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SYNOPSIS

Evidence from basic, preclinical, and clinical research points to an important role of estradiol (E2) 

in the regulation of body composition and bioenergetics. There is consistent evidence from basic 

and preclinical research that the disruption of E2 signaling, through either genetic manipulation 

(e.g., estrogen receptor deletion) or surgical intervention (e.g., ovariectomy), accelerates fat 

accumulation, with a disproportionate increase in abdominal fat. Clinical evidence for the 

regulation of body composition and bioenergetics by E2 is less consistent. Evidence exists both for 

and against menopause as the mediator of changes in body composition. This is likely related to 

the prolonged nature of the menopause transition in women and the associated complexities of 

distinguishing effects of the loss of gonadal function from other phenomena of aging. However, a 

need remains to better understand the metabolic actions of estrogens in women because of the 

potential impact on health after the menopause.
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INTRODUCTION

There is growing evidence that estradiol (E2) is an important regulator of body composition 

and bioenergetics. The wide distribution of estrogen receptors (ERs) and their involvement 

in genomic and non-genomic signaling pathways1 suggests that the loss of E2 at menopause 

is likely have pronounced effects on numerous factors other than reproduction2. ER 

expression in the brain, adipose tissue, and skeletal muscle demonstrates the potential role of 
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E2 in body weight regulation and other metabolic processes. Further, the presence of 

mitochondrial ERs3 suggests a role of E2 in the regulation of cellular bioenergetics. This 

review will discuss findings from basic, preclinical, and clinical studies that provide insight 

on the role of E2 and ER signaling in the regulation of energy storage (i.e., fat accrual), 

regional fat distribution, and energy balance (i.e., energy expenditure and intake).

BASIC RESEARCH

Estrogens have many physiological effects that were long thought to be due to a single 

receptor, ERα4. However, the discovery of a second receptor, ERβ5, and the recognition that 

ERs are present not only in the nucleus but also in the plasma membrane6, have advanced 

the understanding of the metabolic actions of estrogens.

The systemic actions of estrogens are mediated through ER signaling. This can occur 

through nuclear ERs and the consequent transcription of multiple genes7, or through 

membrane-bound ERs that mediate rapid, non-genomic effects of estrogens8. E2 binds to 

ERα and ERβ with equal affinity9. However, ERα and ERβ have distinct and sometimes 

opposing actions, indicating that the ratio of ERα to ERβ may be an important determinant 

of tissue-specific responses to E2
10–12 Both ER subtypes appear to be present in most, if not 

all, body tissues, but in varying proportions13–15. Knowledge regarding the effects of ER 

signaling has been advanced through the use of transgenic mice that have deletions of ERα 

and/or ERβ throughout the body16, 17, in specific cells or tissues18–20, or at the molecular 

level (nuclear vs membrane)21–23.

Regulation of adiposity by E2

The importance of ER signaling in the regulation of adiposity was highlighted by the 

discovery of Heine and colleagues that a whole-body knockout of ERα (αERKO) resulted in 

increased fat accrual in both females and males when compared with wild type (WT) 

mice24. By 90 days of age, the parametrial and inguinal fat pads were 2-fold larger in female 

αERKO mice than controls as a result of increased adipocyte size and number. The αERKO 

mice were also more insulin resistant and glucose intolerant than WT mice, consistent with 

the excess adiposity. Subsequent studies confirmed that the deletion of ERα increases 

adiposity in female mice21–23.

The excess fat mass in αERKO mice suggests that ERα plays a protective role against fat 

accumulation. However, another possibility is that removal of ERα promotes fat 

accumulation through increased ERβ signaling. One strategy that has been used to test this 

possibility is to ovariectomize (OVX) αERKO mice to reduce circulating E2, thereby 

diminishing ERβ signaling25. Indeed, the increase in fat mass that occurred in αERKO-sham 

mice was attenuated in αERKO-OVX mice. Further, when αERKO-OVX mice were treated 

with E2, thereby increasing ERβ signaling, fat mass increased to the level of αERKO-sham 

mice25. The deletion of ERβ in mice (i.e., βERKO) does not result in excess fat mass26 or 

body mass27 when compared with WT mice, providing additional evidence that the 

increased fat accumulation in αERKO mice is mediated, at least in part, through increased 

ERβ signaling. However, ERα also plays a protective role against fat accumulation. When 

ERα signaling was reduced in βERKO mice through OVX, there was an excess gain in body 
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mass and adiposity27. Finally, when both ERα and ERβ are absent (i.e., double knockout; 

DERKO), the αERKO phenotype of increased adiposity dominates26.

