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Abstract

Injectable nanomaterials have been designed for the treatment of myocardial infarction, 

particularly during the acute stages of inflammation and injury. Among these strategies, injectable 

nanofibrous hydrogel networks or nanoparticle complexes may be delivered alone or with a 

therapeutic to improve heart function. Intramyocardial delivery of these approaches localizes 

treatments to the site of injury. In an alternative approach, nanoparticles may be delivered 

intravenously, which provides the ultimate minimally invasive approach. These systems take 

advantage of the leaky vasculature after myocardial infarction, and may be designed to 

specifically target the injured region. The translational applicability of both intramyocardial and 

intravenous applications may provide safe and effective solutions upon optimizing the timing of 

the treatments and biodistribution.
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Introduction

Myocardial infarction (MI) accounts for 1 in 6 of the total deaths in the U.S. [1]. 

Immediately after MI, the myocardium is unstable because of cell death and the physical and 

biological changes to the damaged extracellular matrix (ECM). As the ECM degrades, the 

left ventricle (LV) wall is weakened, thinning overtime [2]. Early healing processes involve 

the inflammatory response, causing the migration of neutrophils and macrophages to the 

injured site [3,4]. The ECM continues to degrade for over a week, and within three weeks, 

myofibroblasts invade the infarct area and a collagen scar begins to form. Late LV 

remodeling may continue for months to years, and may eventually lead to chronic heart 

failure [5]. Early intervention has the potential to minimize the adverse effects during the 

initial inflammatory stage and preserve borderzone cardiomyocytes, which are at risk of 

ongoing apoptosis, thereby slowing or inhibiting the progression of negative LV remodeling. 

In this review, we will focus on injectable nanomaterials recently under investigation for 

treating MI (Table 1).

Injectable biomaterials designed to treat MI during the early stages of remodeling are 

frequently administered through intramyocardial, intracoronary, or intravenous (IV) routes 

(Figure 1). Intramyocardial injections have the advantage of localized therapy while 

minimizing potential systemic effects [5]. Intramyocardial injections may be accomplished 

by either catheter delivery or directly administered through a surgical approach with a 

syringe and needle. The former is a minimally invasive approach requiring only sedation, 

while the latter is an invasive surgery requiring general anesthesia [6]. When incorporated 

with a therapeutic, the bioactivity of the molecule should be maintained, released, and 

delivered in a sustained manner. Local intramyocardial delivery to the injured myocardium 

has been shown to reduce collagen scar formation and improve heart function. However, 

injecting a biomaterial during the acute time window is unlikely to be clinically acceptable, 

due to an increased risk of ventricular rupture [6–8]. The safety of intramyocardial injections 

in the very acute MI stages remains a clinical concern and should continue to be critically 

evaluated.

Intracoronary and IV delivery of biomaterials take advantage of the enhanced permeability 

and retention (EPR)-like effect that occurs after myocardial injury [9,10]. The leaky 

vasculature allows the transport of materials to enter the infarcted zone. In vivo studies 

investigating catheter-based intracoronary infusion of nanoscale biomaterials has not been 

demonstrated; however, interesting work has been published on alginate-derived hydrogels 

using this delivery method [11,12]. IV injection of biomaterials is the ultimate minimally 

invasive approach that delivers treatments directly into the blood stream with the goal of 

accumulating in the MI. Nanoparticles designed for IV delivery should not aggregate during 

injection or transport, leach functionalized therapies while in the bloodstream, nor cause 

systemic toxicity. IV treatments minimize potential procedure costs and time, but the 

biodistribution and clearance of the injected materials remains an important issue and is 

influenced by the size, shape, and charge of the molecule [13,14].
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Intramyocardial delivery of nanoscale biomaterials: nanofibrous hydrogels and 
nanoparticle systems

Treatments developed to reduce LV remodeling include injectable hydrogels, which have 

shown promise in preventing heart failure [6,15,16]. Injectable hydrogels should form a gel 

in the injured area, and be biocompatible and biodegradable. While injectable hydrogels 

have been postulated to affect cardiac function via increasing wall thickness and reducing 

wall stress via La Place's Law [15], recent studies have shown that passive wall thickening 

does not increase function, but rather the bioactive or cell response to these materials 

influences positive remodeling outcomes and increases in cardiac function [17,18]. 

Hydrogels that are designed to have nanoscale fiber networks, mimic the native ECM, and 

thereby create a new scaffold to facilitate cell recruitment. Some nanofibrous hydrogel 

scaffolds have shown promise in vitro, but their delivery in an infarcted animal model 

remains uninvestigated [19,20]. Other hydrogel networks have been investigated as 

nanofibrous scaffolds to treat MI, but these invasive approaches have sutured the biomaterial 

directly to the heart [21,22]. Ideally an injectable hydrogel should be delivered via catheter 

to obviate the need for invasive surgery and general anesthesia. In this case, the hydrogel 

must also have the appropriate resistance and gelation kinetics to facilitate multiple 

injections required of a transendocardial delivery approach, and be hemocompatible and not 

result in embolism since some leakage into the blood stream is known to occur [6].

Injectable, self-assembling peptides are one class of nanofibrous hydrogels that have been 

examined for treating MI. These are composed of relatively short peptide sequences that 

assemble into a nanofibrous, hydrogel network under physiological conditions, as shown 

with RAD16-II, which forms fibers on the order of 5 nm in diameter [23–25]. The delivery 

of vascular endothelial growth factor (VEGF) has been explored using RAD16-II as a carrier 

in both rodent and porcine models [26]. VEGF was released from the nanofibrous hydrogel 

network at a steady rate over 14 days. Improved heart function and neovascularization was 

observed in the group treated with both VEGF and RAD16-II, compared to the saline and 

material only controls in both animal models. The self-assembling peptide RAD16-II has 

also been modified to contain a heparin-binding motif to sequester and deliver VEGF in a 

rodent MI model [27]. The newly designed material did not affect self-assembly properties 

and formed nanofibers roughly 10 nm in diameter. Improved heart function, decreased 

infarct size, and increased angiogenesis were observed in groups that received VEGF with 

either RAD16-II or modified with heparin, although all measures trended higher in the later 

combination.

Injectable hydrogels derived from decellularized ECM are another class of nanofibrous 

hydrogels that have been examined for treating MI [28–31]. To make an injectable hydrogel, 

the decellularized ECM is partially digested, creating a liquid material that self-assembles 

into a nanofibrous network upon injection with fiber diameters of approximately 40–100 nm 

[28]. A cardiac specific ECM hydrogel, derived from porcine ventricular myocardium, has 

been shown to be biocompatible, recruit cardiac progenitors, stimulate neovascularization, 

increase cardiac muscle, and reduce infarct fibrosis in small and large animal MI models 

[29,31]. The hydrogel, which is compatible with percutaneous transendocardial delivery, 

degrades upon cell infiltration within 2–3 weeks in vivo, yet significant increases in cardiac 
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function were observed 3 months post-injection when delivered 2 weeks post-MI [31]. 

When processed appropriately, ECM derived hydrogels retain native sulfated 

glycosaminoglycans (sGAGs) [28,30], which can retain and enhance activity of delivered 

growth factors. This has been shown with a pericardial ECM hydrogel, where retention and 

increased activity of basic fibroblast growth factor (bFGF) and an engineered hepatocyte 

growth factor (HGF) were observed in rat MI models [30,32].

Several other nanoscale materials have also been explored as injectable delivery vehicles for 

treating for MI. In designing these systems, the molecule should be released at a controlled 

rate, from either nanofiber or nanoparticle carriers, while providing therapeutic effects in 

vivo. For example, a synthetic polymer composed of ureido-pyrimidinone and polyethylene 

glycol (PEG) was used to deliver hepatocyte growth factor (HGF) and insulin-like growth 

factor (IGF-1) via catheter injection [33]. Both IGF-1 and HGF were released from the 

hydrogel by 4 days in vitro. The initial burst release of IGF was lower than for HGF, most 

likely due to the size of the proteins. In another study, a hybrid nanosystem composed of a 

methacrylated gelatin hydrogel and polyethylenimine functionalized graphene oxide 

nanosheets was developed for gene delivery of VEGF-165 [34]. The researchers 

demonstrated slow release of VEGF-165 over 3 days in vitro. When injected 15 minutes 

post-ligation, treated groups did not show signs of toxicity or inflammation 7 days post-

injection. Improved cardiac function, measured by ejection fraction, and angiogenesis was 

also observed in treated groups compared to the control groups 14 days post-injection.

Systemic treatment with nanoparticles through passive delivery

Nanoparticles are attractive for minimally invasive delivery because they may be 

administered with IV injection and target the heart through the EPR effect that is present in 

the acute stages of MI. Similar to trends observed for intramyocardial injections, the size of 

the nanoparticle may affect accumulation and distribution with IV injections. For example, 

gadolinium-containing micelles and liposomes, 15 and 100 nm in diameter, respectively, 

were injected IV into infarcted mice 24 hours post-injury [37]. Both the micelles and 

liposomes demonstrated longer circulation times than gadolinium alone. The micelles 

accumulated more quickly than the liposomes, and both materials remained in the infarct 24 

hours post-injection. Two days after injection, the micelles were only observed in the 

kidneys, while the liposomes were present in the spleen and liver. When injected 7 days 

post-MI, both sets of particles accumulated in the infarct and were cleared within an hour. 

These results suggest that both particle size and timing of injection after injury play 

important roles in accumulation and circulation.

An advantage of IV delivery is the ability to deliver at very early time points post-MI, which 

has the potential to mitigate detrimental negative LV remodeling. For example, VEGF-

encapsulated liposomes were designed as an approach to safely deliver VEGF [38]. When 

the liposomes were injected IV immediately after ligation, significant improvements in heart 

function and vascular density were observed 4 weeks after injection compared to groups that 

received liposomes alone or free VEGF. Another example of immediate delivery has been 

shown with dodecafluoropentane nanoparticles to deliver oxygen [39]. The therapy was 
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injected IV immediately after ligation, and a 60% decrease in infarct size was observed 

compared to those treated with saline.

Systemic treatment with nanoparticles through targeted delivery

In addition to taking advantage of passive targeting with the EPR effect, nanoparticles can 

also be designed to bind to specific targets that are upregulated in the infarct. A dual gene 

delivery system was designed to target both extra- and intracellular areas of the ischemic 

heart by combining transactivating transcriptional activator peptide and monoclonal anti-

myosin antibody 2G4 within a liposome carrier [40]. The complex was labeled with green 

fluorescent protein (GFP) and injected IV 30 minutes after occlusion of the coronary artery 

and infused for over 10 minutes. Accumulation and higher GFP expression were observed in 

the infarct up to 48 hours after injection compared to groups treated with liposomes 

complexed with a nonspecific antibody. In a separate study, liposomes labeled with 

angiotensin were injected IV into infarcted mice 1, 4, and 7 days post-MI, and accumulation 

was observed mainly in the left ventricle for all time points 24 hours post-injection [41]. 

Liposomes conjugated with a nonspecific peptide sequence were designed as a negative 

control, however accumulation was also observed when injected up to 1 week post-injury. 

These results suggest that while the system was designed to specifically target the 

angiotensin receptor post-MI, the therapeutic delivery is mainly due to the EPR effect.

Polymeric nanoparticles have also been explored for targeting the acute MI. For example, a 

peptide-polymer system targeting ischemic myocardium was developed using a peptide 

sequence that was identified via phage display to have a high affinity for infarcted 

myocardium [42,43]. The particles were composed of a cystamine bisacrylamide-diamino 

hexane polymer carrier conjugated with the ischemic myocardium targeted peptide (IMTP) 

for targeting and D-9-arginine (D9) for increased transfection. Following IV injection into a 

rat MI model 20 minutes after reperfusion, successful targeting to the damaged region and 

increased gene expression was shown. In another study, tetravalent streptavidin was used as 

the nanoparticle core, which was conjugated with biotinylated IGF and biotinylated PEG-

Hoechst [44]. Hoechst binds to DNA, which is released as cells undergo necrosis in acute 

MI. After IV injection in a mouse MI model, the delivery of IGF to the infarcted region was 

significantly higher for the Hoechst-containing complex than the unlabeled control [45]. 

Improved heart function was also demonstrated 28 days after injection.

Conclusion

Using nanomaterials with minimally invasive strategies to treat MI may reduce debilitating, 

late stage effects of cardiovascular disease. Injectable hydrogel networks, such as ECM 

hydrogels or self-assembling peptides, form nanofibrous scaffolds that can facilitate 

endogenous cell infiltration or therapeutic delivery. A number of additional scaffolds have 

been designed to treat MI, but many have not been fully characterized to examine their 

nanoscale properties nor have they been investigated in an in vivo model. Intramyocardial 

delivery of nanofibrous hydrogels, nanoparticles, or in combination with therapeutic 

molecules localizes treatments to the site of injury using catheter or surgical based 

injections. By delivering the materials through a catheter, invasive surgical procedures may 
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be avoided, reducing patient recovery times and chance of infection. The infarct region is, 

however, unstable early after MI, and intramyocardial injections may increase the risk of 

ventricular rupture, resulting in safety concerns in acute MI patients. The concern using this 

approach may be addressed by delivery through IV injection or coronary infusion, as the 

leaky vasculature of the acute MI allows nanoparticles to enter the injured site. Hydrogel 

therapies are beginning to reach the clinic; however, translating nanoparticle therapies is 

likely to be a longer and more expensive process given the greater potential for off target 

effects [46]. The Food and Drug Administration recently issued guidelines for 

nanotechnology [8], which will be necessary to design safe and effective nanotherapeutics. 

Continued work and investment in this area, examining both safety and efficacy of the 

different materials and delivery approaches, will be critical to realize new nanomaterial 

based therapeutics for treating MI.
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Highlights

• Delivery of nanomaterials to treat MI has the potential for clinical application.

• Approaches for delivery include intracoronary, intramyocardial, and IV 

injection.

• Biomaterials explored to treat MI include nanofibrous hydrogels and 

nanoparticles.
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Figure 1. 
Therapeutic delivery routes to the infarcted heart. Nanomaterials can be delivered to the 

heart through catheter-based intracoronary infusion, intramyocardial injection either via a 

transendocardial catheter or surgical-based direct injection, or through IV delivery and 

subsequent targeting to the site of infarction. Nanofibrous hydrogels or nanocomplexes have 

been delivered via intramyocardial injection, while nanoparticles have been delivered IV 

and have the potential for intracoronary infusion.
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