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Abstract

Introduction—The development and design of personalized nanomedicine for better health 

quality is receiving great attention. In order to deliver and release a therapeutic concentration at 

the target site, novel nanocarriers (NCs) were designed, for example, magneto-electric (ME) 

which possess ideal properties of high drug loading, site-specificity and precise on-demand 

controlled drug delivery.

Areas covered—This review explores the potential of ME-NCs for on-demand and site-specific 

drug delivery and release for personalized therapeutics. The main features including effect of 

magnetism, improvement in drug loading, drug transport across blood-brain barriers and on-

demand controlled release are also discussed. The future directions and possible impacts on 

upcoming nanomedicine are highlighted.

Expert opinion—Numerous reports suggest that there is an urgent need to explore novel NC 

formulations for safe and targeted drug delivery and release at specific disease sites. The 

challenges of formulation lie in the development of NCs that improve biocompatibility and surface 

modifications for optimum drug loading/preservation/transmigration and tailoring of electrical–

magnetic properties for on-demand drug release. Thus, the development of novel NCs is 

anticipated to overcome the problems of targeted delivery of therapeutic agents with desired 

precision that may lead to better patient compliance.
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1. Introduction

The challenges in favorable drug delivery include the attainment of tunable release profiles, 

biocompatibility and the confinement of therapeutic action to diseased sites. Recently, 

attention has been focused toward the nanoscale manipulation of drug-delivery systems 

offering unique properties for navigation of drug-vehicle and controlled drug release, which 

is often not achievable in conventional- (e.g., free-form) and microscale-drug carriers. Since 

the advent of drug-nanotechnology, nanomedicine is continuously seeking a targeted drug 

delivery approach that can possess maximum therapeutic capabilities with minimum side 

effects. Thus, the design and development of drug carrying nanoparticles (NPs) 

(nanocarriers [NCs] ~ 100 nm) is the central focus for therapeutic application [1–9]. The 

NCs are surface-engineered nanostructures that are used for single and multiple drugs 

loading and safe delivery in a controlled way [10,11]. Efforts are being made to understand 

higher drug-loading mechanism with on-demand controlled release at disease-specific site 

with fewer adverse effects [2,12]. Such engineered NCs are capable of carrying the drug 

safely in a precise way during the course of therapy for the effective treatment. However, the 

complexity of pathways and navigation tools limit their potentials for controlled delivery 

and the on-demand release of drug. These challenges open up novel methods for 

investigating NCs to achieve efficient drug delivery to cure diseases, referred to as Nano-

Cure [3]. On the basis of advancements in science of NCs, Mitragotri and Lahann 

summarized the drug delivery prospects of NCs and proposed them as an innovative solution 

to address complex biological hurdles for drug delivery systems [13]. Figure 1 summarizes 

the types of NCs, for example, polymers [14–26], metal–metal oxide NPs [27–32], core–

shell NPs [33], quantum dots NPs [34–36], hybrid nanocomposites [33,37], organic–

inorganic frameworks [38–40] and novel structures like microneedles [41]. The 

advancements in the design of nanoscale stimuli-responsive systems that are capable of 

controlling drug bio-distribution in response to appropriate stimuli and controlled via 

exogeneous/endogenous mechanism are explained by Mura et al. [42]. Figure 2 illustrates 

suitable stimuli-responses NCs for drug delivery. However, the released drug from NCs–

drug formulation in the bloodstream results in possible binding of the drug with unspecific 

sites. This causes drug concentration loss at active target site and leads to unwanted side 

effects and decrease in the efficacy of the formulation. These challenges can be overcome 

via designing multifunctional NCs of desired electrical, optical and magnetic properties to 

achieve target-specific delivery for on-demand drug release. NCs should possess good 

biocompatibility (immune-clearance) and ability to cross blood-brain barrier (BBB) for 

therapeutic application at CNS [43–46]. It has been proven that the choice of NC materials 

and its surface modification to architect the formulation are crucial in achieving high drug 

loading, proper navigation and controlled drug release with the proper selection of stimuli-

response.

