Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 29;71(Pt 9):1114–1116. doi: 10.1107/S2056989015015467

Crystal structure of bis­(3-bromo­mesit­yl)(quino­lin-1-ium-8-yl)boron(III) tribromide

Jungho Son a, Sem Raj Tamang a, James D Hoefelmeyer a,*
PMCID: PMC4555423  PMID: 26396861

The structure of bis­(3-bromo­mesit­yl)8-quinolyliniumboron(III) tribromide is reported: the refinement indicates that a degree of ‘over-bromination’ of the cation has occurred.

Keywords: crystal structure, frustrated Lewis pair, halogen, heterolysis, electrophilic aromatic substitution

Abstract

The title compound, C27H26.82BBr2.18N+·Br3 , is a cationic tri­aryl­borane isolated as its tribromide salt. The aryl substituents include a protonated 8-quinolyl group and two 3-bromo­mesityl groups. The mol­ecule was prepared on combination of 3:1 Br2 and dimesit­yl(quinolin-8-yl)borane in hexa­nes. The refinement of the structure indicated a degree of ‘over-bromination’ (beyond two bromine atoms) for the cation. There are two tribromide ions in the asymmetric unit, both completed by crystallographic inversion symmetry.

Chemical context  

We recently prepared the preorganized unimolecular frustrated Lewis pair mol­ecule 8-quinolyldimesitylborane (Son et al., 2010) and hypothesized that it could participate in the heterolytic cleavage of mol­ecular bromine. Halogen addition to a frustrated Lewis pair was recently reported in the literature (Frömel et al., 2012). The combination of 8-quinolyldimesitylborane with three equivalents of Br2 in hexa­nes led to precipitation of the title compound. Features of the structure suggest heterolytic cleavage of Br2 occurred at the frustrated Lewis pair site. The bromination of the mesityl groups is likely due to electrophilic aromatic substitution from a brominium ion that yields HBr, manifest as a proton on the quinoline nitro­gen atom and bromide bound to mol­ecular bromine to form the tribromide ion. Alternatively, radical bromination of the solvent (hexa­ne) yields HBr; however, a radical mechanism is not likely for the bromination of mesityl groups. Typically bromination of aromatics is performed with a Lewis acid catalyst and occurs through an electrophilic aromatic substitution mechanism.graphic file with name e-71-01114-scheme1.jpg

Structural commentary  

The title compound crystallizes in the space group P Inline graphic, and contains one cation and two half tribromide ions (completed by inversion symmetry) in the asymmetric unit. The cation (Fig. 1) features a planar three-coordinate tri­aryl­borane with two 3-bromo­mesityl groups and an 8-quinolyl group. The nitro­gen atom is protonated and the positive charge is balanced by the presence of a tribromide anion, Br3 . The tribromide anions are shared between asymmetric units of the crystal, such that each unit contains two halves of an anion (Br5 and Br7 lie on crystallographic inversion centers). The Br5—Br6 distance is 2.5427 (11) Å and the Br7—Br8 distance is 2.546 (2) Å. Other bond distances and angles are given on Table 1. The mesityl groups are brominated at the meta positions such that one position is nearly completely brominated while the other meta position on the same ring is brominated to a much lesser extent. The best solution was found with refined bromine occupancy at the meta positions (C10 ring: Br1 = 0.95, Br4 = 0.09 for a total Br count of 1.04 on the ring; C19 ring: Br2 = 0.89, Br3 = 0.24 for a total Br count of 1.13 on the ring). The balance of electron density at the positions is accounted by partial hydrogen atoms at a reciprocal value of the bromine occupancy to give an overall formulation for the cation of C27H26.82BBr2.18N+.

Figure 1.

Figure 1

The mol­ecular structure of the title compound. Hydrogen atoms are omitted for clarity. Displacement ellipsoids are shown at the 30% probability level. [Symmetry codes: (i) 1 − x,1 − y,1 − z; (ii) 1 + x, y, z.]

Table 1. Selected geometric parameters (, ).