These studies of the genetic manipulation of ERs in mice demonstrate the complex 

regulation of body fat accrual by E2. In general, ERα protects against fat accumulation 

whereas ERβ promotes fat gain. The actions of ERα appear to dominate among inbred mice, 

but this may depend on the relative density and distribution of ERs under conditions of 

genetic heterogeneity (e.g., outbred animals, humans). Additional evidence that the net 

effect of E2 is to prevent excess fat accumulation comes from studies that reduce serum E2 

through the deletion of the enzyme that converts androgens to estrogens (i.e., aromatase). 

Regional and total body adiposity is roughly 2-fold higher in aromatase knockout (ArKO) 

mice than controls by 12 weeks of age and this difference persists as mice age28. The 

regulation of adiposity by E2 is further complicated by the discovery of G protein-coupled 

receptors that associate with E2, known as G protein-coupled ER 1 (GPER1 or 

GPR30)29, 30. There is some evidence that deletion of this receptor increases fat gain31, but 

this has not been a consistent observation32.

The mechanistic signaling pathways by which E2 regulates fat accumulation remain unclear. 

Studies that utilized tissue-specific silencing of ERs are beginning to provide some insight 

for the locus of regulation. The deletion of ERα in the central nervous system (CNS) (e.g., 

ventromedial nucleus or specific neurons in the hypothalamus) appears to18, 20 play a pivotal 

role, but systemic deletions (e.g., whole bone marrow or cells of myeloid lineage) also result 

in excess body weight gain and fat accumulation19.

Collectively, basic research has established a solid foundation of evidence that E2 plays an 

important role in the regulation of adiposity. Genetic manipulations that disrupt ERα 

signaling by deleting the receptor (i.e., αERKO and DERKO models) or reducing the ligand 

(i.e., ArKO model) cause excess fat gain, whereas disrupting only ERβ signaling (i.e., 

βERKO model) does not (Figure 1). Thus, the dominant action of E2 on the regulation of 

body composition is to protect against fat accumulation and this is mediated primarily 

through ERα.

Regulation of bioenergetics by E2

The system-level mechanisms that underlie the excess adiposity triggered by disruptions in 

E2 signaling include increased energy intake and/or decreased energy expenditure. There is 

consistent evidence that αERKO mice have little change in energy intake, but have 

decreased energy expenditure that is attributable to reductions in both locomotion and basal 

metabolic rate when compared with WT mice21, 24, 33, 34. In contrast, energy expenditure 

and intake are not altered in βERKO mice33, 35, consistent with no change in adiposity in 

this model. Running wheel activity was not different among WT-OVX, αERKO-OVX, and 

βERKO-OVX mice, and was increased in response to E2 treatment in WT-OVX and 

βERKO-OVX but not αERKO-OVX mice. This indicates that E2 regulation of locomotor 

activity is mediated through ERα33.

Selective suppression of ERα signaling provides further insight into how E2 mediates 

energy expenditure and intake. Silencing of ERα in either the CNS20 or in the ventromedial 
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hypothalamic nucleus18, 20 of female rodents resulted in increased energy intake, reduced 

basal metabolic rate, and reduced locomotor activity. These changes occurred in mice 

lacking ERα in the CNS despite the fact that circulating E2 was elevated, suggesting that 

ERα signaling in peripheral tissues did not compensate for the suppression of ERα signaling 

in the CNS. Silencing of ERα in the medial preoptic area also resulted in a decrease in 

locomotor activity36. In contrast, deleting ERα in pro-opiomelanocortin neurons resulted in 

increased energy intake and increased, rather than decreased, energy expenditure20.