This review focuses on the design and development of novel magneto-electric (ME) NPs as 

potential drug delivery NCs to achieve above-mentioned undertakings. Recently, magneto-

electric NCs (ME-NCs) have adopted for on-demand controlled drug delivery/release 

system because both magnetic and electric fields of ME-NCs can be coupled at body 

temperature and can be tuned/controlled in physiological condition. ME-NCs possess 
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potentials of on-demand and site-specific delivery of drug, proteins, genes and other 

compounds (small molecules) into the target cells and organs for therapeutic purposes. 

These NCs can be explored for in vitro diagnostic and monitoring tool for better health 

quality. The optimization of physical, chemical and molecular properties of ME-NCs helps 

in minimizing the side toxicity of payload drugs. Precise and on-demand localized drug 

release can be of great clinical importance to treat NeuroAIDS, cancer and other chronic 

conditions in CNS.

The salient features of ME-NCs such as site-specific delivery and on-demand controlled 

drug release on external magnetic and electric stimulation across the BBB are also 

highlighted in this review. The future prospects of ME-NCs to develop a robotic platform 

system-based compartmentalization needed for personalized dosage on disease requirement 

are also highlighted. Next section explores potential applications, advancement and 

limitations of magnetic NCs (M-NCs) in the fields of drug delivery.

2. Magnetic NCs for brain delivery

Nanomedicines for therapeutics have opened exciting prospects for drug delivery systems 

due to their ability of target (cells/organs) specific delivery and release. Among NCs, 

magnetic NPs (M-NPs) are extensively utilized drug delivery NCs due to their unique 

properties such as magnetic hyperthermia, and controllable movements and MRI contrast 

agent [47–53]. The favorable drug delivery properties of M-NPs are their stealth surface 

chemistry, high drug-loading capacity, multiple functionalities and optimal particle sizes (10 

– 100 nm). Sagar et al. have explained the possible drug release mechanism of drug-loaded 

M-NCs upon external stimulation such as thermal responsive, optical responsive, pH 

responsive, enzymatic catalysis and acoustic activation [2]. M-NCs-based molecular 

transport has been adopted as modern approach to increase delivery with reduced toxicity in 

many fields that is, cardiology, ophthalmology and oncology. As recent advancements, 

efforts are being made to deliver drug at neuronal level across the BBB. The delivery of 

therapeutic agents across the brain is very limited and until now technologies to adjust their 

pharmaco-distribution have remained restricted. Hence, there is a need to develop the novel 

strategies for site-specific delivery of therapeutic agents across the intact BBB with minimal 

toxicity remains a challenge in the field.

Advances in material science for controlling magnetic properties, size and shape of M-NCs 

via adopting novel synthesis routes expand the protocol toward developing efficient 

therapeutic agent to cure diseases. The introduction of external magnetic force-based trigger 

for drug delivery and controlled release in the brain is the recent investigation. In this 

approach, the speed and time for drug delivery is estimated on applying external magnetic 

field. Several experts reported the potentials of M-NCs for the advance drug delivery and 

proposed M-NCs as excellent personalized nanomedicine carriers. Pilakka-Kanthikeel et al. 

showed an in vitro study using M-NCs for targeted brain-derived neurotropic factors 

(BDNF) delivery across the BBB. Delivering BDNF helps in preventing the HIV-related 

neurotoxicity and disease progression in case of NeuroAIDS [54]. Authors developed 

Fe3O4-NCs for binding with BDNF and assessed efficacy and ability to transmigration 

across the BBB using an in vitro BBB model. The outcomes of this study suggested that 

Kaushik et al. Page 3

Expert Opin Drug Deliv. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transmigrated BDNF is effective in suppressing the morphine-induced apoptosis, inducing 

response element-binding expression and restoring the spine density. Such developed NCs 

may provide a potential therapeutic approach to treat opiate addiction, protect neurotoxicity 

and synaptic density degeneration [54]. Ding et al. developed a novel transferrin-embedded 

fluorescent multifunctional liposomal magnetic NCs formulation to enhance BBB 

transmigration [55]. A dual mechanism that includes receptor mediation combined with 

external noninvasive magnetic force incorporated into homogenous magneto-liposome (~ 

100 nm) was used to improve delivery across BBB. The magnetic-liposome formulation 

demonstrated improves delivery across BBB than traditional methods [55]. Authors also 

suggested the need of in vivo studies to clarify the related mechanism of dual transportation 

for the successful application of these NCs in various CNS diseases [56].

An integrated mircorobotic system based on functionalized M-NCs for on-demand and 

targeted therapeutic intervention is developed by Fusco et al. [57]. This robotic system 

consists of drug-loaded magnetic alginate microbeads encapsulated by near-infrared 

responsive (NIR-785 nm) hydrogel. Protective hydrogel layer provides protection to 

magnetic–alginate compartment and also rapidly opened on NIR exposure (~ 40°C). This 

protocol is based on controllable trigger mechanism for on-demand release of biomolecule 

at specific target, wherein NIR penetrates body tissue without side effect at repeated doses. 

The utilized magnetic carriers help in navigation in the body, and developed prototype can 

be used for drug delivery [57]. The assembly, design and manipulation of nanorobotics for 

medicine applications using NCs have been explored [58–60].

However, phase change of M-NCs on interaction with biological moieties causes drug loss 

during transport and limits its applications of on-demand drug release in in vivo model. M-

NCs-based delivery methods release drug in uncontrolled manner in response to patho-

physiological changes (pH, temperature, etc.) or via body defense mechanism (exocytosis of 

drug-enclosing intracellular vesicle). Hence, there is a significant scope to develop new M-

NCs of properties that can be controlled using external magnetic or electric forces, and are 

capable of on-demand drug release at target organ. Next section explores ME-NCs and their 

application in the field of on-demand controlled drug delivery and release for personalized 

nanomedicine.

3. Magneto-electric nanocarriers

The challenges and future prospects related to M-NCs-based drug delivery systems are the 

motivation to design and develop novel materials, and such of one is ME NCs. ME-NCs 

exhibit dual effect (magnetic and electronic) and therefore possess both ferroelectric and 

ferromagnetic parameters in a single phase and unable to couple with other parameters to 

exhibit novel properties, that is, ME effect [61]. This phenomenon allows the control of 

magnetization and electrical polarization in a single phase. Energy conversion from 

magnetic to electric takes advantage of piezoelectric properties of the ferroelectric phase and 

piezomagnetic properties of the ferromagnetic phase [61–63]. Key advantages of ME-NCs 

over M-NCs are structurally compatible, high stability (chemical, thermal and mechanical) 

and easy preparation. In general, ME-NCs are core shell structures, wherein a magnetic core 

is preserved with a shell of desired electrical properties [64–66]. The control on core size 
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and thickness of the shell enables the fine adjustment of the structure and phase fraction of 

the ME-NCs formulation, ensuing in materials with tunable properties and reproducible 

features. The synthesis of core–shell NPs is conventionally carried out in two successive 

steps: i) the precipitation of the ferrite NPs; and ii) the creation of a shell around each NP. 

Along with drug delivery, ME nanostructures due to above-mentioned unique properties 

have been used in transduction, spintronics, optical devices and sensors. Moreover, ME-NCs 

are dissipation-free, energy-efficient and low-field on-demand targeted drug release can be 

achieved by applying low remote ME field [64,65]. However, ME nanostructures can be of 

inorganic–inorganic nano-composite and organic-metal oxide frameworks [37,52]. ME-NCs 

enable a new dissipate ion-free mechanism to force a high-efficacy externally controlled 

drug release process at the subcellular level using remote low-energy direct current and/or 

alternating current (a.c.) [67].

The non-zero magnetic moment of ME-NCs can be controlled on applying an external 

magnetic field that offers an energy-efficient control of the intrinsic electric fields within the 

NPs. Our group at Center of Personalized Nanomedicine @FIU explored ME-NCs for safe 

delivery and on-demand controlled release of anti-retroviral (ARV) drug across BBB using 

low energy a.c. magnetic field to control the a.c. electric signals [56] and also for 

noninvasive artificial stimulation of the neural activity deep in the brain for Parkinson’s 

disease [68].