B1C7 1.579(14) B1C19 1.588(14)
B1C10 1.598(13) Br3C21 1.690(12)
Br1C14 1.901(9) C23Br2 1.905(10)
       
C7B1C10 121.6(8) C10B1C19 121.0(8)
C7B1C19 117.2(8)    

Supra­molecular features  

The cations are arranged in rows that propagate along the a-axis direction wherein each cation is in the same orientation due to translation along the row. Inversion centers are located on the dimesitylboryl side of the row, just beyond the brominated mesityl groups, and the packing of the cations in the crystal results in inter­digitated parallel quinolinium rings; these symmetrically sandwich a tribromide anion, such that the central atom of the anion is located at an inversion center. A packing diagram is shown in Fig. 2.

Figure 2.

Figure 2

Packing diagram of bis­(3-bromo­mesit­yl)(quinolin-1-ium-8-yl)boron(III) tribromide in the crystal (C: gray, H: white, B: green, N: blue, Br: brown)

Database survey  

A search in the Cambridge Structural Database (Groom & Allen, 2014) for structures with the tribromide anion revealed 162 hits while a search for structures with the dimesitylboryl fragment revealed 539 hits. Among these are several structures of planar organic aromatic cations as tribromide salts. There are examples that display a cationic aromatic ring–tribromide–cationic aromatic ring motif (Manna et al., 2014), including 8-quinolinium derivatives (Müller et al., 2010; Rybakov et al., 2013) similar to the title compound. Alternatively, non-sandwich-type packing modes were found (Dean et al., 2009) including structures that feature π-stacking between aromatic cations (Bakshi et al. (1996), even 8-quinolinium derivatives (Thone et al. (2010).

Synthesis and crystallization  

Reactions were performed using Schlenk and glovebox techniques under an atmosphere of N2 using dried and distilled solvents. Dimesit­yl(8-quinol­yl)borane was prepared according to the literature (Son et al., 2010). A round-bottom air-free flask was charged with 110 mg (0.29 mmol) dimesit­yl(8-quinol­yl)borane and 20 ml hexa­nes. In a separate flask, 2 ml of a solution of 5% Br2 in CCl4 (1 mmol Br2) was added to 10 ml hexa­nes and subjected to one freeze–pump–thaw cycle. The Br2 solution was transferred to the borane solution via a cannula at room temperature with stirring, and immediately a light-yellow precipitate formed. The solvent was removed in vacuo. Di­chloro­methane was added to the solid reside into which the title compound was dissolved; remaining insolubles were filtered off. Pale-yellow prisms of the title compound were grown by vapor diffusion of pentane into the methyl­ene chloride solution.

Refinement  

Crystal data, data collection, and structure refinement details are summarized in Table 2. C-bound H atoms were refined using a riding model with C—H = 0.95 or 0.98 Å and with U iso(H) = 1.2 or 1.5U eq(C). The N-bound H atom was freely refined.

Table 2. Experimental details.

Crystal data
Chemical formula C27H26.82BBr2.18N+Br3
M r 789.66
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c () 8.8469(10), 11.2365(13), 14.7528(18)
, , () 79.600(2), 85.158(2), 87.994(2)
V (3) 1437.0(3)
Z 2
Radiation type Mo K
(mm1) 7.25
Crystal size (mm) 0.44 0.22 0.14
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.161, 0.362
No. of measured, independent and observed [I > 2(I)] reflections 14439, 5310, 3409
R int 0.052
(sin /)max (1) 0.605
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.070, 0.156, 1.10
No. of reflections 5310
No. of parameters 341
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 1.19, 1.37

Computer programs: SMART and SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015015467/hb7403sup1.cif

e-71-01114-sup1.cif (438.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015467/hb7403Isup2.hkl

e-71-01114-Isup2.hkl (422.4KB, hkl)

CCDC reference: 1419502

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Science Foundation (CHE-0552687 and EPS-0554609) and the US Department of Energy (Contract Nos. DE–FG02-08ER64624 and DE–EE0000270).

