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Abstract

The chaotic vascular network surrounding malignant tumors leads to pulsatile blood flow patterns 

that differ from those in benign regions of the breast. This study aimed to determine if high-speed 
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electrical impedance tomography (EIT) is able to detect conductivity changes associated with 

cyclic blood-volume changes and to gauge the potential of using these signatures to differentiate 

malignant from benign regions within the breast. EIT imaging of pulsating latex membranes 

submerged in saline baths provided initial validation of its use for tracking temporally varying 

conductivities. Nineteen women (10 with cancer, nine without) were imaged with EIT over the 

course of several heartbeats in synchrony with pulse-oximetry acquisition. Eight parameters (rs, 

φ(rt,max), rt,max, Plow:full, Phigh:full, Plow:high) relating the conductivity images and pulse-oximeter 

signatures were extracted and used as a means of comparing malignant and benign regions of the 

breast. Significant differences (p < 0.01) between malignant and benign regions of interest were 

noted in seven of the eight parameters. The maximum correlation between conductivity and pulse-

oximeter signals, rt,max, was observed to be the optimal discriminating parameter with a receiver 

operating characteristic area under the curve of 0.8 and a specificity of 81% at a sensitivity of 

77%. Assessing the dynamic conductivity of breast may provide additional clinical utility to that 

of standard imaging modalities, but further investigation is necessary to better understand the 

biophysical mechanisms leading to the observed conductivity changes.

Index Terms

Breast cancer; dynamic-imaging; electrical impedance tomography (EIT)

I. Introduction

The electrical impedance of breast is apparently different depending on whether it is benign 

or malignant [1]. In principle, the spatial distribution of its electrical properties can be 

imaged using electrical impedance tomography (EIT) to potentially identify the existence 

and location of various pathologies within the breast. In EIT, ac signals (voltages and/or 

currents) of specific excitation frequencies are applied and sensed at a number of electrodes 

placed on the surface of the breast. A numerical algorithm formulated around Laplace’s 

equation is used to estimate the internal electrical properties based on these peripheral 

measurements of voltage and current. A general overview of EIT instrumentation and image 

reconstruction algorithms can be found in [2].

Both single- and multi-frequency EIT systems have been developed to detect breast cancer 

[3]–[10]. For the single-frequency systems, image contrast is expected to stem directly from 

the electrical property differences between benign and malignant tissues when excited at a 

single frequency. Multi-frequency systems provide an opportunity to gauge how these 

properties change as a function of excitation frequency; benign and malignant breast tissues 

are expected to have different dispersion characteristics. Several of these multi-frequency 

instruments have been connected to planar arrays of electrodes pressed flat against the breast 

[7], [9], [11] while others have been used with circular electrode arrays placed around the 

tissue [4]. Comprehensive reviews of clinical studies of EIT for breast imaging are given in 

[12] and [13].

While current results continue to demonstrate some clinical potential [14]–[16], 

improvement in the sensitivity and specificity of detecting malignant formations within the 

breast with EIT is still needed. Static absolute imaging has been challenging because of the 
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nonlinear, ill-posed, and ill-conditioned nature of image reconstruction. The relatively small 

number of measurements, significant noise contributions from both electronic and 

experimental sources, and the geometric and electrode contact related assumptions typically 

made to approximate the physical situation have all contributed to these difficulties. To 

mitigate some of these effects, research groups have advocated for the collection of multi-

frequency measurements and have employed linearized algorithms to assess the changing 

conductivity as a function of frequency in an effort to image the dispersive properties of 

tissue [17]. Others have evaluated the dispersive relationships in order to identify cancerous 

lesions within the breast [18] instead of producing impedance images directly. These 

approaches have demonstrated promising initial results; however, larger patient series are 

needed to confirm the robustness of these methods.

An alternative to single- and multi-frequency EIT is dynamic, or time-difference, EIT which 

is employed to image time-varying impedance distributions. A number of clinical 

applications, aside from breast imaging, have been reported using dynamic EIT to evaluate 

cardiovascular dynamics [19], pulmonary dynamics [20], gastric emptying [21], [22], and 

evoked neural response [23]. Image reconstruction is linearized in these applications, which 

reduces errors associated with geometrical approximations, noise due to experimental 

conditions, and systematic electronic noise.

