5 nodes showed sign reversals with GSR (Figure 4). The survival curve for C typically 

decreases or is stable and then drops off. At node 15, C was higher for males with and 

without GSR (Figure 5C–D). The number of nodes showing a difference in C between age 

groups is minimal at high thresholds and variable without GSR, and with GSR is flat and 

then peaks (Figure 3). Four nodes showed sign reversals between age groups without GSR; 

2 nodes showed sign reversals with GSR (Figure 4). At node 174, C was higher for older 

participants with and without GSR (Figure 5G–H).

Local efficiency (Eloc)

Absolute threshold: The number of nodes showing a difference in Eloc between sex groups 

is skewed toward low thresholds without GSR, with the peak shifted toward lower 

thresholds with GSR (Figure 2). Three nodes showed sign reversals between sex groups 

without GSR; 1 node showed a sign reversal with GSR (Figure 4). The survival curve for 

Eloc is typically non-monotonic with a downward trend. At node 272, Eloc was higher for 

males or females with and without GSR (Figure S5A–B). The number of nodes showing a 

difference in Eloc between age groups is minimal at high thresholds then increases without 

GSR, and is higher at low thresholds and then peaks with GSR (Figure 3). One node showed 

a sign reversal between age groups with or without GSR (Figure 4). At node 128, Eloc was 

higher for older or younger participants without GSR, and higher for younger participants 

with GSR (Figure S5E–F).

Proportional threshold: The number of nodes showing a difference in Eloc between sex 

groups is minimal at high thresholds then increases without GSR, and with GSR is flat and 

then peaks (Figure 2). Two nodes showed sign reversals between sex groups without GSR; 3 

nodes showed sign reversals with GSR (Figure 4). The survival curve for Eloc is typically 

nonmonotonic and decreasing or is flat with a peak and drop-off. At node 272, Eloc was 

higher for males with and without GSR (Figure S5C–D). The number of nodes showing a 

difference in Eloc between age groups is minimal at high thresholds then increases without 

GSR, and with GSR is flat and then peaks (Figure 3). Three nodes showed sign reversals 

between age groups without GSR; 2 nodes showed sign reversals with GSR (Figure 4). At 

node 128, Eloc was higher for older participants without GSR (Figure S5G–H).

Degree (d)

Absolute threshold: The number of nodes showing a difference in d between sex groups is 

skewed toward low thresholds without GSR, with the peak shifted toward a slightly lower 

threshold with GSR (Figure 2). No nodes showed a sign reversal between sex groups 

without GSR; 8 nodes showed sign reversals with GSR (Figure 4). The survival curve for d 

is typically monotonic and decreasing. At node 249, d did not show a difference between sex 

groups without GSR, but was higher for males or females with GSR (Figure S6A–B). The 
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number of nodes showing a difference in d between age groups is variable without GSR, and 

is higher and skewed toward high thresholds with GSR (Figure 3). One node showed a sign 

reversal between age groups without GSR; 7 nodes showed sign reversals with GSR (Figure 

4). At node 199, d was higher for younger or older participants without GSR, and higher for 

older participants with GSR (Figure S6E–F).

Proportional threshold: The number of nodes showing a difference in d between sex 

groups increases without GSR, and with GSR is flat and then increases to peak (Figure 2). 

Two nodes showed sign reversals between sex groups without GSR; 4 nodes showed sign 

reversals with GSR (Figure 4). The survival curve for d is typically monotonic and 

decreasing or flat and then decreasing. At node 249, d was higher for females without GSR, 

and higher for females or males with GSR (Figure S6C–D). The number of nodes showing a 

difference in d between age groups was variable and increasing without GSR, and with GSR 

is flat and then peaks (Figure 3). Four nodes showed sign reversals between age groups 

without GSR; 8 nodes showed sign reversals with GSR (Figure 4). At node 199, d was 

higher for older or younger participants without GSR, and higher for older participants with 

GSR (Figure S6G–H).

Betweenness centrality (CB)

Absolute threshold: The number of nodes showing a difference in CB between sex groups 

is low and variable with or without GSR (Figure 2). Fifty-three nodes showed sign reversals 

between sex groups without GSR; 59 nodes showed sign reversals with GSR (Figure 4). The 

survival curve for CB is typically non-monotonic with an inverted V-shape. At node 104, 

CB was higher for females or males with and without GSR (Figure S7A–B). The number of 

nodes showing a difference in CB between age groups was highest at moderate thresholds 

without GSR, and skewed toward low thresholds with GSR (Figure 3). Fourteen nodes 

showed sign reversals between age groups without GSR; 47 nodes showed sign reversals 

with GSR (Figure 4). At node 26, CB was higher for older or younger participants with and 

without GSR (Figure S7E–F).