supplementary crystallographic information

Crystal data

C27H26.82BBr2.18N+·Br3 Z = 2
Mr = 789.66 F(000) = 764
Triclinic, P1 Dx = 1.825 Mg m3
a = 8.8469 (10) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.2365 (13) Å Cell parameters from 4521 reflections
c = 14.7528 (18) Å θ = 2.5–25.3°
α = 79.600 (2)° µ = 7.25 mm1
β = 85.158 (2)° T = 100 K
γ = 87.994 (2)° Prism, pale yellow
V = 1437.0 (3) Å3 0.44 × 0.22 × 0.14 mm

Data collection

Bruker SMART CCD diffractometer 5310 independent reflections
Radiation source: sealed tube 3409 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
ω scans θmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→10
Tmin = 0.161, Tmax = 0.362 k = −13→13
14439 measured reflections l = −17→17

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.070 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0279P)2 + 15.1288P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
5310 reflections Δρmax = 1.19 e Å3
341 parameters Δρmin = −1.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.5396 (12) 0.6737 (8) 0.5329 (8) 0.047 (3)
H1 0.6369 0.6441 0.5502 0.057*
C2 0.5090 (13) 0.6857 (10) 0.4432 (8) 0.055 (3)
H2 0.5840 0.6666 0.3978 0.066*
C3 0.3669 (13) 0.7260 (10) 0.4196 (8) 0.054 (3)
H3 0.3434 0.7332 0.3572 0.065*
C4 0.1112 (12) 0.8030 (8) 0.4622 (7) 0.047 (3)
H4 0.0848 0.8145 0.4001 0.056*
C5 0.0096 (12) 0.8311 (8) 0.5300 (7) 0.045 (3)
H5 −0.0890 0.8597 0.5147 0.054*
C6 0.0463 (11) 0.8191 (8) 0.6208 (7) 0.036 (2)
H6 −0.0270 0.8424 0.6656 0.043*
C7 0.1880 (10) 0.7735 (8) 0.6488 (7) 0.036 (2)
C8 0.2927 (11) 0.7434 (8) 0.5796 (7) 0.039 (2)
C9 0.2561 (12) 0.7568 (8) 0.4849 (7) 0.040 (2)
C10 0.3368 (10) 0.6643 (8) 0.8014 (6) 0.032 (2)
C11 0.4517 (11) 0.7001 (8) 0.8499 (6) 0.035 (2)
C12 0.5639 (11) 0.6170 (10) 0.8818 (7) 0.046 (3)
H12_b 0.6450 0.6451 0.9101 0.055* 0.911 (5)
C13 0.5647 (11) 0.4975 (9) 0.8725 (7) 0.040 (2)
C14 0.4479 (12) 0.4607 (8) 0.8295 (6) 0.039 (2)
H14_c 0.4436 0.3778 0.8244 0.046* 0.047 (5)
C15 0.3328 (11) 0.5414 (9) 0.7922 (7) 0.042 (2)
C16 0.4624 (12) 0.8290 (9) 0.8694 (7) 0.043 (3)
H16A 0.3987 0.8841 0.8287 0.065*
H16B 0.5680 0.8549 0.8579 0.065*
H16C 0.4273 0.8304 0.9340 0.065*
C17 0.6889 (12) 0.4110 (10) 0.9100 (8) 0.058 (3)
H17A 0.6436 0.3361 0.9444 0.087*
H17B 0.7458 0.4484 0.9513 0.087*
H17C 0.7577 0.3923 0.8586 0.087*
C18 0.2075 (14) 0.4930 (9) 0.7468 (8) 0.061 (3)
H18A 0.1540 0.4300 0.7914 0.092*
H18B 0.2510 0.4587 0.6937 0.092*
H18C 0.1361 0.5589 0.7260 0.092*
C19 0.1088 (11) 0.8376 (8) 0.8148 (7) 0.037 (2)
C20 0.0109 (12) 0.7798 (9) 0.8880 (7) 0.044 (3)
C21 −0.0971 (12) 0.8503 (11) 0.9318 (7) 0.051 (3)
H21_a −0.1628 0.8109 0.9816 0.061* 0.761 (5)
C22 −0.1111 (12) 0.9745 (11) 0.9049 (7) 0.049 (3)
C23 −0.0117 (12) 1.0276 (9) 0.8338 (7) 0.044 (3)
H23_d −0.0193 1.1128 0.8142 0.052* 0.106 (5)
C24 0.1006 (11) 0.9639 (9) 0.7882 (7) 0.039 (2)
C25 0.0069 (13) 0.6444 (10) 0.9180 (8) 0.059 (3)
H25A −0.0305 0.6078 0.8689 0.088*
H25B −0.0609 0.6244 0.9744 0.088*
H25C 0.1093 0.6130 0.9301 0.088*
C26 −0.2310 (14) 1.0438 (13) 0.9548 (9) 0.075 (4)
H26A −0.3066 1.0785 0.9121 0.113*
H26B −0.1833 1.1090 0.9775 0.113*
H26C −0.2807 0.9888 1.0071 0.113*
C27 0.2097 (12) 1.0305 (9) 0.7132 (7) 0.047 (3)