Collectively, both whole body and tissue-specific genetic manipulations of ER provide 

strong evidence that ERα-mediated signaling, in particular, plays a critical role in body 

weight regulation. The finding that the specific silencing of ERα in various regions of the 

brain recapitulates disruptions in energy expenditure and/or increasing energy intake that 

occur with whole body ERα deletion may guide the development of targeted therapies to 

improve weight regulation after menopause.

PRE-CLINICAL RESEARCH

There is a wealth of pre-clinical evidence that ovarian hormones play an important role in 

body fat accrual through the regulation of energy balance (food intake and spontaneous 

physical activity). Because ovaries do not fail in rodents until 11 to 18 months of age37, 38, 

studies commonly use OVX to remove ovarian hormone production in young female 

animals as an approach to study the effects of the loss of gonadal function. After removal of 

ovarian sex hormone production, animals can be treated with exogenous E2 to isolate the 

action of this hormone. Using these approaches, the effects of ovarian hormones on 

adiposity and bioenergetics have been well documented. However, a limitation of this 

approach is that the removal of the ovaries at a young age may not mimic the natural loss of 

ovarian function at an older age.

Regulation of adiposity by E2

When compared with sham-operated mice, OVX mice gain 25% more weight and up to 5-

fold more fat mass in the parametrial, retroperitoneal, and inguinal regions39, 40. In a study 

that compared the effects of OVX in mice and rats40, the latter gain more weight than sham-

operated animals, but primarily through increases in the parametrial and mesenteric (i.e., 

intra-abdominal) fat pads, suggesting the possibility of species differences in regional fat 

expansion. However, this species difference has not been a consistent finding, as the 

expansion of subcutaneous, but not intra-abdominal, fat has been observed in OVX rats41, 

and the expansion of intra-abdominal fat has been observed in OVX mice42, 43. Most 

evidence indicates that OVX results in excess fat accumulation in laboratory animals, with a 

disproportionate amount stored in abdominal regions.

OVX appears to expand adipose tissue by increasing adipocyte size and preadipocyte 

differentiation39, 44. Controlling food intake in OVX animals through paired feeding with 

sham animals attenuated, but did not prevent, the fat gain observed in ad libitum fed OVX 

rats40. Treatment of OVX animals with E2 effectively prevented the gains in fat mass when 

compared with placebo-treated animals37, 41, 45, 46. The increase in total and abdominal 

adiposity following OVX has been found to occur under various dietary conditions, 
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including caloric restriction, low-fat feeding, and high-fat feeding and, in all cases, is 

markedly diminished by E2 treatment (Figure 2)47. Other preclinical models of ovarian 

failure, including treatment with 4-vinylcyclohexene diepoxide48 and gonadotropin 

releasing hormone (GnRH) analogs49, also accelerate weight gain. Thus, there is consistent 

evidence in laboratory animals that the removal of ovarian hormones results in a positive 

energy balance and that this is prevented with E2 treatment.

Regulation of bioenergetics by E2

The regulation of energy intake by E2 appears to differ in mice and rats. When compared 

with sham-operated mice with intact ovaries, OVX mice have either no change in energy 

intake39, 40, or a small decrease that is reversed with E2 treatment50. In contrast, rats that 

undergo OVX increase energy intake by ~20% for at least several weeks after 

surgery40, 46, 51. However, when Ferreira and colleagues46 monitored food intake for 20 

weeks after OVX, it returned to the level of sham-operated controls after 10 weeks. 

Introducing E2 treatment 20 weeks after OVX decreased food intake to below that of sham 

controls. A unique aspect of the Ferreira study was that the OVX was introduced in mature 

animals (i.e., aged 10 to 12 months). It is not known whether younger animals would also 

demonstrate a waning of the hyperphagic effects of OVX over time.