To date, dynamic EIT has not been considered for breast imaging largely due to the small 

temporal changes in impedance that are expected to occur in the breast. However, improved 

instrumentation over the last decade has produced EIT instruments with extremely high 

signal-to-noise ratios (SNR) approaching 100 dB [24]–[26] and may make it possible to 

detect these small changes. In this paper, we investigate whether it is possible to take 

advantage of low-noise, high-speed EIT to image dynamic impedance changes in the breast 

in order to detect and characterize breast abnormalities. A physiological rationale for 

pursuing this approach is presented followed by a discussion of the EIT system developed 

for this purpose, the image reconstruction algorithm used, and the signal processing and 

parameter extraction methodology developed to assess dynamic conductivity changes. The 

system’s ability to image dynamically changing environments is verified through phantom 

experiments. Finally, results obtained in a pilot imaging study of 19 women is presented and 

discussed.

II. Imaging Breast Tumor Hemodynamics

Increased effort to correlate dynamic signatures obtained from MR and Ultrasound (US) 

with hemodynamic histopathology in the breast is underway. The basis for these studies is 

the association of tumor angiogenesis with the progression of breast disease. For example, 

Wells et al. [27] have recently shown that the mean vessel density (MVD) in malignant 

breast tissue is 2.8 times greater than that of normal tissue and 1.57 times greater than that 

found in fibroadenomas.

Currently, the most robust method of performing breast MRI involves the acquisition and 

evaluation of time-intensity curves. These time-intensity curves are, however, dependent 

upon of a number of physiological parameters including blood flow, blood volume, capillary 
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permeability, and surface area which can not be easily differentiated. New techniques in 

dynamic contrast-enhanced MR imaging (DCE MRI) have been used to isolate properties 

such as blood flow, blood volume, and capillary permeability [28]–[31]. A number of 

studies have attempted to directly correlate DCE MRI signatures with MVD and have found 

mixed results. For example, Stomper et al. [32] reported no correlation between MRI 

parameters and MVD, whereas both Ikeda et al. [33] and Tuncbilek et al. [34] have 

observed such a relationship. They, however, both suggest that the correlation between the 

rate of initial enhancement and microvessel density is more indicative of vascularization and 

not malignancy or benignity. The Wells report suggests MVD and malignancy are directly 

correlated, perhaps showing that these MRI studies are sensitive to multiple parameters as 

expressed in the observations made by Ikeda et al. and Tunbilek et al. Efforts have also been 

undertaken in US imaging to measure blood flow in tumors and relate US signatures with 

MVD. Ultrasound techniques based on color-coded Doppler have shown no evidence of 

correlation between the Doppler signature and microvessel density; however, they have 

found an association with the macrovasculature [35], [36]. More recent techniques utilizing 

power Doppler have shown better sensitivity to vascular detection than that of conventional 

Doppler imaging [37].

Neovasculature occurs primarily at a tumor’s periphery while its center tends to undergo 

necrosis. The physiological phenomena occurring within the microvasculature surrounding 

the tumor is complex, and studies have shown this network of vessels to be chaotically 

arranged, permeable capillaries [38]. Benign lesions are vascularized as well, but they are 

more well-defined and lack the chaotic structures of many malignant tumors.

As blood flows through the vasculature it experiences a periodic pulsatillity synchronized to 

the beating of the heart. The presence of the excessive chaotically arranged vasculature 

around a malignant tumor may present a different dynamic impedance signature than that 

obtained from normal and benign tissues within the breast. A high-speed, precise EIT 

system may be capable of imaging this periodic blood flow by recording measurements at 

various phases within the cardiovascular cycle. Further, collecting data at specific phases 

within the cardiac cycle, but over multiple cycles, will provide a multiplicity of data that can 

be averaged to increase noise suppression and improve image contrast. This would provide a 

new contrast mechanism, different from that available through static and multi-frequency 

EIT, which may prove more successful at differentiating breast tissues based on the dynamic 

characteristics of their blood flow instead. Previous work in impedance cardiography [49], 

rheoencephalography [50], and brain imaging [51] have compared cardiovascular pulse 

signals to impedance changes in clinical applications other than cancer imaging.

III. Eit Imaging and Analysis Overview

A. Image Synchronization

Dartmouth’s third generation breast EIT system is capable of collecting high frame rate data 

(>40 fps) as described previously [25], [39]. Briefly, it is a wide-bandwidth (10 kHz–10 

MHz), 64 electrode, voltage-driven system specifically designed for use in breast imaging. 

In high-speed acquisition mode it collects bursts of 40 frames of data at a user specified 
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frame rate (up to 180 fps); following acquisition the data is off-loaded from the system 

electronics to an interface computer for postprocessing and image reconstruction.