H27A 0.1528 1.0739 0.6627 0.070*
H27B 0.2808 0.9724 0.6896 0.070*
H27C 0.2661 1.0886 0.7388 0.070*
B1 0.2151 (13) 0.7594 (9) 0.7547 (7) 0.033 (3)
N1 0.4375 (10) 0.7022 (7) 0.5977 (6) 0.039 (2)
Br1_c 0.43924 (16) 0.29439 (10) 0.82058 (9) 0.0618 (6) 0.953 (5)
Br2_d −0.03034 (16) 1.19837 (10) 0.79562 (9) 0.0541 (5) 0.894 (5)
Br3_a −0.2186 (6) 0.8077 (6) 1.0259 (3) 0.070 (3) 0.239 (5)
Br4_b 0.6985 (17) 0.619 (2) 0.9386 (13) 0.112 (11) 0.089 (5)
H1N 0.474 (18) 0.700 (14) 0.655 (11) 0.134*
Br5 0.5000 0.0000 0.5000 0.0421 (4)
Br6 0.35660 (13) 0.06362 (10) 0.35619 (8) 0.0532 (4)
Br7 0.0000 0.5000 0.5000 0.0837 (8)
Br8 0.15880 (17) 0.49848 (12) 0.34799 (12) 0.0921 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.051 (7) 0.035 (6) 0.058 (7) 0.015 (5) −0.007 (6) −0.016 (5)
C2 0.059 (8) 0.059 (7) 0.046 (7) 0.020 (6) −0.002 (6) −0.013 (6)
C3 0.060 (8) 0.059 (7) 0.047 (7) 0.017 (6) −0.006 (6) −0.026 (6)
C4 0.063 (8) 0.035 (6) 0.047 (7) 0.013 (5) −0.020 (6) −0.014 (5)
C5 0.043 (6) 0.033 (5) 0.060 (7) 0.005 (5) −0.018 (6) −0.006 (5)
C6 0.035 (6) 0.028 (5) 0.042 (6) 0.010 (4) −0.007 (5) −0.002 (4)
C7 0.029 (5) 0.026 (5) 0.052 (6) 0.006 (4) −0.007 (5) −0.003 (4)
C8 0.043 (6) 0.026 (5) 0.049 (6) 0.009 (4) −0.015 (5) −0.008 (4)
C9 0.053 (7) 0.029 (5) 0.042 (6) 0.005 (5) −0.017 (5) −0.014 (4)
C10 0.036 (6) 0.028 (5) 0.030 (5) 0.006 (4) 0.001 (4) −0.005 (4)
C11 0.038 (6) 0.044 (6) 0.023 (5) 0.004 (5) 0.003 (4) −0.004 (4)
C12 0.028 (6) 0.057 (7) 0.053 (7) 0.001 (5) −0.008 (5) −0.011 (5)
C13 0.033 (6) 0.048 (6) 0.038 (6) 0.006 (5) 0.002 (5) −0.006 (5)
C14 0.056 (7) 0.022 (5) 0.036 (6) 0.005 (4) 0.000 (5) −0.004 (4)
C15 0.045 (6) 0.047 (6) 0.035 (6) 0.003 (5) −0.014 (5) −0.003 (5)
C16 0.047 (6) 0.052 (6) 0.034 (6) −0.004 (5) −0.005 (5) −0.015 (5)
C17 0.045 (7) 0.059 (7) 0.072 (8) 0.017 (6) −0.016 (6) −0.014 (6)
C18 0.082 (9) 0.027 (5) 0.079 (9) 0.001 (6) −0.039 (7) −0.005 (5)
C19 0.040 (6) 0.034 (5) 0.039 (6) 0.008 (4) −0.016 (5) −0.009 (4)
C20 0.046 (6) 0.053 (7) 0.034 (6) 0.014 (5) −0.011 (5) −0.006 (5)
C21 0.040 (6) 0.072 (8) 0.037 (6) 0.009 (6) −0.002 (5) 0.000 (6)
C22 0.036 (6) 0.074 (8) 0.041 (6) −0.001 (6) −0.006 (5) −0.017 (6)
C23 0.053 (7) 0.034 (5) 0.048 (6) 0.014 (5) −0.023 (6) −0.015 (5)
C24 0.038 (6) 0.043 (6) 0.040 (6) 0.009 (5) −0.016 (5) −0.012 (5)
C25 0.049 (7) 0.065 (8) 0.056 (7) 0.002 (6) −0.003 (6) 0.007 (6)
C26 0.064 (9) 0.107 (11) 0.059 (8) 0.021 (8) 0.001 (7) −0.037 (8)
C27 0.048 (7) 0.034 (6) 0.057 (7) 0.010 (5) −0.010 (5) −0.005 (5)
B1 0.040 (7) 0.028 (6) 0.029 (6) 0.003 (5) −0.001 (5) −0.001 (5)
N1 0.044 (5) 0.030 (4) 0.044 (5) 0.015 (4) −0.008 (4) −0.010 (4)
Br1_c 0.0883 (11) 0.0296 (7) 0.0724 (10) 0.0149 (6) −0.0404 (8) −0.0099 (6)
Br2_d 0.0710 (10) 0.0353 (7) 0.0590 (9) 0.0164 (6) −0.0068 (7) −0.0189 (6)
Br3_a 0.043 (3) 0.138 (6) 0.033 (3) −0.012 (3) −0.008 (2) −0.021 (3)
Br4_b 0.037 (10) 0.22 (3) 0.085 (14) 0.036 (11) −0.026 (8) −0.052 (14)
Br5 0.0373 (8) 0.0411 (8) 0.0431 (9) 0.0049 (6) 0.0028 (7) 0.0012 (6)
Br6 0.0453 (7) 0.0616 (7) 0.0474 (7) 0.0047 (5) −0.0052 (5) 0.0040 (5)
Br7 0.0685 (12) 0.0449 (10) 0.1295 (18) −0.0202 (9) −0.0623 (12) 0.0350 (10)
Br8 0.0755 (10) 0.0663 (9) 0.1269 (13) −0.0174 (7) −0.0613 (9) 0.0309 (8)