For the first time, Dr. Nair’s group in collaboration with Dr. Khizroev explored the use of 

computational technology in predicting the artificial stimulation of neurons using the ME-

NCs in deep inside the brain [68]. Yue et al. demonstrated this concept and proposed this 

noninvasive technique that couples neuronal electric signals to the magnetic dipoles of ME-

NCs. The established protocol is of use for noninvasive stimulating the patient brain with 

Parkinson’s disease to bring the pulsed sequences of the electric field to the levels 

comparable to those of healthy people. Simulation results predicted that ME-NCs 

concentration of 36 × 106 particles/cc with size of 20 nm and frequency (80 Hz) of the 

externally applied magnetic field (300 Oe) can give us the desired effects [68]. Field-

controlled ME-NP drug formulation showed a unique capability of field-triggered release 

across BBB due to intrinsic magnetoelectricity. On applying external magnetic field, the 

electric forces in drug-NCs bonds enable remotely controlled delivery due to coupling of 

ME properties [68]. The application of ME-NCs for filed-controlled site-specific and on-

demand drug delivery with possible delivery and release mechanism is discussed in next 

section.

4. Potentials of ME-NCs in drug delivery

ME-NPs are exploring for field-controlled drug delivery and on-demand release application. 

ME-NCs can be synthesized in different size and shape depending upon the use and target 

organ that is, spherical core–shell NPs (magnetic core and an electric shell) or rods with a 

piezoelectric coating (concentric magnetic/piezoelectric tubes) or composite sphere 

(piezoelectric ceramics or piezopolymers with surrounded M-NPs). Only few reports are 

available on ME-NCs-based drug delivery and other biological-related applications.
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Researchers explore the electromagnetic property of ME-NPs for learning the voltage-gated 

ion channels. Ion channels are primary targets for pharmacological agents for therapeutic 

purposes, and cellular responses to various chemical stimuli, for example, drugs, can be 

investigated in relations of their influence on ion channels [69]. There is a need of highly 

specific and targeted delivery of anti-neoplastic drugs for cancer therapeutics or CNS 

disease.

The controlled electric field of ME-NCs via external magnetic field can be explored to 

exploit the intrinsic properties of the cell membrane. Ion channels present on cell membrane 

are kind of electrically polarized medium that can be affected by the applied electric field. 

This property explored to open up the pores of cell membrane on applying electric field. The 

porosity of the cell membrane is found to be dependent of applied electric field. Guduru et 

al. used this field-controlled nano-electroporation (the scale down of electroporation to 

nanoscale is referred as nano-electroporation) technique for drug delivery using magnetic 

filed activated ME-NCs loaded with anticancer drug inside the tumor cell. Drug-loaded ME-

NCs are capable of to generate enough localized field needed to open up the cell membrane 

pores for the penetration of NCs and drug release on changing field without causing heat. 

Authors explored nano-electroporation via using CoFe2O4@BaTiO3 (30 nm) ME-NCs for 

controlled and targeted drug delivery to eradicate ovarian cancer. A physical concept is 

explored based on the differences in the electrical properties of tumor cell membrane, 

healthy cells membrane and the capability of ME-NCs converters of remote magnetic field 

energy into the ME-NCs intrinsic electric field energy. An in vitro model on human ovarian 

carcinoma cell (SKOV-3) and healthy cell (HOMEC) lines was used for the proof-of-

concept using electroporation technique (cell membrane-dependent electrical method to 

trigger drug delivery into the cells). Results showed that an electric field > 1000 V/cm 

creates pores of appropriate size for the penetration of nanoformulation through the cell 

membrane. Drug-loaded ME-NCs (CoFe2O4@BaTiO3) penetrated through the membrane 

on applying 30 Oe to trigger highly specific uptake of paclitaxel and completely eradicated 

the tumor within 24 h without any side effect [64]. A field-controlled gate generated on 

interaction between ME-NCs and the electric system of the membrane allows the drug-

loaded ME-NCs into the tumor cells as depicted in Figure 3. Proposed scheme highlights the 

nano-electroporation methodology using ME-NCs and drug release pattern. The potential of 

cancer cell is lower than that of healthy cell, likewise the threshold field (Hth) for drug-

loaded ME-NCs is lower in case of cancer cell than healthy one. Using simple isotropic 

expression that is, DP (induced electric dipole field) = αH (external magnetic field), the ME 

coefficient (α) is calculated as~ 100 mV cm−1 Oe−1, which can be obtained at small 

magnetic field (~ 100 Oe). On applying appropriate magnetic field (100 Oe), the drug-

loaded ME-NCs penetrate the cell membrane via electroporation and further drug can be 

released from ME-NCs on increasing field to critical value that is, Hr. To achieve the high-

efficacy uptake, Hr should be higher than Hth. For the specificity of uptake to the cancer cell, 

the value of applied external field HA should be higher than Hr_cancer and lower than that of 

Hth_healthy.

Another potential application of ME-NCs was explored by Nair et al. for anti-HIV drug 

delivery. Authors used ME-NCs for successful on-demand delivery of ARV drug across the 
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BBB for the prevention of NeuroAIDS [65]. The proposed mechanism of drug loading and 

on-demand release under the effect of external magnetic field is illustrated in Figure 4. 

Results of using in vitro model demonstrate on-demand release of azidothymidine 50-

triphosphate (an anti-HIV drug) using CoFe2O4@BaTiO3 (30 nm) NPs was achieved via 

application of low a.c. magnetic field across the BBB. Authors proposed that this platform 

technology of on-demand drug delivery can be used for other CNS diseases treatment, 

where deep tissue high efficacy at subcellular level is needed [65].

The main principle of drug release lies in the breaking of all bonds between drug and ME-

NCs formulation uniformly and efficiently on applying an a.c. magnetic field. AZTTP binds 

via electrostatic interactions to the ME-NCs, which have an original ionic bond (zero fields 

with charge Q ionic). On applying non-zero field, a non-zero electric dipole moment (ΔP = 

αH, where α-first-order ME coefficient and H-magnetic field) is generated within ME-NCs. 

The value of the dipole charge surface density on each side of ME-NCs would be of the 

order of σME ~ ± H (opposite sides of the dipole). This modulated dipole moment results in 

breaking of the original symmetry of the charge. On increasing the magnetic field more 

threshold value, the dipole charge density of each side of ME-NCs becomes comparable that 

is, σME ~ Qionic/πd2, that is, σME ~ Qionic/πd2α (d = diameter). In this way, the bond in the 

direction of applied field is broken and bond at the opposite side got strengthened [65]. For 

the next-generation on-demand drug released technology, an array of coils can be used to 

generate a.c. fields with nonzero phase shifts with respect to each other. The proposed 

schematic of ME-NCs-based drugs delivery across the BBB is shown in Figure 5. The 

salient features and capabilities of ME-NCs for safe and on-demand target-specific drug 

release in comparison of M-NCs are summarized in Table 1.

5. Conclusion

In summary, this review highlights the contribution of ME-NCs for specific and targeted 

drug delivery toward the development of nanomedicine. The ease of surface modification 

and tuneablilty of electric/magnetic properties of ME-NCs make them suitable for high drug 

loading, desired navigation and on-demand release, proven their advantages toward the 

development of nanomedicine for therapeutics. To retain magnetic and electrical properties 

of ME-NCs during transport and release deemed to explore new materials chemistries such 

as core–shell ME and metal–organic frameworks-based NCs. Also, these modified NCs 

have the potential to transport the drug across the BBB and thus can be used to deliver 

therapeutic agent in the brain. As concluding remark, we purpose that the potential 

therapeutic and diagnostic impact of innovative and novel ME-NCs is highly significant not 

only for HIV, cancer, Parkinson’s disease and Alzheimer’s disease but also in other CNS 

diseases, where the ability to remotely controlled drug release and diagnostics is the key.

6. Expert opinion

The ability of NPs to precisely control the release of payloads externally (on-demand) 

without depending on the physiological conditions of the target sites has the potential to 

enable patient and disease-specific nanomedicine. Important characteristics including 

particles size, surface engineering, toxicity and BBB transmigration ability of ME-NCs need 
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further development for better navigation and precise drug release on-demand at target 

location without loss of drug payload for personalized nanomedicine. Further, ME-NCs can 

be used for development of noninvasive deep brain stimulation toward the treatment of 

many neurological disorders such as Parkinson’s, Alzheimer’s, dementia and so on. But to 

achieve these tasks, there is a need to develop better understanding of intrinsic electrical/

magnetic property of ME-NCs on application of external magnetic and electrical field and 

the effects of ME-NCs interactions with blood/tissue/organ during navigation. The 

highlighted features to formulate drug delivery nanosystem are feasible via exploring novel 

chemical/ physical synthesis routes for desired surface functionalization or modification to 

achieve efficient target-specific on-demand delivery and release without drug loss.