The system has been upgraded with a cardiovascular monitoring unit (CMU) to permit 

external triggering of data collection. Specifically, a USB-based analog signal capture 

device (PMD-1608FS, Measurement Computing, Norton, MA, USA) interfaced to the EIT 

system computer is used to record an external biophysical signal. The PMD-1608FS has 

eight single-ended analog inputs that are captured and converted to the digital domain with 

16-bit ADCs. The EIT system software continuously scans a single analog input channel at a 

rate of 62.5 Hz and a software-based threshold detection scheme is used to trigger EIT data 

acquisition. Thresholds are manually selected based on the characteristics of the input 

signal. This provides the ability to trigger EIT data acquisition synchronously with the QRS 

complex of an ECG waveform or the peak in the absorbance signal sampled from a pulse-

oximeter. Although either ECG or pulse-oximetry can be used, a finger-based pulse-

oximeter (Nellcor N-395, Covidien, MA, USA) was used in this investigation because of the 

ease of deployment during patient imaging. The cardiovascular signal is recorded 

simultaneously while EIT data acquisition occurs. Following acquisition of a 40 frame burst 

of data, additional bursts of frames can be recorded. When an arbitrary number of bursts are 

collected, data acquisition is halted and the data is transferred for offline image 

reconstruction.

For the phantom experiments and patient series reported here, the system was configured to 

image a single plane, consisting of a circular ring of 16 electrodes. The 15 optimal 

trigonometric voltage patterns for a 16 electrode system as defined by Isaacson [40] were 

used as the driving patterns. Each acquisition frame consisted of 240 voltages measurements 

(15 patterns × 16 electrodes) which were arranged in the column vector Vi. Each 40-frame 

burst of recorded voltages defined a nonsquare matrix, Vn = [V1 V2 V3 … V40], where n 
represents the burst number when multiple bursts of image frames are collected. The 

corresponding biophysical signal sampled at 62.5 Hz defined a column vector yn = [y1 y2 y3 

… yNc,samples]
T for each 40-frame burst, where n = 1, 2, 3, …, Nburst, and Nc,samples, the 

length of yn, is based on the duration of the 40-frame EIT burst collection window. This 

length is a function of the EIT frame rate and for the data presented here is fixed at 17.3 fps.

B. Image Reconstruction

We used a finite element (FEM) based linear difference algorithm to estimate the changing 

conductivity distribution between frames. A 2-D circular mesh with 640 elements, 353 

nodes and scalable diameter was generated to model the experimental geometry. The change 

in conductivity, Δσi at each of the mesh nodes is calculated from

(1)

where J is a Jacobian matrix representing the sensitivity of changes in boundary voltages to 

changes in conductivity, L is a Laplacian regularization matrix, and λ is a regularization 

parameter used to stabilize the inversion. Vref is a set of boundary voltages designated as a 

reference conductivity distribution, while Vi is the set of boundary voltages collected during 
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each frame i. J is computed from the reference boundary voltages via the adjoint method 

[41] and is fixed for each Δσi calculation. The vector Δσi represents the 353 nodal change in 

conductivity values at each frame i and is computed using the change in measured boundary 

voltages with respect to the reference. Vref is defined as the mean of all voltages recorded 

from a single burst of data

Taking the mean across all frames provides a less noisy reference from which to calculate 

conductivity changes. Δσi is calculated using (1) for each of the 40 frames recorded from a 

single acquisition burst. Empirical testing demonstrated that a λ of 0.001 provided a 

sufficient level of regularization to ensure stable inversion. Within each burst, Δσn = [Δσ1 

Δσ2 Δσ3, …, Δσ40] represents the spatio-temporal sequence of changing conductivity 

estimates.

C. Data Processing

Following data acquisition and Δσ image reconstruction, the temporal data (Δσ images, Δσn, 

and biophysical signal, yn) were analyzed in order to assess 1) the beat-to-beat 

correspondence between the cardiovascular and Δσ signatures and 2) the inter-beat statistics 

of these signals. The cardiovascular signal being sampled (either the ECG or pulse-oximetry 

waveform) provided a surrogate measure of blood flow through the breast and was the 

means of comparison to which the temporal conductivity changes were evaluated. Note that 

the pulse-oximetry signal used here provided only a relative reference for comparison since 

it is dependent on the location of the pulse-ox probe (i.e., finger-based versus carotid 

sampling). Sampling 40 frames/burst at 17.3 fps provided a 2.3-s sampling window. Resting 

heart rates typically ranged from 50–90 bpm (0.83–1.5 bps) resulting in 1.9–3.45 heart beats 

being sampled per burst during this 2.3-s window. Relatively large conductivity changes 

were present during phantom imaging (Section IV) and the signatures acquired from a single 

acquisition burst (40 frames) provided sufficient detail for identifying the temporal and 

spectral characteristics of the spatio-temporal conductivity variations induced. However, for 

dynamic breast imaging, the conductivity changes are much smaller and require additional 

processing over multiple acquisition bursts to characterize the signals. Specifically, a single 

heart beat was extracted from each acquisition burst to provide multiple cardiac events for 

processing. The specific procedures employed for each processing stage consisted of (Fig. 