Geometric parameters (Å, º)

C1—N1 1.333 (13) C16—H16C 0.9800
C1—C2 1.355 (14) C17—H17A 0.9800
C1—H1 0.9500 C17—H17B 0.9800
C2—C3 1.373 (14) C17—H17C 0.9800
C2—H2 0.9500 C18—H18A 0.9800
C3—C9 1.395 (14) C18—H18B 0.9800
C3—H3 0.9500 C18—H18C 0.9800
C4—C5 1.359 (14) C19—C20 1.403 (14)
C4—C9 1.410 (13) C19—C24 1.403 (13)
C4—H4 0.9500 B1—C19 1.588 (14)
C5—C6 1.388 (13) C20—C21 1.409 (14)
C5—H5 0.9500 C20—C25 1.506 (14)
C6—C7 1.404 (12) C21—C22 1.385 (15)
C6—H6 0.9500 Br3_a—C21 1.690 (12)
C7—C8 1.400 (13) C21—H21_a 0.9500
B1—C7 1.579 (14) C22—C23 1.373 (15)
C8—N1 1.378 (12) C22—C26 1.513 (15)
C8—C9 1.440 (13) C23—C24 1.402 (13)
C10—C11 1.402 (13) C23—Br2_d 1.905 (10)
C10—C15 1.414 (13) C23—H23_d 0.9500
B1—C10 1.598 (13) C24—C27 1.512 (14)
C11—C12 1.390 (13) C25—H25A 0.9800
C11—C16 1.534 (13) C25—H25B 0.9800
C12—C13 1.374 (14) C25—H25C 0.9800
C12—Br4_b 1.516 (17) C26—H26A 0.9800
C12—H12_b 0.9500 C26—H26B 0.9800
C13—C14 1.370 (14) C26—H26C 0.9800
C13—C17 1.514 (13) C27—H27A 0.9800
C13—Br4_b 2.24 (2) C27—H27B 0.9800
C14—C15 1.418 (13) C27—H27C 0.9800
Br1_c—C14 1.901 (9) N1—H1N 0.92 (15)
C14—H14_c 0.9500 Br5—Br6i 2.5427 (11)
C15—C18 1.507 (14) Br5—Br6 2.5427 (11)
C16—H16A 0.9800 Br7—Br8 2.546 (2)
C16—H16B 0.9800 Br7—Br8ii 2.546 (2)
N1—C1—C2 122.1 (10) H17A—C17—H17C 109.5
N1—C1—H1 119.0 H17B—C17—H17C 109.5
C2—C1—H1 119.0 C15—C18—H18A 109.5
C1—C2—C3 118.4 (10) C15—C18—H18B 109.5
C1—C2—H2 120.8 H18A—C18—H18B 109.5
C3—C2—H2 120.8 C15—C18—H18C 109.5
C2—C3—C9 121.7 (10) H18A—C18—H18C 109.5
C2—C3—H3 119.2 H18B—C18—H18C 109.5
C9—C3—H3 119.2 C20—C19—C24 119.8 (9)
C5—C4—C9 119.5 (9) C20—C19—B1 119.9 (8)
C5—C4—H4 120.3 C24—C19—B1 119.8 (9)
C9—C4—H4 120.3 C19—C20—C21 118.8 (9)
C4—C5—C6 121.7 (9) C19—C20—C25 123.3 (9)
C4—C5—H5 119.2 C21—C20—C25 117.7 (10)
C6—C5—H5 119.2 C22—C21—C20 122.5 (10)
C5—C6—C7 122.2 (9) C22—C21—Br3_a 108.2 (9)
C5—C6—H6 118.9 C20—C21—Br3_a 129.2 (9)
C7—C6—H6 118.9 C22—C21—H21_a 118.9