In contrast to the discordant effects of OVX on energy intake in mice versus rats, OVX 

causes a marked decline in spontaneous physical activity in both mice39, 40, 45, 50 and 

rats40, 46, 52, particularly in the dark phase when activity level is typically high. The 

magnitude of decrease in physical activity in these studies ranged from 30% to 80% (Figure 

3). Importantly, Ferreira et al. did not observe a waning of the effects of OVX to reduce 

physical activity over 20 weeks, as they did with energy intake46. Rather, there was an acute 

decrease in daily activity of more than 50% after OVX that persisted for 20 weeks. In most 

studies that treated OVX animals with E2 within 2 to 20 weeks after surgery, there was a full 

rescue of physical activity by E2
45, 46, 52. One exception was a study of mice treated with E2 

at the time of OVX, in which E2 did not prevent the OVX-related decline in physical 

activity50. Paradoxically, many of the unfavorable effects of OVX, including increased 

adiposity, reduced energy expenditure, and increased insulin resistance, were prevented by 

E2 treatment. The fact that energy expenditure was increased in OVX+E2 mice when 

compared with OVX controls (i.e., to the level of sham-operated animals), despite similar or 

lower activity levels, suggests that E2 increases basal metabolic rate. Others have also found 

that energy expenditure is lower in OVX mice than OVX+E2 mice when activity is 

similar39.

The regulation of physical activity by E2 appears to be mediated by ERα, which is 

consistent with results of studies that genetically manipulated ERs. Evidence for this comes 

from a study in which rats were treated after OVX with E2, an ERα agonist, an ERβ agonist, 

or genistein, which is a phytoestrogen that is thought to bind primarily to ERβ53. E2 and 

ERα agonist treatments increased wheel running activity 4-fold over the level in OVX 

controls, whereas ERβ agonist and genistein treatments had no effect; the differences among 

treatments in physical activity mirrored differences in body weight.
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In summary, OVX appears to increase energy intake in rats but not mice. OVX causes a 

marked decrease in spontaneous physical activity in both mice and rats. Some studies have 

also reported a decrease in energy expenditure in OVX animals beyond that explained by 

decreased physical activity, suggesting a decrease in basal metabolic rate. Thus, pre-clinical 

studies provide convincing evidence that the loss of gonadal function via OVX in young or 

mature rodents disrupts energy balance in a manner that accelerates fat accumulation.

CLINICAL RESEARCH

Investigations of the potential effects of the menopause on adiposity, regional fat 

distribution, and bioenergetics have included cross-sectional comparisons of pre- and 

postmenopausal women, prospective cohort studies of women through the menopause, 

randomized trials of estrogen-based hormone therapy (HT) in postmenopausal women, and 

the pharmacologic suppression of ovarian function in premenopausal women. Each of these 

approaches has limitations. A well-recognized disadvantage of cross-sectional comparisons 

is that many factors other than menopausal status contribute to differences between pre- and 

postmenopausal women. Prospective cohort studies are valuable because they capture 

individual changes over time. However, one limitation is that, because the menopause 

transition is a process that can last several years, age is inextricably linked with the 

menopause. Thus, it is very challenging (if not impossible) to distinguish effects of the 

menopause from those of aging. Randomized trials of menopausal HT might be considered 

the gold standard for evaluating the effects of the menopause, but numerous factors 

regarding the type of HT regimen (e.g., type and dose of estrogens and progestins, oral 

versus transdermal delivery) may influence results. Finally, the pharmacologic suppression 

of ovarian function in premenopausal women with GnRH analogs is another approach for 

experimentally controlling ovarian hormones, but changes in hormones occur relatively 

abruptly and, thus, may not mimic the effects of the natural menopause. The discussion of 

clinical research will focus on studies that fall into the latter two categories.

Regulation of adiposity by estrogens

The Postmenopausal Estrogen/Progestin Interventions (PEPI) trial was the first large 

randomized controlled trial of HT to demonstrate protective effects of HT against weight 

gain54. Women randomized to take conjugated equine estrogens (CEE; 0.625 mg/d) with or 

without a progestin gained 50% as much weight over 3 years as women randomized to 

placebo treatment. Body composition was not measured in this study, but HT attenuated the 

increase in waist girth when compared with placebo treatment. Also, although differences 

between CEE alone and CEE+progestin were not significantly different, the smallest 

increases in body weight and waist size occurred in the CEE alone group, suggesting a 

regulatory role of estrogens. On average, when compared with the placebo group, the 

increases in body weight and waist girth in the CEE group were attenuated by 67% and 

61%, respectively. The Women’s Health, Osteoporosis, Progestin, Estrogen (HOPE) trial 

also found that treatment with CEE 0.625 mg/d attenuated weight gain over 1 year by 49% 

when compared with placebo; smaller doses of CEE were less effective55. The attenuation 

of weight gain in postmenopausal women by HT is not a consistent observation. Most 
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notably, in a subgroup of women who participated in the CEE+progestin and placebo arms 

of the Women’s Health Initiative trial, there was no attenuation of weight gain by HT56.