1).

1. Step 1: Input: The data collected during each burst consisted of the vector yn (the 

cardiovascular signal being monitored at a sampling interval of Tc = 16 ms) and 

Δσn (the temporal change in conductivity sampled at Tσ = 57.8 ms).

2. Step 2: Resample Δσn: Because Tc ≠ Tσ, Δσn was resampled using cubic spline 

interpolation to match the sampling rate of yn. This resampling was performed over 

each of the image nodes and ensured that the resampled signal, Δ̂σn and yn were of 
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the same length, with each sample occurring at equivalent instances in time. Each 

single acquisition burst was resampled in a similar fashion.

3. Step 3: Identify Single Beat: Following resampling, a single cardiac cycle was 

extracted from each burst. This was accomplished by determining successive peaks 

within the cardiovascular signal, yn, and extracting the corresponding temporal 

points from within the resampled Δ̂σn sequence. Prior to peak detection, the 

cardiovascular signal, yn, was demeaned and normalized. Identifying the peak of 

this demeaned and normalized signal, ŷn, depends on the signal characteristics and 

for the case of pulse-oximetry signatures, a derivative-based algorithm was 

employed as a simple, accurate and efficient mode of peak detection. To this end, 

the first-order difference, Δn, is calculated across the entire temporal sequence and 

normalized

(2)

(3)

A peak was defined at the sample, i, at which the maximum Δ̂ occurred within a 

predefined window beginning at the time point at which Δ̂ exceeded a specified 

threshold. The threshold, τ, was empirically determined by trial and error. The first 

peak, Γ1, was defined as the maximum Δ̂ found within the window, ψ, following 

the first instance at which τ was exceeded

(4)

The burst number, n, is omitted from (4) to simplify the expression. For the pulse-

oximetry signals acquired here, a τ of 0.35 and ψ of 20 proved robust in detecting 

the first peak in the pulse-oximeter signal from each of the acquired bursts. The 

second peak, Γ2, was similarly found by providing the detection algorithm the 

cardiovascular signature ranging from the end of the first peak window, iτ + ψ, to 

the sequence end.

4. Step 4: Extract Single Beat: A single cardiovascular period ranging from the 

sample points, γ1 and γ2, corresponding to Γ1 and Γ2, respectively, was extracted 

from the demeaned and normalized pulse-oximeter signal, ŷn and the resampled 

conductivity signal, Δ̂σn

(5)

(6)
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Here γ1 and γ2 denote the time points associated with the first and second peak in 

the pulse-oximeter signal, respectively.

The extracted data therefore represents a single cardiovascular beat and includes all 

ŷn and Δ̂σn samples between γ1 and γ2 (i.e., γ1, γ1 + 1, γ1 + 2, …, γ2).

5. Step 5: Resample Individual Beats: Heart-rate variability is a well-established 

phenomenon [42] that manifests itself in this application as the temporal length of 

ỹn and Δ̃σn for each burst being variable. In order to account for this variability, the 

extracted single-beat sequences were resampled using cubic spline interpolation 

with a fixed number of samples (=40) to occur over a temporal duration of 1 s, 

effectively enforcing a 1 bps heart rate. By enforcing a fixed number of samples 

occurring over the 1-s interval, the sequences extracted from each burst were easily 

compared.

6. Step 6: Concatenate Individual Beats: The resampled ỹn and Δ̃σn sequences 

extracted from each burst are concatenated into single multi-heart beat time 

sequences y(t) and Δσ(t) in order to lengthen the signal for more accurate analysis 

of temporal and spectral statistics.

D. Image Analysis

After concatenating final sequences of y(t) and Δσ(t), image analysis consisted of extracting 

the mean Δσ within a specified region-of-interest (ROI) from each frame. This extraction 

provided a temporal sequence of ΔσROI(t) corresponding to a specific region inside the 

imaging domain. The temporal signature of each sequence was filtered using an 81-tap 

Hamming window with a cutoff frequency of 8.65 Hz (1/2 of the 17.3 Hz sampling 

frequency) and padded with zeroes prior to taking the 512-point Fast Fourier Transform 

(FFT). The power spectra, ΔΣ(f) and Y(f), were estimated as the square of the individual 

frequency components extracted from the FFT (i.e., ΔΣ(f) = |FFT(Δσ(t))|2). In a phantom 

imaging configuration with relatively large changes in conductivity, the temporal and power 

spectral signatures provided adequate information for characterizing the changing 

conductivity, while in patients no clear indications from these sequences were typically 

observed. To better evaluate these signatures in patients, several spectral and temporal 

measures were used to parameterize the waveforms. These parameters included.