As proof-of-concept, ME-NCs have shown on-demand drug release at disease target 

location. For example, ME-NCs-based therapeutic agent has been demonstrated to cure HIV 

and ovarian cancer. However, these studies are limited to in vitro model and must be 

explored for real application. Therefore, efforts should be accelerated to prove the potential 

of ME-NCs as therapeutic agent utilizing in vivo model. For further developments, the 

interrelated challenges to improve the potentials of ME-NCs-based drug delivery both in 

vivo and in vitro include better biocompatibility and less cytotoxic-ity. Many in vitro and in 

vivo studies already have been conducted to evaluate the toxicity of several types of metal-

oxide NPs for example, TiO2, Fe3O4, MoO3 and so on, have been studied [70]. Results 

showed that lower doses (10 – 50 μg/ml) have found no significant toxicity effect on the 

cells in vitro, while there was a profound effect at higher levels (100 – 250 μg/ml). 

Literature shows that the toxicity effect is a function of concentration and chemical 

composition of NPs. In case of ME-NPs to date, no studies have been performed that 

address the possible toxic effects of these multifunctional NPs. Nonetheless, our results 

showed that low concentration on ME-NPs does not show any toxicity in vitro; however, the 

complete profile of toxicity is still underway using different in vitro and in vivo cytotoxicity 

models. Intensive studies are being carried out for evaluating the effect of physiochemical 

properties (e.g., surface area, surface composition, ionic charges, roughness and surface 

area) of ME-NCs with respect to peripheral and CNS toxicity. Also, additional investigation 

needs to be carried out for: i) assessing internalization and intracellular distribution of NPs 

that may contribute to the toxic effects observed in mice model; ii) studying target 

organelles (e.g., brain and gut) involved with neurotoxicity; and iii) evaluating the neuro-

behavioral studies to understand the toxic effect. However, evidence around toxicity of 

metal oxide and heavy metals NPs continues to increase, a significant knowledge gap still 

exists on a complete toxicological profile of these NPs. Hence, there is a need to develop 

novel nanomaterial with magnetic and electric properties without the use of toxic heavy 

materials to have better biocompatibility and lower cytotoxicity.

For quality monitoring, novel signaling transduction/ imaging pathway can be introduced 

with drug delivery systems. These ME-NCs have potentials to be used as contrasting agent 

for MRI and M-NP imaging to map neuronal activities of the brain (irrespective of its origin, 

i.e., superficial or deep tissue). However, existing techniques (electroencephalogram and 

magneto-encephalogram) only record the neuronal activities in the superficial tissue (cortex) 

but not in the deep brain tissues. ME-NCs-based development can be integrated with a 
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robotic system to develop an on-demand and site-specific controlled drug release technology 

using above-mentioned external stimulus. In vivo experiments to perform intramuscular and 

intravenous or oral delivery using novel formulation of ME-NPs as nanovehicles will be of 

great significance. The presented review explores the delivery and release of disease-

specific medicine through an innovative cross-disciplinary exploration in the fields of 

therapeutics and nano-engineering. The capabilities of novel ME-NCs enable distinctive 

blend of significant functions such as energy-efficient/dissipation-free magnetic-field-

controlled targeted drug delivery and on-demand release with high-specificity three-

dimensional diagnostics toward the development of personalized nanomedicine.
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Article highlights

• On-demand controlled release of sufficient drug at disease target site is needed 

to develop personalized nanomedicine for better health quality.

• Magneto-electric nanocarriers (ME-NCs) can be used for energy-efficient field-

controlled targeted drug delivery and on-demand release with no heat 

dissipation and unprecedented high efficacy.

• ME-NCs can be used for application of neuronal activation in the brain and also 

as contrasting agents (for MRI and MNI modalities) to capture molecular 

information of the surrounding tissue/microenvironment.

• ME-NCs can be used as nano-stimulators for noninvasive treatment of patients 

with CNS diseases.

• Intrinsic coupling between electric and magnetic fields within ME-NCs provides 

molecular composition specificity that can enable an entirely new dimension 

even to the conventional diagnostic methods such as MRI and positron emission 

tomography-computed tomography.