Proportional threshold: The number of nodes showing a difference in CB between sex 

groups is low and variable without GSR, and with GSR is flat and then peaks (Figure 2). 

Eight nodes showed sign reversals between sex groups without GSR; 23 nodes showed sign 

reversals with GSR (Figure 4). The survival curve for CB typically increases to a sharp peak 

and then drops off. At node 104, CB was higher for females without GSR, and higher for 

males or females with GSR (Figure S7C–D). The number of nodes showing a difference in 

CB between age groups is variable without GSR, and with GSR is higher and flat and then 

peaks and decreases (Figure 3). Three nodes showed sign reversals between age groups 

without GSR; 16 nodes showed sign reversals with GSR (Figure 4). At node 26, CB was 

higher for older participants without GSR, and higher for younger participants with GSR 

(Figure S7G–H).

Participation coefficient (P)

Absolute threshold: The number of nodes showing a difference in P between sex groups is 

low and variable with and without GSR (Figure 2). Sixty-eight nodes showed sign reversals 
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between sex groups without GSR; 124 nodes showed sign reversals with GSR (Figure 4). 

The survival curve for P is typically non-monotonic with a downward trend. At node 20, P 

was higher for females or males with or without GSR (Figure S8A–B). The number of nodes 

showing a difference in P between age groups is variable with and without GSR (Figure 3). 

Sixty nodes showed sign reversals between age groups without GSR; 85 nodes showed sign 

reversals with GSR (Figure 4). At node 62, P was higher for younger or older participants 

without GSR, and higher for younger participants with GSR (Figure S8E–F).

Proportional threshold: The number of nodes showing a difference in P between sex 

groups is variable without GSR, and with GSR is flat and then peaks (Figure 2). Twenty-

four nodes showed sign reversals between sex groups without GSR; 13 nodes showed sign 

reversals with GSR (Figure 4). The survival curve for P is typically non-monotonic with an 

inverted J-shape or flat and then J-shaped. At node 20, P was higher for males or females 

with and without GSR (Figure S8C–D). The number of nodes showing a difference in P 

between age groups is variable without GSR, and with GSR is flat and then drops off and 

then peaks (Figure 3). Fourteen nodes showed sign reversals between age groups without 

GSR; 10 nodes showed sign reversals with GSR (Figure 4). At node 62, P was higher for 

younger participants with and without GSR (Figure S8G–H).

Discussion

Network measures were found to be unstable in a number of ways, particularly across 

absolute thresholds. Few of the survival curves were monotonic across absolute thresholds 

(e.g., Figure 1A–F); this can make it difficult to parameterize the curve with a simple 

function (as in Scheinost et al., 2012). Most of the network measures showed “sign 

reversals” in the direction of group differences across absolute thresholds (Figure 4). 

Finally, the number of nodes showing a group difference in a given network measure across 

absolute thresholds was typically variable or skewed, i.e., not flat (Figure 2–Figure 3).

Eglob and M were the most stable network-level measures across absolute thresholds. Eglob is 

defined as the average inverse shortest path length (Rubinov and Sporns, 2010) and is 

therefore related to L The current findings suggest that Eglob may be a more stable measure 

of functional integration than L when using absolute thresholds. Further, although Eglob 

exhibited a monotonic survival curve across absolute thresholds (Figure S2A–F), the curve 

for Eloc was typically non-monotonic (Figure S5A–B, E–F). This suggests that nodes may 

contribute to Eglob differently across absolute thresholds. The most stable node-level 

measures were d and Eloc, with few to no nodes showing sign reversals in these measures 

across absolute thresholds (Figure 4). Only one node showed a sign reversal in d across 

absolute thresholds (node 199, Figure S6E).

The stability of network measures was improved using proportional thresholds. The survival 

curves for network measures across proportional thresholds had more smoothly varying 

shapes. For example, the inverted V-shaped curves of L across absolute thresholds were not 

found (Figure 1). Although a few network measures showed sign reversals across 

proportional thresholds (Figure 4), in each instance, the reversal occurred at one or a few 

extreme thresholds. For example, at node 20, P was higher for males at τp=0.01–0.02, but 
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higher for females at virtually every other threshold (Figure S8C–D). The number of nodes 

showing a group difference in a network measure across proportional thresholds was also 

less variable or more flat (Figure 2–Figure 3). These findings suggest that network measures 

are more stable across proportional than absolute thresholds. The application of proportional 

thresholds has become more common in graph theoretical analyses of human brain networks 

(e.g., Achard and Bullmore, 2007; Zhang et al., 2011). However, these findings demonstrate 

that the outcome of network analyses can differ depending on whether absolute or 

proportional thresholds are applied. For example, Eglob was found to be greater for males 

than females across absolute thresholds, but greater for females than males across 

proportional thresholds, when the same preprocessing method was used (Figure S2B, H).