1. Spectral Correlation Coefficient, rs: Correlation coefficient between the pulse-

oximeter signal spectra, Y(f) and the ΔΣ(f) spectra. The correlation was obtained 

for frequencies ranging from 1 to 8.65 Hz. DC to 1-Hz signals were not included 

because the shortest frequencies able to be gauged were 1 Hz due to the resampling 

procedure.

2. Maximum Temporal Correlation Coefficient, rt,max: Maximum correlation 

coefficient occurring between the pulse-oximeter signal and a phase-shifted Δσ 

signal. The Δσ signal was phase shifted from 0° to 360°. The correlation coefficient 

was computed at each degree of phase shift and rt,max denotes the maximum 

correlation coefficient obtained through the entire phase-shifting procedure.
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3. Phase Shift at rt,max, φ(rt,max): The phase shift leading to the maximum 

correlation coefficient (rt,max) between the pulse-oximeter signal and Δσ signal. 

This represents the phase shift required to produce the maximum correlation 

coefficient.

4. Spectral Power Ratio, Px:y: The ratio of total spectral power within one frequency 

band in reference to a second frequency band as defined by

(7)

Three spectral power ratio’s for each Δσ spectra were computed

IV. Phantom Imaging

A. Experimental Configuration

A series of phantom experiments were conducted in the same way that patient data was 

collected in order to evaluate system performance (Fig. 2). An 8-cm circular tank fitted with 

1-cm stainless steel electrodes was positioned within the EIT system. A saline solution (σ = 

0.113 S/m) was added to the tank to a height of 2 cm just covering the bottom layer of 

electrodes. A pulsating latex balloon positioned within the saline solution was used to 

simulate a dynamically varying low conductivity volume. A two-port Y-type connector 

interfaced to the balloon allowed fluid to flow in and out of the membrane. Flexible tubing 

extending from one of the ports was interfaced through a programmable COBE heart–lung 

precision blood pump (COBE Lakewood, CO, USA) to a second saline bath (σ = 0.014 

S/m). This solution was pumped through the balloon, and a flexible tube connected to the 

second port acted to drain fluid from the balloon. An Agilent 33120A arbitrary waveform 

generator (Agilent Technologies, Santa Clara, CA, USA) was used to generate both sine and 

square waves of particular amplitudes and frequencies to drive the pump. The back Vemf 

signal of the pump was sensed by our cardiovascular monitoring unit and used to trigger EIT 

data acquisition.

Eight different pumping schemes were imaged. Sine wave excitations at 1, 2, and 4 Hz were 

used, followed by square wave excitations at 1, 2, and 4 Hz. The drive amplitude for each of 

these waveforms was a constant 1 Vpp, which resulted in balloon diameter changes of 1–3 

mm per cycle with the maximum balloon diameter extending to approximately 2 cm. Ten 

40-frame acquisition bursts were collected at 17.3 frames per second for each driving 

configuration at 127 kHz.
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B. Experimental Results

Fig. 3 displays a temporal sequence of Δσ images occurring over a single acquisition burst 

for sine wave excitation at 1, 2, and 4 Hz. The pulsing balloon was well-localized in each 

burst of frames for all excitation drive configurations. A 2-cm-diameter circular ROI was 

defined around the node having maximum change in conductivity over the course of the 

burst (x = 2.2 cm, y = 0.2 cm) and the mean Δσ within the ROI from each frame was 

extracted. The temporal sequences and power spectrum from each of the drive 

configurations demonstrates that the temporal changes in conductivity and its spectral 

signature correlated well with that of the recorded pump drive voltage, Vemf (Fig. 4). The 

phase shift noted between the temporal Δσ and Vemf traces is due to the phase introduced by 

the hydrodynamic coupling between the pump and fluid network. During sine wave 

excitation the principal spectral component for each drive configuration coincided with the 

programmed drive frequency at 1, 2, and 4 Hz. The additional peak in the 2 and 4 Hz 

configurations at ~1 Hz is due to rigid balloon translation and water displacement as the 

tubing moved during the pumping procedure. During square wave excitation, the pump was 

unable to generate a square wave at 4 Hz due to inertial damping within the motor. At 1 and 

2 Hz, however, the pump was able to specify a square wave rotation (see square wave 

excitation of Fig. 4). As expected the hydrodynamic network interfacing the pump and 

reservoir to the balloon acted as a low pass filter. As a result, the Δσ images acquired during 

square wave excitation do not clearly display the sharper edges (high frequencies) present in 

the recorded pump Vemf. However, within the spectral domain, the Δσ signatures at 1 Hz 

show both the principal component at 1 Hz and the first odd harmonic at 3 Hz similarly to 

the Vemf spectrum. This harmonic was not present during sine wave excitation and 

demonstrates the system’s ability to sense multi-frequency components within a single 

temporal event. The odd harmonics were not found in the Δσ spectra for the 2-Hz square 

wave because the low-pass action of the hydrodynamic network acted to filter out these 

small harmonics. In addition, the first odd harmonic (12 Hz) for the 4-Hz excitation fell 

outside the bandwidth of EIT acquisition (8.65 Hz).