C8—C7—C6 116.4 (9) C20—C21—H21_a 118.6
C8—C7—B1 125.8 (8) Br3_a—C21—H21_a 11.3
C6—C7—B1 117.8 (9) C23—C22—C21 116.7 (10)
N1—C8—C7 121.9 (9) C23—C22—C26 123.9 (11)
N1—C8—C9 116.4 (9) C21—C22—C26 119.4 (11)
C7—C8—C9 121.7 (9) C22—C23—C24 124.0 (9)
C3—C9—C4 123.1 (9) C22—C23—Br2_d 117.2 (8)
C3—C9—C8 118.4 (9) C24—C23—Br2_d 118.8 (8)
C4—C9—C8 118.5 (9) C22—C23—H23_d 118.2
C11—C10—C15 118.3 (8) C24—C23—H23_d 117.8
C11—C10—B1 121.5 (8) Br2_d—C23—H23_d 1.0
C15—C10—B1 120.1 (8) C23—C24—C19 118.0 (10)
C12—C11—C10 119.7 (9) C23—C24—C27 120.4 (9)
C12—C11—C16 117.2 (9) C19—C24—C27 121.6 (9)
C10—C11—C16 123.1 (8) C20—C25—H25A 109.5
C13—C12—C11 123.3 (10) C20—C25—H25B 109.5
C13—C12—Br4_b 101.3 (12) H25A—C25—H25B 109.5
C11—C12—Br4_b 135.2 (13) C20—C25—H25C 109.5
C13—C12—H12_b 118.7 H25A—C25—H25C 109.5
C11—C12—H12_b 118.1 H25B—C25—H25C 109.5
Br4_b—C12—H12_b 18.4 C22—C26—H26A 109.5
C14—C13—C12 117.2 (9) C22—C26—H26B 109.5
C14—C13—C17 122.1 (9) H26A—C26—H26B 109.5
C12—C13—C17 120.8 (9) C22—C26—H26C 109.5
C14—C13—Br4_b 158.5 (9) H26A—C26—H26C 109.5
C12—C13—Br4_b 41.7 (7) H26B—C26—H26C 109.5
C17—C13—Br4_b 79.2 (8) C24—C27—H27A 109.5
C13—C14—C15 122.6 (9) C24—C27—H27B 109.5
C13—C14—Br1_c 118.5 (7) H27A—C27—H27B 109.5
C15—C14—Br1_c 118.8 (8) C24—C27—H27C 109.5
C13—C14—H14_c 118.8 H27A—C27—H27C 109.5
C15—C14—H14_c 118.5 H27B—C27—H27C 109.5
Br1_c—C14—H14_c 0.6 C7—B1—C10 121.6 (8)
C10—C15—C14 118.8 (9) C7—B1—C19 117.2 (8)
C10—C15—C18 122.0 (8) C10—B1—C19 121.0 (8)
C14—C15—C18 119.2 (9) C1—N1—C8 123.0 (9)
C11—C16—H16A 109.5 C1—N1—H1N 115 (10)
C11—C16—H16B 109.5 C8—N1—H1N 122 (10)
H16A—C16—H16B 109.5 C14—Br1_c—H14_c 0.6
C11—C16—H16C 109.5 C23—Br2_d—H23_d 1.0
H16A—C16—H16C 109.5 C21—Br3_a—H21_a 13.8
H16B—C16—H16C 109.5 C12—Br4_b—C13 37.1 (7)
C13—C17—H17A 109.5 C12—Br4_b—H12_b 26.0
C13—C17—H17B 109.5 C13—Br4_b—H12_b 62.2
H17A—C17—H17B 109.5 Br6i—Br5—Br6 180.0
C13—C17—H17C 109.5 Br8—Br7—Br8ii 180.0