This box summarizes key points contained in the article.
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Figure 1. Illustration of various NCs utilized for drug delivery
A) Polymeric nanoparticle [17,71,72], B) dendrimers nanoparticle [73], C) polymeric 

micelle [19,25], D) non-polymeric micelle [25], E) lipid nanoemulsion [74], F) lipid 

nanocapsules [75–77] and G) inorganic NCs including: (i) metal nanoparticles [3,78–81], 

(ii) carbon nanotubes [82,83], (iii) quantum dots [34,36,84,85], (iv) magnetic nanoparticles 

[27–30,67,86–89], (v) silica nanoparticles [90–92] and (vi) core–shell nanoparticles 

[33,93,94].

NCs: Nanocarriers.
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Figure 2. Presentation of stimuli-responsive NCs in drug delivery [42]
A) Temperature-based actuation mechanisms for liposomal drug delivery [95], B) 
Stimulation is heat generated by an alternating magnetic field, which lead on-demand drug 

release from nanocarriers [88], C) Ultrasound stimulated drug delivery from nanoemulsions 

via droplet-to-bubble transition [74], D) Near-infrared-triggered release of drug [78], E) 
Voltage-responsive controlled assembly and disassembly of carriers for drug delivery [96], 

F) pH-sensitive NCs for efficient drug release [97] and G) Enzyme-sensitive drug delivery 

[98].

A. Figure reused with permission of [95].

B. Figure reused with permission of [88].

C, D and F. Figures reused with permission of [42].

E. Figure reused with permission of [96].

G. Figures reused with permission of [98].

NCs: Nanocarriers.
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Figure 3. Schematic representation of ME-NCs as field-controlled nano-electroporation for drug 
transport across the cell membrane
ME-NC: Magneto-electric nanocarriers.
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Figure 4. Schematic representation of drug loading onto ME-NCs and on-demand-controlled 
drug release under the influence of external magnetic field
A) Surface functionalized superparamagnetic ME-NCs, B) Binding of drug onto ME-NCs 

via electrostatic interaction, C and D) On-demand drug release by ME-NP stimulated by a 

uniform a.c. magnetic field.

a.c.: Alternating current; ME-NC: Magneto-electric nanocarriers.
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Figure 5. Proposed schematic of ME-NCs-based ARV drugs delivery across the BBB
ARV: Anti-retroviral; BBB: Blood-brain barriers; ME-NC: Magneto-electric nanocarriers.
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Table 1

A summary of magnetic and ME nanoparticles-based delivery systems for transportation of drugs across the 

BBB [2].

Nanocarriers M-NCs ME-NCs

BBB transmigration potentials These NCs could be hybridized with liposomes as 
‘magneto-liposomes,’ which can behave as ‘Trojan 
magneto-liposomes’ residing in monocyte/
macrophage. Externally magnetic force-mediated 
movement helps in escape of nanocarriers uptake 
from reticuloendothelial system and accelerates 
active targeting.
Increased transmigration of ARV drugs across in 
vitro BBB model

Unlike M-NCs, ME-NCs possess unique combination 
of magnetic and electric properties. While externally 
magnetic force-mediated movement helps in speedy 
transport to tissue target resulting escape of NCs’ 
uptake from reticuloendothelial system, noninvasive 
electric force mediates release of bound drugs
Increased transmigration of ARV drugs across in vitro 
BBB model

Drug release mechanism Drug release from this carrier relies on tissue/ 
organ-specific response such as change in 
temperature, pH, intracellular Ca2+ concentration 
and so on. External stimulus such as mild 
hyperthermia may also affect the drug uploading

AC field triggers the dipole moment uniformly in all 
orientation, which breaks the intrinsic pattern of 
positive/negative charges on atoms. When dipole 
moment goes above the threshold value (more than the 
ionic bond strength between particles and drugs), a 
homogenous release of drugs from particles could be 
achieved

Limitations Although many in vivo studies show site-specific 
targeting and lab to on-field and on-site transfer 
ability for non-HIV drugs, the same for ARV drugs 
are very limited

Although few initial in vivo studies show site-specific 
targeting and lab to on-field and on-site transfer ability, 
the same for other drugs have to be verified

Remark More in vivo studies based on mouse, rat or 
monkey models must be performed

More in vivo studies based on mouse, rat or monkey 
models must be performed

ARV: Anti-retroviral; BBB: Blood-brain barriers; ME: Magneto-electric; ME-NC: Magneto-electric nanocarriers; M-NCs: Magnetic nanocarriers.
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