V. Breast Imaging

A. Breast Imaging Procedure

Women were recruited to be imaged with dynamic EIT as part of an Institutional Review 

Board approved study at the Dartmouth-Hitchcock Medical Center (Lebanon, NH, USA). 

The imaging procedure is described in detail in [25]. Briefly, each woman was positioned so 

that one breast hung pendant through an opening in the EIT examination table. The 

electrodes were actuated to come into contact with the breast and an effective contact 

impedance was gauged at each electrode to ensure that all were in contact with the skin. 

Conductive gel administered between the electrode and the skin reduced the level of this 

contact impedance. A finger-based pulse-oximetry sensor was placed on the index or middle 

finger of the patient and interfaced to an N-395 Pulse Oximeter System (Nellcor Pleasanton, 

CA, USA). The device had an analog output port that provided a filtered pulse-oximeter 

signal to the cardiovascular monitoring unit of the EIT system. This signal provided 

triggering for EIT image acquisition and was recorded during image acquisition so that post-
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acquisition correlation analysis between the cardiovascular and Δσ signals could be 

evaluated.

In the same way the balloon experiments were conducted, multiple acquisition bursts of EIT 

voltages were acquired at 17.3 fps and a signal frequency of 127 kHz. This signal frequency 

was chosen to achieve a relative conductivity contrast of approximately 3:1 between breast 

tissue and blood (~0.6 S/m blood [48] versus ~0.2 breast tissue [1], [25]). The individual 

bursts were triggered to begin when the pulse-oximetry signal reached a user-specified 

threshold selected to occur near the apex of pulse-oximeter signal during each heart beat. 

This threshold was specifically selected for each patient based on the characteristics of the 

measured signal which varied due to differences in sensor placement, finger thickness, and 

other factors. Triggering image acquisition to start precisely at the peak of the pulse-

oximetry signal was not critical since a single full heartbeat event was extracted from each 

data-burst using the processing algorithm described in Section III (Fig. 1).

Following data acquisition (both EIT and pulse-oximetry voltages), Δσ images were 

reconstructed for each 40-frame burst, the signal processing scheme (Fig. 1) was 

implemented, and the correlative and spectral power parameters (rs, φ(rt,max), rt,max, 

Plow:full, Phigh:full, Plow:high) were extracted for a particular ROI (described below). The 

procedure was performed for both the left and right breast of each patient imaged in this 

study. The clinical evaluation of the cancer patients participating in this study, included 

MRI-based tumor identification and localization and biopsy-based pathological confirmation 

of disease. Clinical reports included the approximate tumor location (side and clock face) 

and tumor size. Because of the approximate nature of the description of tumor location and 

because there was not a one-to-one correspondence between MR and EIT imaging, the ROIs 

selected for analysis were assigned to be all nodes within a particular Δσ image quadrant. 

Quadrants designated as 1, 2, 3, and 4 corresponded to the area on a clock-face covered by 

12:00–3:00, 3:00–6:00, 6:00–9:00, and 9:00–12:00, respectively. Based on the clinical 

tumor description, each quadrant was designated as either benign or malignant.

B. Breast Imaging Results

Nineteen (19) women were imaged following this protocol (10 with cancer, nine with no 

cancer). Among the 19 women imaged, there were 13 quadrants identified as malignant and 

139 designated at benign (152 total quadrants = 19 women × 2 sides × 4 quadrants). Tumor 

characteristics for the cancer containing quadrants are shown in Table I. In three patients (2, 

8, and 10), the lesions were identified at the 12:00 location and were therefore assigned to 

both quadrants 1 and 4. The temporal Δσ signatures observed in this patient cohort provided 

less obvious information than those obtained from the balloon experiments due to the much 

smaller changes in Δσ that occurred in vivo. As an example, no obviously differentiating 

features are noted between a control (normal) and cancer patient (Fig. 5). The temporal and 

spectral signatures extracted from example benign and malignant (patient 2, quadrant 4) 

quadrants (Fig. 6) demonstrate two features that were observed in multiple cases. First, the 

temporal and spectral correlations between Δσ and the pulse-oximeter signatures are quite 

low (r < 0.09) for the cancer quadrant, while the benign quadrant demonstrates a larger 
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correlation (r > 0.24). Second, the spectral traces have more dispersive and dominant low 

frequency components in the cancer containing quadrant.

When the quadrants were divided amongst benign and malignant groups and compared, 

these two observations were consistent and significant (Fig. 7, Table II). All parameters 

were found to be significantly different (p < 0.05) when grouped as malignant and benign, 

and all but Plow:high reached significance levels of p < 0.01. In addition, no significant 

differences (p > 0.1) were noted between the spectral power ratios of the benign and 

malignant pulse-oximeter signals verifying the fact that the cardiovascular signals were 

similar in both patient cohorts.

While the sample size is small, the potential clinical utility was evaluated by constructing 

receiver-operating characteristic curves and extracting the area under the curve (AUC) and 

other relevant clinical metrics including sensitivity (SN), specificity (SP), accuracy (ACC), 

positive predictive value (PPV), and negative predictive value (NPV) (Fig. 8, Table III). 

Specifically, the AUCs of all parameters were greater than 0.67 with rt,max being the best 

discriminator with an AUC of 0.8, SN of 77%, and SP of 81%. The rather low PPV and high 

NPV are due to the large difference between benign and malignant sample sizes (139 

quadrants versus 13 quadrants). The thresholds for obtaining these levels of SN and SP are 

also provided in the table.

VI. Discussion

The normal breast is vascularized with a well-organized and regulated network of large 

feeding arteries and veins coupling into smaller arterioles, capillaries, and venules. The 

branching pattern is typically dichotomous as the network extends from the chest wall 

through the length of the breast. Around tumors, the vasculature environment is significantly 

different. Here, the vasculature is of irregular size, shape, and branching pattern and the 

network lacks normal hierarchy with haphazard branching patterns of trifurcated, uneven 

diameter vasculature junctions. Vessel density is higher around the tumor periphery with the 

mean vessel density at the tumor edge being 4–10 times higher than that inside the tumor 

[43]. In addition, the individual vessels are compromised, with larger inter-endothelial 

junctions, increased fenestrations, vesicles and vesicovascular channels and lack of normal 

basement membrane. These features result in lower perfusion rates (blood flow per volume), 

lower red blood cell velocity, heterogenous and chaotic blood flow around the tumor 

periphery, and a situation in which plasma oozes from the tumor periphery into the 

surrounding normal tissues [44]–[46]. These abnormalities in blood flow dynamics generate 

different temporally-varying conductivity environments than those associated with the 

benign breast.

While the Δσ images observed here (Fig. 5) do not display well-resolved blood flow and 

vasculature patterns, the average value within specific regions of interest do appear to 

provide signatures that are significantly different in benign versus malignant breast tissues. 

The lower correlative parameters (rs and rt,max) for malignant regions potentially arise from 

the heterogeneous blood flow around and within the tumor. In benign vasculature, the blood 

flow is more homogenous and more synchronized with the cardiovasculature signature 
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which may explain the somewhat higher correlative parameters observed in these regions. 

For both malignant and benign tissues these correlative factors are only modest (mean r < 

0.306); this is potentially due to the effect of averaging a full quadrant of data in the 

analysis. Smaller ROI’s will potentially provide areas with higher correlations; however, for 

the purpose of this study one-to-one correspondence between EIT and clinical MR images 

was not available and precluded a more refined ROI definition.

Both benign and malignant quadrants had the majority of the spectral energy concentrated in 

the low frequency band of 1–4.325 Hz, similarly to the pulse-oximeter (blood flow) 

signatures (Fig. 6). The malignant quadrants, however, had a larger proportion of the energy 

in this lower band as compared to the higher frequency band (2.6 versus 1.8, Table II). 

Leaky vasculature surrounding tumors provides low resistance pathway for blood to “ooze” 

into the interstitial spaces which may produce more low frequency blood flow signatures 

than those occurring in uncompromised, more rigid benign vasculature. Further, the low 

frequency energy appears to be more dispersive in the malignant quadrants than in the 

benign quadrants (e.g., see Fig. 6). This observation may arise from the extensive 

microvasculature around tumors which has been demonstrated to promote velocity 

fluctuations [47] that might explain the more dispersive spectral content of the blood flow 

signatures in the cancer quadrants. The hypotheses formulated from these observations 

require further experimentation to better understand the biophysical mechanisms producing 

the effects. Animal models explicitly evaluating the dynamically changing electrical 

properties associated with pulsatile blood flow through tumor vasculature may provide 

further insight.