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1.

References

  1. Bakshi, P. K., James, M. A., Cameron, T. S. & Knop, O. (1996). Can. J. Chem. 74, 559–573.
  2. Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dean, P. M., Clare, B. R., Armel, V., Pringle, J. M., Forsyth, C. M., Forsyth, M. & MacFarlane, D. R. (2009). Aust. J. Chem. 62, 334.
  4. Frömel, S., Fröhlich, R., Daniliuc, C. G., Kehr, G. & Erker, G. (2012). Eur. J. Inorg. Chem. pp. 3774–3779.
  5. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  6. Manna, P., Seth, S. K., Bauzá, A., Mitra, M., Ray Choudhury, S., Frontera, A. & Mukhopadhyay, S. (2014). Cryst. Growth Des. 14, 747–755.
  7. Müller, M., Albrecht, M., Gossen, V., Peters, T., Hoffmann, A., Raabe, G., Valkonen, A. & Rissanen, K. (2010). Chem. Eur. J. 16, 12446–12453. [DOI] [PubMed]
  8. Rybakov, V. B., Shishkina, S. V., Ukrainets, I. V., Golik, N. Y. & Chernenok, I. N. (2013). Acta Cryst. E69, o82. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Son, J.-H., Pudenz, M. A. & Hoefelmeyer, J. D. (2010). Dalton Trans. 39, 11081–11090. [DOI] [PubMed]
  11. Thone, C., Vancea, F., Bello, M. & Jones, P. G. (2010). Private Communication (Refcode QUWBUG). CCDC, Cambridge, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015015467/hb7403sup1.cif

e-71-01114-sup1.cif (438.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015467/hb7403Isup2.hkl

e-71-01114-Isup2.hkl (422.4KB, hkl)

CCDC reference: 1419502

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES