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Wound healing is a complex regulated process that results in skin scar formation in postnatal mammals. Chronic wounds are
major medical problems that can confer devastating consequences. Currently, there are no treatments to prevent scarring. In the
early fetus wounds heal without scarring and the healing process is characterized by relatively less inflammation compared to adults;
therefore, research aimed at reducing the inflammatory process related to wound healingmight speed healing and improve the final
scar appearance.

1. Introduction

The skin is the largest organ of the body and acts as the
first line of defense against pathogens, toxins, and trauma.
It also plays a critical role in fluid homeostasis and provides
sensory functions and thermal regulation. Damage or loss of
skin integrity resulting from an injury or disease can lead to
significant morbidity and even death.

Wound healing is a complex, regulated process in which
regulated collagen deposition, in response to tissue injury,
results in scar formation. Its mechanisms include inflamma-
tion, fibroplasia, and scar maturation.

Sometimes cutaneous wounds do not progress to normal
healing with formation of a final mature scar formation but
to a continuing inflammatory process, which can lead to a
more aggressive carcinogenic transformation in long time of
evolution (Marjolin’s Ulcer). Many chronic wounds are the
result of chronic inflammation. In contrast to adult wound
healing, the early gestation fetus displays a remarkable ability
to heal wounds without scarring. Fetal wounds heal rapidly
and are characterized by a relative lack of inflammation
[1]. The introduction of inflammation into normally scarless
wounds produces scarring [2]. Conversely, reduction of
inflammation in postnatal wounds can reduce scarring [3].

In this paper, we review how to curb inflammation in
cutaneous wound healing; the following lists the main topics
discussed in this paper.

Topics about Curbing Inflammation in Wound Healing

General Topics

(i) Wet environment.
(ii) Primary closure and sutures.
(iii) Drugs or supplement:

(a) curcumin,
(b) protein supplementation,
(c) nutraceuticals,
(d) neurotensin (NT),
(e) photodynamic therapy (PDT),
(f) doxycycline,
(g) tumour necrosis factor-alpha (TNF-𝛼) anti-

body.

(iv) Technology:

(a) transcutaneous electrical nerve stimulation
(TENS),

(b) hyperbaric oxygen,
(c) silver dressings,
(d) negative pressure wound therapy (NPWT).

(v) Biomaterials and cellular therapy.
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Specific Wounds

(i) Diabetic wounds.
(ii) Vascular wounds.
(iii) Irradiated wounds.

2. Postnatal Wound Healing Process

Repair of the skin consists of three phases: an initial inflam-
matory phase and then a proliferative/repair phase and it
concludes with a remodeling phase, which results in scar
formation in postnatal mammals.

In response to tissue injury, inflammatory cells are re-
cruited to wounded tissue. The acute inflammatory response
is followed by proliferation of fibroblasts, which are respon-
sible for synthesizing collagen and extracellular matrix.
Fibroblasts can differentiate into myofibroblasts, which are
responsible for collagen deposition and wound contraction.
Ultimately, a scar results from accumulation of extracellular
matrix. Despite scar remodeling during maturation, normal
architecture is never completely restored [4]; only 70 percent
of the tensile strength of normal skin is recovered [5].

The early stage of inflammation is regarded as a critical
period of the wound healing process, essential for clearing
contaminating bacteria and creating an environment con-
ducive to the succeeding events of tissue repair and regener-
ation [6].The injury causes a gap, which is immediately filled
by clots in the presence of platelet aggregates. Then, during
the inflammatory phase, leukocytes, such as neutrophils,
monocytes, and macrophages, infiltrate the site, remove the
breakdown products of the injured cells and clots, and release
various growth factors and cytokines [7]. In response to
growth factors and cytokines, the proliferative phase starts.
In this phase, epidermal cells migrate, proliferate to fill the
wound gap, and displace remnants of the original clots.
Thus, it is generally accepted that leukocyte and macrophage
infiltration is essential to wound healing.

Cytokines have been widely studied because they are
important to wound healing; they regulate the activity of
the cells that produce the healing response to tissue injury
[8]. Several cytokines, including interleukin- (IL-) 1𝛽 and
tumor necrosis factor- (TNF-) 𝛼, have been shown to regulate
the recruitment and function of neutrophils. In irradiated
mice, an investigation of the ability of exogenous IL-1𝛽 or
transforming growth factor-𝛽 to reverse radiation-induced
defective wound healing found that IL-1𝛽 enhanced wound
tensile strength [9]. TNF-𝛼 is a major cytokine secreted by
macrophages and neutrophils during the inflammation phase
of wound healing; it is elevated in early wound healing [10].

In all phases of wound repair, extracellular matrix (ECM)
proteins play a key role in directing the fate and activities
of progenitor and reparative cells. Immediately after injury,
the ECM orchestrates the recruitment of platelets and directs
the inflammatory cell response that initiates the hemostatic
and the cellular debridement phases [11]. These cells, which
migrate into the wound bed of the ECM of the initial
hemostatic plug and thenmigrate into the provisionalmatrix,
respond to individual ECM components and growth factors
(which may be bound to this matrix). These cells, in turn,

recruit and direct stem/progenitor and reparative cells from
both distant and local sites to mediate the proliferative/repair
phase of healing. Particularly, in this rebuilding phase of
healing, adult stem cells participate critically in replenishing
cells that were damaged or lost after injury. In addition to
their role after trauma, adult stem cells participate in the
maintenance of the skin as well as wound healing [12].

3. General Topics

3.1. Wet Environment. A wet or moist environment in
wounds has been shown to promote reepithelialization and
result in reduced scar formation more than a dry environ-
ment [13]. The inflammatory reaction is reduced in the wet
environment, thereby limiting injury progression. Several
studies have compared wet, moist, and dry healing. A wet
or moist incubator-like microenvironment achieves fastest
healing with fewest aberrations and least scar formation.

Themodern approach of employing amoist environment
for the treatment of wounds was introduced in the early 1960s
by Winter [14], who showed in a pig model that the rate
of epithelialization after wounding was doubled by using a
moist dressing as compared to dry conditions.This was a new
concept that opposed the generally accepted idea that a dry
environment could best fight wound infection.

Manufacturers responded to Winter’s research findings
and provided a wide range of moist dressings, such as hydro-
colloids that absorb the wound fluid beneath a semiocclusive
dressing [15], foams [16, 17], alginates [18], and hydrogels
[19, 20]. Using the Cochrane database, Dumville et al. [21–24]
performed systematic reviews of the four types of wound
dressings to evaluate their contribution to the healing of
diabetic ulcers. A systematic review by Wiechula [25] sug-
gests thatmoist wound healing products have distinct clinical
advantages over dry products for the management of split-
thickness skin donor sites.

Adult human skin wounds heal with varying degrees of
scar formation [26]. Scarring is correlated with the intensity
and duration of inflammation during healing [27]. In 2009,
Reish et al. [28] published an experimental study of porcine
wounds treated either in a moist environment or with gauze:
inflammation was compared by evaluating the number of
inflammatory cells/high-power field 3 days after wounding.
Inflammation was greatly reduced in the wounds treated in
thewound chamber, and the number of inflammatory cells on
day 3was very strongly correlatedwith the amount of scarring
at day 28. Compared with dry wounds, wet wounds created
under sterile conditions and treated with low concentrations
of antibiotics exhibited a significantly smaller macroscopic
scar surface area in all experimental wound groups. Wounds
with a greater inflammatory cell infiltrate could be predicted
to develop more residual scarring.

3.2. Primary Closure and Sutures. Surgical sutures are used
universally to achieve proper wound approximation by sup-
porting the strain of closure until sufficient healing has
occurred. Approximating the wound wedges with sutures
decreases the wound area subjected to the healing process
and abbreviates the inflammatory phase, which decreases
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scarring due to the faster pace of healing. All sutures are for-
eign bodies; therefore their presence triggers a local immune
response. Thereby sutures may, paradoxically, potentiate and
extend the inflammatory phase of wound healing, resulting
in undesirable outcomes, such as wound breakdown, suture
“spitting,” hypertrophic scar, or keloid formation.The degree
of inflammation induced varies with suture composition,
which ranges from relatively inert polypropylene and nylon
to highly inflammatory silk and plain gut suture. As a
result, numerous investigations have attempted to alter suture
composition with the goal of reducing the inflammatory
response; however, no specific composition has gained clini-
cal relevance or widespread practice [29].

3.3. Drugs or Supplement

3.3.1. Curcumin. Kant et al. [30] found that curcumin, an
anti-inflammatory and antioxidant agent, caused faster and
better wound healing in diabetic rats. This effect was
attributed to a decreased expression of inflammatory cytok-
ines and enzymes, TNF-𝛼, IL-1𝛽, and MMP-9, and increased
levels of the anti-inflammatory cytokine IL-10 and antioxi-
dant enzymes, SOD, catalase, and GPx, at the wound site in
diabetic rats. This data allows us to suggest that curcumin
could be an additional novel therapeutic agent for the man-
agement of impaired wound healing in diabetics and radiated
tissues [31, 32].

3.3.2. Protein Supplementation. Abdel-Salam [33] demon-
strated that whey (milk serum) protein could contribute
to cutaneous wound healing. In this investigation, wound
closure was significantly delayed in the diabetic group.
Moreover, the results clearly demonstrated that whey protein
supplementation of diabetic animals enhanced wound clo-
sure and restored proinflammatory (IL-1𝛽, IL-6, and TNF-𝛼)
and anti-inflammatory cytokine (IL-4 and IL-10) levels nearly
to the levels of control animals. These findings support the
hypothesis that delayed wound healing in diabetic animals is
caused by deregulation of signalingmolecules that are critical
mediators of the inflammatory response.

3.3.3. Nutraceuticals. Serra et al. [34] evaluated the effects of
a new nutraceutical on both clinical and molecular param-
eters in patients with chronic vascular ulcers, since biofla-
vonoids were shown to have provessel activities along with
anti-inflammatory, antioxidant, and phlebotonic effects in
the treatment of chronic venous disease. They found that it
decreases inflammatory cytokine, MMPs and NGAL, levels
and both improved symptoms and accelerated wound heal-
ing.

3.3.4. Neurotensin (NT). Based on findings that peripheral
nerves and cutaneous neurobiology contribute to correct
wound healing [35], Moura et al. [36] studied the effect of
neurotensin (NT), a neuropeptide that acts as an inflamma-
tory modulator in wound healing. They prepared a collagen-
based dressing as vehicle to deliver NT, applied it to dia-
betic mice, and found that it can effectively support NT’s

release into diabetic wounds, enhancing the healing process.
Nevertheless, compared to treatment with NT alone, a more
prominent scar was observed in diabetic wounds treated with
the collagen-based dressing.

3.3.5. PhotodynamicTherapy (PDT). Reports of animal stud-
ies indicate that photodynamic therapy (PDT) improves
healing of excisional wounds but themechanism is uncertain.
Mills et al. [37] first reported the effect of PDT on healing of
acute excisional wounds in humans. They showed that treat-
ment with methyl aminolevulinate- (MAL-) PDTmodulated
clinical andmicroscopic indicators of healing and, ultimately,
produced scars with improved dermal matrix architecture.
Pivotally, the number of TGF-b3-producing cells was signif-
icantly higher in MAL-PDT-treated wounds than in controls
after 3 weeks, with an elevated TGF-b3 : b1 ratio. At 9months,
MAL-PDT-treated wounds showed improved deposition and
organization of dermalmatrix protein at the histological level.
Thus, this regimen of PDT of wounds appears to mediate
an antiscarring phenotype, with TGF-b3 as a potential key
modulator.

3.3.6. Doxycycline. Serra et al. [38] documented that doxy-
cycline improved healing of chronic venous ulcers. In their
study, oral low doses of doxycycline 20mg were adminis-
trated for 3months to a group of patients.The treated patients
showed a higher healing rate compared to control group.
Doxycycline has anti-inflammatory and immunomodulatory
effects, through the inhibition of metalloproteinases, repre-
senting a potential solution to support wound healing.

3.3.7. Tumour Necrosis Factor-Alpha (TNF-𝛼) Antibody Inflix-
imab. Therapeutic antibodies such as infliximab can inhibit
TNF-𝛼 activity. In a case series [39], infliximab was applied
topically to eight patients with 14 chronic ulcers of more than
4-month duration, which failed to respond to any previous
conventional treatment. Infliximab was applied repeatedly to
ulcers either as a 10mg/mL solution or as a gel formulation
(0.45, 1, or 4.5mg/g). The authors observed, after 8 weeks,
that five ulcers completely healed, while another four were
reduced by more than 75% in size.

