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Abstract

Background—Cryptic Epitopes (CE) are peptides derived from the translation of one or more of 

the five alternative reading frames (ARFs; 2 sense and 3 antisense) of genes. Here, we compared 

response rates to HIV-1 specific CE predicted to be restricted by HLA-I alleles associated with 

protection against disease progression to those without any such association.

Methods—Peptides (9–11mer) were designed based on HLA-I binding algorithms for B*27, 

B*57 or B*5801 (protective alleles) and HLA-B*5301 or B*5501 (non-protective allele) in all 

five ARFs of the nine HIV-1 encoded proteins. Peptides with >50% probability of being an 

epitope (n=231) were tested for T cell responses in an IFN-γ ELISpot assay. PBMC samples from 

HIV-1 seronegative donors (n=42) and HIV-1 seropositive patients with chronic clade B 

infections (n=129) were used.

Results—Overall, 16%, 2%, and 2% of CHI patients had CE responses by IFN-γ ELISpot in the 

protective, non-protective, and seronegative groups, respectively (p=0.009, Fischer’s exact test). 

Twenty novel CE specific responses were mapped (median magnitude of 95 SFC/106 PBMC) and 

the majority were both anti-sense derived (90%) as well as represented ARFs of accessory 

proteins (55%). CE-specific CD8 T cells were multifunctional and proliferated when assessed by 

intracellular cytokine staining.
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Conclusions—CE responses were preferentially restricted by the protective HLA-I alleles in 

HIV-1 infection suggesting that they may contribute to viral control in this group of patients.

Keywords

Cryptic epitopes; alternate reading frames; chronic HIV-1 infection; protective alleles; HLA-
B*53; HLA-B*57

INTRODUCTION

Development of a vaccine for HIV-1 that confers protection against HIV-1 infection or 

delays disease progression remains a formidable challenge1–3. Perhaps the biggest hurdle to 

an efficacious vaccine development is the enormous sequence diversity of HIV-1 and the 

propensity of the virus to escape cytotoxic CD8 T lymphocytes (CTL) and/or antibody 

recognition4–7,8. For a CTL based vaccine, novel approaches to vaccine design are currently 

being investigated in an attempt to circumvent this obstacle9–14. A dominant theme common 

to these studies is the use of vaccines designed to enhance the breadth (targeting more 

epitopes) of T-cell responses. The rationale for this line of research largely stems from the 

immunogenicity results obtained in non-human primates that have suggested that for a CTL 

based HIV-1 vaccine to be effective, it will need to induce an enhanced breadth of CD8 T-

cell responses 15,16.

Several studies in human and non-human primates have shown that sense and antisense 

transcription and translation are fairly common likely owing to aberrations in gene 

expression that are driven by one or more of the multiple molecular mechanisms 17–32. 

Involvement of multiple reading frames is biologically plausible as among the 6 potential 

reading frames encoded in a double stranded DNA, one is designated as the ORF (open 

reading frame; frame usually associated with a functional protein) and five others represent 

ARFs (alternate reading frames) 33–38. Most HIV-1 epitopes, comprehensively characterized 

and studied to date in context of infection and vaccination, are those derived from known 

HIV-1 proteins encoded by the primary ORFs of the HIV-1 viral genome (traditional 

epitopes or TE). Cryptic epitopes (CE) represent a class of non-conventional epitopes, which 

have been shown in prior studies to be immunologically relevant in context of viral 

infections and cancers 30,32,39–63. Furthermore, studies in HIV-1 and SIV have shown that 

CE specific CTLs are under immune pressure to escape immunosurveillance 39,40,52,64,65. 

Despite the known immunogenicity of CE and its potential to increase the T cell breadth, 

most HIV-1 vaccines in clinical development do not induce pertinent responses directed 

against these epitopes 41.

A plethora of data in HIV-1 infection has now established a definite association of certain 

HLA class I alleles and disease progression66–74. Broadly, two groups of alleles can be 

delineated based on their disparate disease outcomes: protective allele (HLAs-B*27, B*57 

and B*58) and non-protective allelic group (HLAs-B*53 and B*55) 66–74. Although studies 

on protective alleles and recognition of traditional epitopes are abundant, very few studies 

have addressed this association for cryptic epitopes. The first study that evaluated HLA-I 

restricted CE was done by Cardinaud et al 42 where CTL responses to CE were observed in 
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HLA-B*07 expressing HIV-1 infected individuals. Using a selected set of CE (9–11 mers) 

based on HLA-I associated HIV-1 polymorphisms; we and others have previously shown 

that CE are frequently targeted during HIV-1 infection39,40. A recent paper illustrated 

enhanced ARF encoded immune responses in HIV infected patients receiving antiretroviral 

therapy (ART) 44. Similar to our prior work 39 most of the peptides used in this study were 

derived from reverse frames. The T-cell responses in this study were examined in a small 

subset of HIV-1 infected individuals expressing HLA A*02, B*07 and B*58 alleles 44. 

However, no study to date has assessed the frequency, functionality and biological 

significance of CE in context of specific HLA class I alleles associated with differential 

disease outcome.

In the current study, we compared predicted CE specific responses presented by “protective” 

(HLAs-B*58, B*57 and B*27) and the “non-protective” alleles (B*53 and B*55) in disease 

progression. We demonstrate that CD8 T-cell targeting by protective- CE is not uncommon 

and may therefore contribute to not only an increased breadth of responses but also durable 

viral control in individuals who are endowed with protective HLA-I alleles.

MATERIALS AND METHODS

Cryptic epitope prediction

Using consensus clade B sequences and the Epipred program (http://

boson.research.microsoft.com/bio/epipred.aspx), we predicted HLA-I restricted (9–11mer 

peptides) that bind HLA-B*27, B*57, B*5801 (protective) or B*5301, B*5501 (non-
protective) alleles for all the five alternative reading frames of the nine HIV-1 encoded 

proteins (ARF-CE, Table 1). A total of 231 predicted epitopes with posterior probability 

(pp) >0.5 were synthesized and tested for immunogenicity. Posterior probability of a 

predicted peptide is a statistical measure of an amino-acid sequence being a true epitope, as 

estimated from the interaction of peptide and HLA sequence characteristics 75. The epipred 

model was trained on all optimally defined (“A-list) HLA-epitope pairs listed in the Los 

Alamos database, in addition to all HLA-epitope pairs listed in the IEDB database 

(www.iedb.org) as eliciting a functional response. Negative training data were derived from 

randomly sampled peptides from the human proteome and from HLA-peptide pairs shown 

to exhibit low binding affinity and deposited in IEDB.

Study cohort

PBMC samples from clade B HIV-1 chronically (n=129, Table 2) infected individuals were 

used for immune assays. These individuals were enrolled from the 1917 HIV-1 clinic at the 

University of Birmingham at Alabama. In addition, PBMC from healthy seronegative 

donors (n=42) from the Alabama Vaccine Research Clinic (AVRC) were used as controls. 

IRB approval was obtained and all participants consented for this study. Details on the 

demographics and clinical features of these individuals are shown in detail in Table 2.

HIV-1 and non-HIV-1 antigens

The predicted protective and non-protective allele specific CE were synthesized in a 96 well 

peptide array format from New England peptides (Gardner, MA). Individual stock peptides 
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were reconstituted at 10–40mM in DMSO. The immunogenicity was evaluated for each 

specific HLA specific pool (Table 1). For B*58, both pools and subpools were tested 

initially. As positive controls, pools representing immunodominant epitopes, previously 

shown to be restricted by the protective alleles in the Los Alamos database, were used 

(ORF-TE, Table 1). In addition, overlapping peptides (OLP, 15 mers overlapping by 11) for 

Gag (# 8117) and Pol (#6208) from NIH AIDS reagent program were also used (ORF-OLP, 

Table 1). Due to protein length, the latter was split in 2 pools (Pol-N OLP and Pol-C OLP). 

For the non-HIV-1 antigens, we used CEF (9-mers, #9808, 2ug/ml) and CMV pp65 peptide 

pool (15 mers overlapping by 11, #11549, 5 μg/ml), both from NIH AIDS Reagent program. 

These peptides were tested in both HIV-1 seronegative and seropositive individuals.

IFN-γ ELISpot assay

An ex-vivo IFN-γ ELISpot assay was performed as described previously 39,66,76. In brief, 

cryopreserved PBMC were thawed and allowed to rest overnight at 37° C. Nitrocellulose 

96-well plates were also coated overnight at 4° C with anti-IFN-γ monoclonal antibody. The 

following day, PBMCs (100,000 cells/well) in duplicate were incubated with appropriate 

peptide pool or single peptide at 2uM or 10uM respectively for 20–22 hours at 37° C in 5% 

CO2. The media or unstimulated controls were plated in quadruplicate. After washing, 

biotinylated anti-IFN-γ was added to the plates for 2 hours at room temperature. Following 

another round of washing, SA-conjugated alkaline phosphatase was added for 1 hr. and then 

NBT/BCIP added for color development. Individual cytokine-producing cells were counted 

by the ImmunoSpot CTL ELISpot reader. The criteria for a positive response was >50 

SFC/106 PBMC and 2 times the unstimulated control. In addition, PHA was used as a 

positive control (duplicate) and samples with a PHA response of less than 500 SFC/106 were 

excluded from analysis.