Most of the large trials of HT in postmenopausal women did not assess body composition. 

One exception to this was the Danish Osteoporosis Prevention study, which evaluated 

changes in total and regional adiposity over 5 years in early postmenopausal women 

randomized to HT (E2 +progestin or E2 alone in women with hysterectomy) or no HT57. A 

limitation of this trial was that it was not placebo-controlled. In the HT group, the increases 

in body weight, total fat mass, and trunk fat mass after 5 years of intervention were 25% 

smaller than in the No-HT group. These differences increased to 35% to 40% in on-

treatment analyses. Body composition was also assessed in a subset of women who 

participated in the CEE+progestin and placebo arms of the Women’s Health Initiative 

trial56. Although there were no differences between the groups in the change in body weight 

or fat mass after 3 years of intervention, the trunk-to-leg fat ratio decreased in the HT group, 

suggesting a protective effect of HT against abdominal fat distribution. Another interesting 

finding in this study was an attenuation of the loss of lean mass by HT. A 2006 meta-

analysis of HT intervention trials found that HT reduced waist circumference by −0.8% and 

abdominal adiposity by −6.8%58. HT was also associated with reductions in insulin 

resistance, new-onset diabetes, and dyslipidemia. The extent to which the effects of HT to 

improve metabolic function are mediated indirectly by beneficial effects on body 

composition or fat distribution remains unclear. However, at least some of the benefit of HT 

to reduce insulin resistance appears to be through direct effects of estrogens59, 60.

Several studies have evaluated the effects of 4 to 6 months of GnRH agonist (GnRHAG) 

therapy on body composition (Figure 4)61–66. In general, these studies suggest that the 

magnitude of fat accrual increases with duration of ovarian hormone suppression. The only 

study that did not follow this pattern65 was also the only study that enrolled healthy 

volunteers rather than women who had a clinical indication for GnRHAG therapy. Because 

the consenting process for this study disclosed weight gain as a risk of the intervention, it is 

possible that participants were sensitized to the possibility of gaining weight and made 

behavioral changes to minimize this. However, even though total adiposity did not increase 

after 5 months of GnRHAG therapy, there was a 12% increase in intra-abdominal fat area 

measured by computed tomography, which was prevented in women treated with GnRHAG 

plus E2 add-back therapy65. Fat-free mass was consistently decreased in response to ovarian 

hormone suppression across all studies, but the magnitude of decrease was not aligned with 

the duration of treatment (Figure 4). This raises the question of whether the decreases 

reflected the loss of the water component of fat-free mass. However, thigh skeletal muscle 

area measured via computed tomography decreased in response to 5 months of GnRHAG 

therapy, and was prevented by GnRHAG+E2
65, supporting an effect of E2 on muscle mass 

and not just water.

Regulation of bioenergetics by estrogens

The regulation of energy intake and expenditure by estrogens in women has not been well 

studied. The scant evidence available suggests that the loss of estrogens disrupts energy 
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balance through decreases in resting energy expenditure (REE) and physical activity, which 

is consistent with basic and preclinical research.