Despite not having a definitive explanation for the significant differences observed between 

benign and malignant blood flow patterns as gauged by EIT, the clinical metrics computed 

suggest this modality has potential for differentiating benign from malignant tissues within 

the breast. The optimum discriminating parameter, rt,max, provides a sense of how well the 

changing conductivity distribution within a region correlates with the periodic blood flow 

pattern. In benign tissues this parameter seems to have a higher correlation (~0.3) compared 

to malignant tissues where very little correlation (~0.09) appears, suggesting that in these 

regions the heterogeneous flow patterns associated with malignancy do not follow that of the 

cardiac-driven blood flow.

Several limitations in the current study are worth noting. First, one-to-one correspondence 

(registration) between the clinical MR and Δσ images was not available because the patient 

was not positioned in precisely the same orientation during each exam. The lack of 

correspondence made it necessary to use the average Δσ values over full quadrants instead 

of a more specific region-of-interest. This averaging procedure smoothed changes that might 

be present in smaller, more well-defined ROIs. Second, the sample size in the study was 

relatively modest, including only 19 women. A larger study, with a larger portion of 

malignant ROIs may provide a more accurate assessment of the clinical diagnostic 

performance achievable with the technique. Third, the EIT hardware employed here was 

limited to collecting 40-frame bursts of data which required additional signal processing and 

manipulation in order to generate long temporal sequences for analysis. High speed EIT 

systems with longer periods of sampling have been developed and should be employed to 
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record longer more continuous temporal sequences which would enable improved temporal 

and spectral processing of these multi-wavelength signatures. Finally, the parameters chosen 

for evaluation were based on initial observations of the data and were rather simplistic. More 

complex processing schemes, including principal component or wavelet analysis, might be 

performed to extract different, potentially more sensitive and specific parameters. Despite 

these limitations, the different correlative and spectral power parameters found between 

malignant and benign regions in the breast were significant and suggestive of diagnostic 

clinical potential.

VII. Conclusion

Phantom studies demonstrated that EIT is able to track frequency variations and 

simultaneously extract multiple frequency components from within a single temporal event. 

The changing conductivity signatures obtained from clinical breast exams of women with 

and without cancer harbor correlative and spectral power parameters that can be extracted 

and used for differentiating malignant from benign regions within the breast. The optimal 

discriminating parameter, rt,max, provided a specificity of 81% at a sensitivity of 77% when 

a threshold of 0.106 was used to differentiate benign from malignant regions. These 

diagnostic performance results are substantially superior to those we reported previously for 

static, absolute EIT imaging of the breast [14]. While further investigation is necessary to 

better understand the fundamental biophysical mechanisms responsible for the parameter 

differences observed here, the findings presented demonstrate the potential dynamic EIT 

may have for breast cancer imaging.
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Fig. 1. 
Signal processing scheme employed for assessing dynamic breast imaging with EIT. PO 

denotes recorded pulse-oximetry signature, y.
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Fig. 2. 
Phantom dynamic imaging experimental configuration. a) Schematic representation of 

interconnected electrical and fluid systems, b) physical configuration, c) balloon position 

within saline tank.
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Fig. 3. 
Representative 40-frame acquisition bursts of Δσ images recorded during dynamic balloon 

experiments for sine wave excitation at a) 1 Hz, b) 2 Hz, and c) 4 Hz. Note that the regions 

of low and high Δσ, corresponding to the inflating and deflating balloon, have a decreased 

temporal period as the excitation frequency increases. Color map represents Δσ and ranges 

from −8 mS/m to 8 mS/m.
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Fig. 4. 
Assessment of dynamic balloon imaging for a) sine wave excitation and b) square wave 

excitation. Solid line denotes Δσ and dashed line denotes Vemf sensed by the EIT system for 

triggering. Note that in square wave variation, harmonics in Δσ occur at 1 Hz, which are 

absent in the higher frequencies because of the low pass filter effect of the long fluid paths 

within the system.
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Fig. 5. 
Representative 40-frame bursts of Δσ images acquired from a) normal and b) cancer 

patients. A 30 mm × 30 mm × 25 mm tumor was identified in MR in quadrant 4. Color map 

represents Δσ and ranges from −5 mS/m to 5 mS/m.
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Fig. 6. 
Example temporal and spectral signatures for benign and malignant quadrants. Oxygen-

saturation (y) and change in conductivity (Δσ) are displayed as a function of time in the top 

two rows. The power spectrum for these signals, Y and ΔΣ are shown in the bottom two 

rows. Correlative and power spectral ratio parameters including rs, Plow:full, Phigh:full, and 

Plow:high are also displayed.
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Fig. 7. 
Mean parameters for normal and cancer patients. Dark gray = cancer, Light gray = normal. 

Whiskers denote standard error.
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Fig. 8. 
Receiver operating characteristic (ROC) for the different correlative and spectral power 

parameters. Note that the spectral power parameters overlap in the ROC domain since they 

are linearly correlated. SN = sensitivity, SP = specificity.
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