The instability of network measures at very high or very low thresholds is expected and is 

related to the calculation of these measures as the graph becomes more or less connected. 

The current findings demonstrate, however, that network measure instability is not restricted 

to extreme thresholds, but occurs within reasonable, commonly applied ranges. For instance, 

L decreases at high absolute thresholds (and also at very low proportional thresholds <.01; 

not displayed) because many nodes no longer have paths between them that survive 

threshold, thereby decreasing the average shortest path length. However, the instability of L 

was not restricted to high absolute thresholds (Figure 1). With GSR, L was greater for 

females at reportable, low thresholds (r=0.24–0.57), but greater for males at reportable, high 

thresholds (r=0.73–0.75, 0.82–0.88), and published studies have reported findings at 

absolute thresholds ranging from r=0.1–0.8 (Buckner et al., 2009; Tomasi and Volkow, 

2010). For network measures showing sign reversals in the direction of group differences 

across absolute thresholds, most showed sign reversals within the typically reported range 

(Table 2). Proportional thresholds were found to improve network measure stability, and this 

was indicated by all sign reversals across proportional thresholds occurring at one or a few 

extreme thresholds, as described above.

Network measures were also found to be somewhat unstable within subjects across the eight 

resting-state fMRI runs. Only network-level measures were tested across runs. Although the 

shapes of the survival curves were consistent across runs (e.g., Figure 5E–F, K–L), 

indicating relative stability, there was nevertheless a significant effect of run on every 

network measure at some threshold, depending on the type of threshold applied and the 

preprocessing method.

Finally, these findings demonstrate an impact of preprocessing with GSR, but did not reveal 

a consistent effect of GSR on the stability of network measures. The survival curves were 

typically shifted by GSR across absolute or proportional thresholds. GSR impacted group 

differences in a number of ways: (a) group differences were only found with GSR (e.g., 

Eglob, T, M; proportional threshold; sex); (b) group differences found without GSR were no 

longer found with GSR (e.g., Eloc; node 128; proportional threshold; age); (c) sign reversals 

found without GSR resolved to one direction of group differences with GSR (e.g., d; node 

199; absolute or proportional threshold; age); and (d) at worst, the direction of group 

differences found without GSR reversed with GSR (e.g., CB; proportional threshold; age). 

Across absolute thresholds, with GSR, all network measures showed a sign reversal by sex 

with the exception of Eglob. Across proportional thresholds, d, CB, and P showed sign 

Garrison et al. Page 11

Neuroimage. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reversals. These findings suggest that GSR does not improve network measure stability in 

any consistent way. It is possible that in some instances, the group differences found with 

GSR are a correct representation of the data. GSR may facilitate observations of true 

physiological relationships in the brain (Fox et al., 2009) and can help mitigate artifacts due 

to motion (Yan et al., 2013) or variations in carbon dioxide (Wise et al., 2004). However, in 

the current findings, it is not possible to determine whether GSR reveals true group 

differences, and overall, GSR was not found to stabilize network measures across 

thresholds. Alternative solutions to account for global signal fluctuations include 

physiological noise removal using independent components (Griffanti et al., 2014) or 

principal components analyses (e.g, CompCor; Behzadi et al., 2007).

In summary, network analyses enable characterization of the large-scale organization of the 

brain from fMRI connectivity data, however, a threshold is commonly applied to infer 

network structure from the data, and the current findings, and other studies (e.g., Scheinost 

et al., 2012), have shown that network measures are unstable across thresholds. Here we 

provide additional evidence that network measures are unstable across runs and can change 

with different preprocessing pipelines. As there is no biologically principled way to set a 

threshold for a brain network, thresholds remain an ‘educated guess’ (Van Dijk et al., 2010). 

The current findings demonstrate that the choice of thresholding approach can dramatically 

impact results, including even reversing the direction of group differences in a network 

measure.

Recent studies have reported findings across a range of thresholds. This is useful for a more 

complete understanding of the data. Other approaches to thresholding were not tested in the 

current study, such as weighted graphs, in which edges carry some continuous weight value, 

such as related to the strength or effectiveness of connections, or the distance between nodes 

(Reijneveld et al., 2007). However, it is not straightforward how best to set weights that 

reflect the relative strengths of connections (Fornito et al., 2010). It has also been suggested 

that weighted graphs are not reasonable biological structures because in weighted graphs all 

brain regions are connected to all other brain regions (Sporns, 2011). However, unlike 

measures of anatomical connectivity which are considered to reflect direct connections, 

functional connectivity measures reflect both direct (monosynaptic) and indirect 

(polysynaptic) connections (Buckner et al., 2013), and therefore weighted graphs in which 

all nodes are connected may still reflect a reasonable representation of brain networks. 