Both acute (6 days) and more chronic (5 months) ovarian hormone suppression have been 

found to reduce REE. In a small group of premenopausal women, REE was measured during 

the mid-luteal phase of the menstrual cycle, when E2 was elevated, during the early 

follicular phase, when E2 was low, and after 6 days of GnRH antagonist treatment, which 

further reduced E2
67. The changes in REE across these 3 conditions paralleled the changes 

in E2. REE was highest in the mid-luteal phase, lower (−29 kcal/d) in the early follicular 

phase, and reduced further (−42 kcal/d) after GnRH antagonist treatment. There were no 

significant differences across the conditions in energy intake, as assessed by 3-day food 

records. In a larger trial, 45 premenopausal women underwent 5 months of GnRHAG therapy 

with randomization to concurrent transdermal E2 or placebo treatment to isolate the effects 

of the loss of estrogens on bioenergetics (Melanson et al.; under review). REE and total 

energy expenditure (TEE) were measured in the early follicular phase of the menstrual cycle 

at baseline and again at the end of the intervention. REE decreased (−54 kcal/d) in response 

to ovarian hormone suppression, and this was prevented by E2 treatment (+6 kcal/d). The 

decrease in TEE in response to GnRHAG (−128 kcal/d) was not prevented by E2 (−96 

kcal/d). Although the measurement of TEE by whole-room calorimetry in this study is state 

of the science, it provides only a snapshot (i.e., 24 hours) of TEE and does not reflect free-

living conditions. It will be important to use another approach, such as the doubly-labeled 

water technique, which can measure free-living TEE over many days, to determine how 

estrogens influence bioenergetics in women.

The effects of estrogens on REE in postmenopausal women have been examined primarily 

through cross-sectional comparisons of premenopausal women with postmenopausal women 

on or not on HT, with varied results. These studies are not reviewed here because of the 

multiple factors other than hormone status that can influence bioenergetics. However, one 

intervention trial measured changes in REE in 18 younger (45 to 55 y) and 15 older (70 to 

80 y) postmenopausal women after 2 months of newly initiated HT68. REE was lower in the 

older group than the younger group, even when adjusted for fat-free mass, but was not 

influenced by HT in either group. Physical activity level, as assessed by questionnaire, was 

also unchanged in response to HT. Another short-term intervention study also found that 2 

weeks of E2 did not increase REE in postmenopausal women69. Physical activity, as 

assessed by questionnaire, was unchanged in both studies. Because of the consistent finding 

in preclinical research that spontaneous physical activity is regulated by E2, it will be 

important to determine whether this occurs in humans using objective measures of activity. 

To date, we are not aware of any intervention trials of either hormone suppression in 

premenopausal women or HT in postmenopausal women that have done so. However, one 

prospective study of women going through the menopause transition measured physical 

activity annually by accelerometry and found that it decreased by more than 50% over the 4 

years leading up to the onset of menopause70. Energy intake, assessed by 4-day food 

records, also decreased over this time interval. Thus, the limited data on the effects of 

estrogens on bioenergetics suggest that energy expenditure may decline as a result of the 

loss of ovarian function, resulting in increased risk for fat gain.
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SUMMARY

There is consistent evidence from basic and preclinical research that the disruption of E2 

signaling, through either genetic manipulation (e.g., ER deletion) or surgical intervention 

(e.g., OVX), accelerates fat accumulation. The excess fat appears to accumulate 

disproportionately in the abdominal region and leads to insulin resistance and dyslipidemia. 

Treatment of OVX animals with E2 prevents these phenotypic changes, thereby isolating E2 

as the regulatory ovarian factor, and transgenic studies indicate that the effects are mediated, 

in large part, through ERα. The primary system-level mechanism for the increased fat 

accumulation is a decrease in energy expenditure, although energy intake also increases in 

some species. The lower energy expenditure is the result of a marked decline in spontaneous 

physical activity and a decrease in resting metabolic rate.

Clinical evidence for the regulation of body composition and bioenergetics by E2 is less 

consistent. Cross-sectional comparisons of pre- and postmenopausal women and prospective 

cohort studies of women through the menopause transition have yielded evidence both for 

and against menopause as the mediator of changes in body composition. This is likely 

related to the prolonged nature of the menopause transition in women and the associated 

complexities of distinguishing effects of the loss of gonadal function from other phenomena 

of aging. However, even controlled interventions that evaluate changes in body composition 

and bioenergetics in response to HT in postmenopausal women or suppression of ovarian 

function in premenopausal women do not always reveal a clear role of estrogens. A myriad 

of factors, such as the type, dose, and duration of treatment, could contribute to the variable 

results. It is also possible that inter-individual differences in the distribution of ERα and 

ERβ influence the changes women experience in response to the withdrawal of ovarian 

estrogens and in response to exogenous E2 treatment.