3.4. Technology

3.4.1. Transcutaneous Electrical Nerve Stimulation (TENS).
Transcutaneous electrical nerve stimulation (TENS) has been
shown to accelerate the healing of chronic wounds in human
subjects and inducedwounds in animalmodels [40, 41].More
specifically, it has been shown to significantly increase the
rate of wound epithelialization [40] and contraction [42].
Kutlu et al. [43] demonstrated that TENS of incised wounds
improves healing by increasing growth factors (epidermal
growth factor, platelet-derived growth factor-A, and fibrob-
last growth factor-2) in the dermis and epidermis. In a later
study, Gürgen et al. [44] showed marked decreases in the
levels of proinflammatory cytokines in the dermis of the
TENS-treated group, which suggests that TENS shortened
the healing process by inhibiting the inflammation phase.
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3.4.2. Hyperbaric Oxygen. Hyperbaric oxygen therapy
(HBOT), an effective tool that helps skin wound healing,
is defined as delivery of 100% oxygen at greater than one
atmospheric pressure (ATA) into the core of the wound [45].
Delivery of this increased amount of oxygen to the cells of
unhealed tissues expedites healing of subacute and chronic
cutaneous wounds [46].

Hyperbaric oxygenworks by the following four dominant
mechanisms:

(1) Augmented hydroxylation: it helps improve collagen
synthesis.

(2) Angiogenesis: HBOT creates a large oxygen gradient
between the center and periphery of the wound that
strongly stimulates angiogenesis, which is seminal for
wound healing [47].

(3) Increased bactericidal activity.
(4) Increased collagen deposition.

Kalani et al. showed that when diabetic foot ulcers were
treated with HBOT, after 3 years of therapy, they healed
completely in 76% of patients, whereas the ulcers of only
48% patients healed completely with conventional treatment
[48]. In a randomized study by Kessler et al., either HBOT
or standard treatment was given to 28 hospitalized patients
with neuropathic ulcers (Wagner grades I to III). After two
weeks of treatment, the ulcer area was reduced by half in the
HBOTgroup (41.8± 25.5 versus 21.7± 16.9%,𝑃 = 0.037).This
improvement, however, disappeared at the two-week follow-
up [49].

3.4.3. Silver Dressings. Ionized silver (Ag+) has both anti-
inflammatory and antimicrobial properties with a broad
spectrum of action [50–52]. Jemec et al. [53] found that
treatment with silver dressings during the initial four weeks
produced a total cost saving compared with treatment with
nonsilver dressings. In addition, the wounds of patients
treated with silver dressings closed faster than those treated
with nonsilver dressings. Bisson et al. [54] found that silver
dressings produced significant anti-inflammatory effects in
chronic skin inflammation. It is believed that silver can
improve wound healing due to its antimicrobial and anti-
inflammatory properties.

Wu et al. [55] found that nanocrystalline silver can also
reduce inflammation and promote scald wound healing in
animal models. Sibbald et al. [56] concluded that evidence
indicates that nanocrystalline silver dressings may reduce
bacterial levels, decrease the chronic inflammatory response,
and thus promote wound healing. Likewise, healing of
chronic venous leg ulcers was associatedwith less wound bac-
teria and less neutrophilic inflammation but was associated
with persistent or high lymphocyte count; greater numbers
of lymphocytes were associated with more reduction in ulcer
size.

3.4.4. Negative PressureWoundTherapy (NPWT). According
to prospective and retrospective clinical and experimental
studies [57, 58], negative pressure wound therapy (NPWT)

has been widely used to facilitate healing of acute and chronic
wounds. This therapy has been shown to provide a moist
wound healing environment, increase granulation tissue for-
mation, reduce edema, and stimulate angiogenesis and blood
flow to the woundmargins [59–63]. In a retrospective clinical
study, Torbrand et al. [64] attributed these biological effects
to the evenly distributed transduction of negative pressure to
the wound bed by a vacuum pump.

The impact of NPWT on local expression of proin-
flammatory cytokines, the number of neutrophils, and the
bacterial bioburden living on the wound surface suggest
that NPWT of acutely infected soft-tissue wounds leads to
increased local IL-1𝛽 and IL-8 expression in the early phase
of inflammation,whichmay trigger infiltration of neutrophils
and thus accelerate bacterial clearance. Furthermore, the suc-
cess of NPWT of acute wounds can attenuate the expression
of TNF-𝛼, and this effect may partly explain whyNPWTdoes
not significantly impair wound healing [65].

NPWT not only enhances the granulation tissue in the
more superficial layer of the wound bed but also appears to
affect deeper layers, with relief of chronic inflammation and
tissue stabilization. It is believed that NPWT removes excess
fluid and thereby removes proteolytic enzymes that negatively
influence the healing process [66].

Interestingly, studies have shown that the activity of some
matrix metalloproteinases (MMPs) is elevated in chronic
wounds and the presence of these molecules is related to
impairing wound healing. For instance, high concentrations
of MMP-9 and high MMP-9 : tissue inhibitors of MMP
(TIMP-1) ratio in wound fluid predict poor wound healing
in diabetic foot ulcers [67]. In addition, in chronic wound
exudates, mainly MMP-1 type collagenase is present [68].
These findings may partially explain the cause of difficult
healing in chronic wounds.

On the other hand, data strongly suggest that NPWT
influences the microenvironment of the wound by reducing
the levels of MMPs and the MMP : TIMP ratio. Mouës et al.
[69] found significantly lower levels of pro-MMP-9 and a
lower total MMP-9 : TIMP-1 ratio in TNP-treated wounds
during 10 days of follow-up. Stechmiller et al. showed that
NPWT-treated wounds had decreased levels of MMP-3 and
MMP-9 and lower MMP-3 : TIMP-1 ratios in wound fluid
from pressure ulcers [70]. NPWT may lower collagenase
activity and thereby prevent exaggerated degradation of
collagen and promote wound healing.

In addition, some studies compared different types of
interface material for the application of NPWT with other
common dressings. Tuncel et al. [71], who studied dressings
applied to rabbit wounds, found NPWT superior to con-
trol saline-moistened gauze dressing but found no differ-
ence among three different interface materials (polyurethane
foam, saline soaked antimicrobial gauze, and loofah sponge)
used in association with NPWT (Figure 1).

3.5. Biomaterials and Cellular Therapy. The use of acellular
and cell-based tissue-engineered dermal substitutes has
become increasingly routine [72]. Dermal matrices and other
biomimetic scaffolds for delivery of adult stem cells have been
shown to augment the regenerative potential ofmesenchymal
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Interface material

Mechanism of action of negative pressure wound therapy (NPWT)

MMP-9 and MMP-3
Fluid remotion

Granulation tissue
formation

NPWT had decreased levels of matrix
metalloproteinases (MMPs) in wounds fluids

Reduction of edema/improving
of vascularization

Figure 1: Demonstration of the principal mechanisms of action attributed to NPWT.

stem cells (MSCs) and enhance wound healing through their
presumptive ability to recreate a regenerative niche [73–75].
Besides their ability to improve the efficiency and quality
of cutaneous wound healing, existing products have not yet
been able to promote repair that approximates uninjured
skin. The continuous evolution of superior biomaterials will
depend upon a greater understanding of the role that individ-
ual components play in the regenerative niches of uninjured
and injured skin, particularly the ECM constituents. Further,
the development of successful biomimetic and bioresponsive
substrates should incorporate the knowledge of not only how
cells interact with these substrates but also how these cells
then respond by remodelling and depositing their own ECM.

Of note, tissue engineering and regenerative medicine
have shown significant promise in treatment of problematic
wounds. Initial proof-of-principle studies that investigated
the use of exogenously applied adult stem cells for the
treatment of chronic wounds provided support for their
vulnerary effects [76, 77]. MSCs have been shown to improve
wound healing through their ability to directly contribute
cells and ECM components to the repair process, as well
as their ability to direct other cells participating in the
repair process through their production of paracrine medi-
ators (Figure 2) [78]. Human MSCs appear to have potent
immune regulatory actions that make them attractive for
use in human diseases that involve tissue injury and/or
inflammation. Although initial attempts with injection of
cells alone showed improved healing, it is clear that delivery
strategies that reproduce complex stem cell niches will be
required to maximize their potential. Given the ability of the
ECM to influence many key aspects of that niche, such as
signaling events, regulation of growth factor bioavailability,
and mechanosensation, the identification of specific ECM
components that most accurately recreate a functional stem
cell niche for incorporation into therapeutic biomaterials
remains a focus of intense investigation.

Immunomodulation Angiogenesis

Support growth 
of progenitor and 

stem cells
Antifibrosis Chemoattraction

MSC

Paracrine effects of MSC
Antiapoptosis

Figure 2: Paracrine effects of cultured mesenchymal stem cells
(MSCs). It is now believed that the secretion of a wide variety of
bioactive molecules may be the major mechanism by which CMMs
achieve their therapeutic effect. This mechanism can be categorized
into these six major actions: immunomodulatory, antiapoptosis,
angiogenesis, support of the growth and differentiation of stem cells
and progenitor sites, scarring modulation, and chemotaxis [78].

4. Specific Wounds

4.1. Diabetic Wound. Diabetes is a multisystem disorder, and
its complications induce physiological changes in tissues and
cells that impair the normal healing process. However, the
pathophysiologic relationship between diabetes and impaired
healing is complex. Diabetic wounds become halted in the
inflammatory phase, which is characterized by a continuing
influx of neutrophils that release cytotoxic enzymes, free
radicals, and inflammatory mediators that cause extensive
collateral damage to surrounding tissue. These destructive
processes counteract the healing process in suchwounds, and
the overproduction of free radicals, which induce oxidative
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stress, results in detrimental cytotoxic effects that delay
wound healing [79, 80].

Increased oxidative stress is one of the most common
reasons for the delayed wound healing in the diabetic popu-
lation [81].Therefore, reduction/termination of the persistent
inflammation and elimination of free radicals by the intro-
duction of anti-inflammatory agents and antioxidants into
the treatment of wounds could be an important strategy to
improve healing of diabetic wounds [80].

4.2. Vascular Wound. Chronic venous, lower limb ulceration
(VLU) affects 1–3% of the adult population worldwide, [82]
and some patients suffer repeated cycles of ulceration, heal-
ing, and recurrence. The underlying pathogenesis of these
hard-to-heal VLUs is complicated by excessive and prolonged
inflammation that is often related to critical microbial col-
onization and early localized infection [83, 84]. A heavy
bioburden of colonizing microorganisms in the wound may
be one of the most important barriers to wound closure [85].

Pathophysiological events involved in the onset of chronic
venous ulceration are inflammation, activation of polymor-
phonucleates (PMNs), and secretion of proteases such as
MMPs, which degrade the ECM that supports the vascular
and tissue walls. MMPs, neutrophil gelatinase-associated
lipocalin (NGAL), and inflammatory cytokines are over-
expressed in VLUs, and they could play a central role in
pathophysiological mechanisms of skin lesions and delayed
wound healing.

4.3. IrradiatedWound. Approximately 50%of cancer patients
receive radiation as an adjuvant therapy. Although radiation
therapy technology has progressed substantially in the last
decades, patients still suffer from various degrees of non-
specific radiation damage to noncancerous tissues. Radiation
ulcers have posed an enormous challenge to reconstructive
surgeons; also, they cause great distress to patients, impair
their quality of life, and consume high amounts of medical
resources. These kinds of chronic wounds can last for several
years, and some may even lead to amputations. Strategies for
treating these and other chronic wounds may include the use
of various growth factors [86–88], hyperbaric oxygen [89],
and stem cells [90].

5. Conclusion

Over the last fifty years, the complex wound healing pro-
cess became clearer allowing the development of strategies,
devices, and medications that help achieve a better final scar,
mainly through strategies to curb the wound-related inflam-
mation. Nonetheless, we are still far from definitely solving
the chronic wounds or the pathologic scarring issue and, even
more, achieving the goal of rapid and scarless healing similar
to fetal one.
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[58] P. E. Banwell and L. Téot, “Topical negative pressure (TNP): the
evolution of a novel wound therapy,” Journal ofWoundCare, vol.
12, no. 1, pp. 22–28, 2003.

[59] S. Steingrimsson, M. Gottfredsson, I. Gudmundsdottir, J.
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