Methods have improved for modeling weighted brain networks (e.g., Latora and Marchiori, 

2003), and the weighted approach has been used to characterize network properties as they 

relate to sex and age (Gong et al., 2009), among others. Additional methods can be used that 

integrate network measures over a full range of thresholds and, thus, are not sensitive to 

threshold effects (Ginestet et al., 2011; Scheinost et al., 2012). One approach is to 

parameterize the distribution of a network measure calculated over all thresholds (Scheinost 

et al., 2012). These parameters can then be used to compare connectivity between groups 

(e.g., Garrison et al., 2014), or to relate connectivity to behavior or other variables (e.g., 

Mitchell et al., 2013). A second approach is to use Monte Carlo sampling to integrate 

network measures over a range of proportional thresholds for both weighted and un-

weighted networks (Ginestet et al., 2011).
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Conclusion

Network analyses are useful for summarizing large-scale brain organization, to relate 

features of network topology to behavior and cognition, and to examine changes in these 

features in clinical populations such as individuals with neurological and psychiatric 

disorders. However, caution must be used when conducting and interpreting network 

analyses. As studies work to elucidate the organization of functional brain networks in these 

and other contexts, the choice of thresholding approach must be carefully motivated because 

the network structure inferred largely determines the neurobiological interpretation 

(Rubinov and Sporns, 2010).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Network measures were found to be unstable across absolute thresholds.

• For instance, the direction of significant group differences can reverse across 

thresholds.

• Network measures were found to be more stable across proportional thresholds.

• Caution should be used when applying thresholds to functional connectivity 

data.
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Figure 1. 
Characteristic path length (L) across absolute (A–F) and proportional (G–L) thresholds, 

compared between sex groups (top), age groups (middle), and across runs (bottom), without 

and with GSR. *p<.05 (Table 2).
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Figure 2. 
Number of nodes showing a significant t-test between sex groups for clustering coefficient 

(C), local efficiency (Eloc), degree (d), betweenness centrality (CB), and participation 

coefficient (P), across absolute and proportional thresholds, without GSR (black) and with 

GSR (gray).
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Figure 3. 
Number of nodes showing a significant t-test between age groups for clustering coefficient 

(C), local efficiency (Eloc), degree (d), betweenness centrality (CB), and participation 

coefficient (P), across absolute and proportional thresholds, without GSR (black) and with 

GSR (gray).
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Figure 4. 
Number of “sign reversals” in the direction of significant differences for sex and age groups, 

for participation coefficient (P), clustering coefficient (C), betweenness centrality (CB), 

degree (d), and local efficiency (Eloc), across absolute and proportional thresholds, without 

and with GSR.
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Figure 5. 
Clustering coefficient (C) compared between sex groups at node 15, and between age groups 

at node 174, across absolute and proportional thresholds, without and with GSR. *p<.05 

(Table 2). Node displayed (green) overlaid onto MNI brain.
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Table 1

Network measures (Bassett and Bullmore, 2006; Rubinov and Sporns, 2010).

Network-level measures

Characteristic path length (L) is the average shortest path length (i.e., the minimal number of edges that form a direct connection between two 
nodes) between all pairs of nodes in the network and is a measure of functional integration. A short L indicates a more compact network and 
more efficient global information processing.

Global efficiency (Eglob) is the average inverse shortest path length between all pairs of nodes in the network and is a measure of functional 
integration, and represents the functional efficiency of brain networks for information transmission between multiple parallel paths.

Transitivity (T) is the ratio of triangles to triplets in the network, and was a measure of clustering or functional segregation.

Modularity (M) quantifies how well the network can be subdivided into non-overlapping groups of nodes or modules and is a measure of 
functional segregation.

Node-level measures

Clustering coefficient (C) is a measure of the number of edges between a node’s nearest neighbors or the fraction of triangles around a node, 
and is a measure of functional segregation. High C represents clustered connectivity at the node.

Local efficiency (Eloc) is the global efficiency computed on node neighborhoods, is related to C, and is a measure of functional segregation.

Degree (d) is the number of edges connected to a node, and provides information related to the centrality of a node by determining nodes with a 
large number of connections.

Betweenness centrality (CB) is the fraction of all the shortest paths in the network that contain a given node. Nodes with high CB participate in 
a large number of shortest paths and may connect distinct parts of the network.

Participation coefficient (P) is a measure of the inter-modular connections of nodes and indicates centrality.
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