The totality of evidence from basic, preclinical, and clinical research points to an important 

physiologic role of E2 in the regulation of bioenergetics and body composition. Further 

advances in basic and preclinical research will help to elucidate the mechanistic targets of 

estrogens. However, it is important to recognize the limitations of translating basic and 

preclinical discoveries to humans. For example, dehydroepiandrosterone (DHEA) is secreted 

primarily by the adrenal gland in humans and it is the major progenitor for androgens and 

estrogens in postmenopausal women. In contrast, DHEA is secreted primarily by the gonads 

in rodents, which means that OVX leads to the loss of both biologically active sex hormones 

and prohormones. This suggests that the phenotypic consequences of OVX in animals may 

be more severe than those that occur with the loss of ovarian function in women.

There is a need to better understand the mechanisms for the metabolic actions of estrogens 

in women because of the potential adverse impact on health after the menopause. It is well 

known that the menopausal decline in estrogens accelerates the loss of bone mineral, thereby 

increasing risk for osteoporosis. If the loss of ovarian estrogens also triggers such changes as 

a decline in physical activity and an increase in abdominal adiposity in women, as it does in 

laboratory animals, this could contribute to increased risk for other age-related chronic 

diseases, such as diabetes and cardiovascular disease. Thus, it is important to continue to 

advance studies in women that experimentally control the sex hormone environment to 
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better understand the metabolic and bioenergetics consequences of the menopausal loss of 

estrogens.
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KEY POINTS

• Consistent evidence from basic and preclinical research indicates that the 

disruption of estradiol (E2) signaling accelerates abdominal fat accumulation.

• Treatment of ovariectomized animals with E2 prevents fat accumulation, thereby 

isolating E2 as the regulatory ovarian factor, and transgenic studies indicate that 

these effects are mediated primarily through estrogen receptor alpha (ERα).

• The major system-level mechanism for excess fat accumulation in response to 

the loss of E2 in animals is a decrease in energy expenditure, which occurs as a 

result of reductions in spontaneous physical activity and resting metabolic rate.

• Clinical evidence for the regulation of body composition by E2 is less 

consistent, but the suppression of ovarian function does promote fat gain.

• If the loss of ovarian estrogens triggers a decline in physical activity and 

increase in abdominal adiposity in women, as it does in laboratory animals, this 

could increase risk for diabetes and cardiovascular disease in postmenopausal 

women.
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Figure 1. 
Relative body fat content of wild type (WT) mice and mice with whole-body knockout of 

estrogen receptor α (αERKO), ERβ (βERKO), both ERα and ERβ (DERKO), or aromatase 

enzyme (ArKO). Data from Lindberg MK, Weihua Z, Andersson N, et al. Estrogen receptor 

specificity for the effects of estrogen in ovariectomized mice. J Endocrinol 2002;174(2) and 

Jones ME, Thorburn AW, Britt KL, et al. Aromatase-deficient (ArKO) mice accumulate 

excess adipose tissue. J Steroid Biochem Mol Biol 2001;79(1–5):3–9.
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Figure 2. 
Effects of ovariectomy (OVX) and treatment with estradiol (E2) on total body adiposity and 

abdominal adiposity in mice on caloric restriction (CR), low-fat diet (LF), or high-fat diet 

(HF). Data from Stubbins RE, Holcomb VB, Hong J, et al. Estrogen modulates abdominal 

adiposity and protects female mice from obesity and impaired glucose tolerance. Eur J Nutr 

2012;51(7):861–870.
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Figure 3. 
Physical activity level of mice and rats in response to ovariectomy (OVX) or OVX with 

estradiol (E2) treatment relative to sham-operated controls. Data from 

references 39, 40, 45, 46, 50 and 52.
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Figure 4. 
Changes in fat mass and fat-free mass in premenopausal women in response to 12 to 24 

weeks of gonadotropin releasing hormone agonist (GnRHAG) therapy. Data from 

references 61–66.
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