Polychromatic flow cytometry (PFC)

Cryopreserved PBMC were stained in a PFC assay as described previously 39. In brief, 

PBMC were washed in RPMI containing 10% human AB sera (R-10 media) and co-

stimulatory monoclonal antibodies (anti-CD28 and anti-CD49d; Becton Dickinson, San 

Jose, CA) at 1 ug/ml each and 50U/ml of Benzonase (Novagen, Madison, WI) were added to 

each tube containing 1×106 PBMC in 500μl R-10 media. For co-culture, CD107a-FITC was 

added. Cells were pulsed with the appropriate peptide, monensin and brefeldin for 12 hours 

at 37°C. Staphylococcus enterotoxin B (SEB) [1 ug/ml] was used as a positive control. The 

cells were stained for the dead cell dye marker and surface labeled for 20 min before 

Cytofix/cytoperm reagent was added. The fluorescent labeled antibodies used were: anti-

CD3 (Alexa Fluor 780) and anti-CD8 (V500). After 20 min, the cells were labeled with 

intracellular antibodies i.e. anti-IL2 (APC), anti-TNFα (PECy7), anti-IFN-γ (Alexa Fluor 

700) and anti-perforin (PE) for 20 min at room temperature. CD14 and CD19 labeled with 

PercpCy5.5 were used as a dump channel. The cells were fixed in 2% paraformaldehyde and 

analyzed on an LSR II flow cytometer. At least 100,000 CD3+ events were acquired and the 

data was analyzed using FlowJo Version 8.6.2 software. Lymphocytes were analyzed based 

on forward and side scatter profiles, and the gates were set based on the media control 

(irrelevant peptides) and applied to all samples from the same individual. Cytokines 

produced were measured from CD3+CD8+ cells. A response was considered positive if the 
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value was greater than >2X the media control for that individual with a magnitude of 

≥0.05%. All fluorochrome-conjugated antibodies were obtained from Becton Dickinson, 

San Jose, CA, USA.

In Vitro expansion of antigen specific CD8 T-cells

Peptide specific CD8 T-cells lines were expanded for 14 days in-vitro using monocytes as 

APC as described before 77. In brief, after 2 rounds of weekly antigenic stimulation, the 

CD8 T-cells were re-stimulated with the cognate antigen in the presence of co-stimulatory 

antibodies and intracellular transport inhibitors for 6 hours and analyzed as mentioned 

above. For HLA-I restriction experiments, HLA-class I matched and mismatched BLCL 

pulsed for 1 hr with the cognate peptide (10uM). The BLCL were washed three times before 

adding to the in-vitro expanded CD8 T-cells. The effector (CD8 T-cells) and targets (BLCL) 

were co-cultured at 5:1 (E:T) ratio for 6 hours in the presence of co-stimulatory antibodies 

and intracellular transport inhibitors as described above under ICS and the production of 

IFN-γ from CD8 T-cells was quantified.

Statistics

Comparisons of continuous variables within each group were done using the non-parametric 

Wilcoxon rank sum test. Analyses of variables between each group were performed using 

the non-parametric Mann-Whitney U test. Differences in the responder frequencies were 

compared using Fishers exact test.

RESULTS

Predicted peptides for HLA-I alleles with opposing disease outcomes

The total number of the CE tested along with a select set of HLA-I restricted traditional 

epitopes (TE) and overlapping peptides (OLPs) representing the entirety of Gag and Pol are 

detailed in Table 1. The evaluated peptides included representatives from all nine known 

HIV proteins and were enriched in the antisense direction (63–90%, Table 1) for all HLA 

alleles but B*27 (when correcting for the number of alternative reading frames in the sense 

vs. antisense directions).

Frequency of CE responses in individuals with favorable HLA subtypes

We evaluated CE specific immunogenicity in PBMC obtained from 42 HIV seronegative 

donors and 129 chronically HIV-1 infected individuals with B*27, B*57 or B*5801 

(protective, n=79) or HLA-B*5301 or B*55 (non-protective, n=50) alleles. We first 

evaluated T-cell responses in 42 HIV-1 seronegative donors who were predominately 

Caucasian (30/42, 71%), females (25/42, 60%) with a median age of 42 years. Among the 

seronegative donors, HLA-I information was available for 39 of which thirteen had alleles 

of interest i.e. B*27, B*57, B*58, B*53 and/or B*55. HIV-1 seronegative donors elicited a 

high frequency (25/42, 60%) responses to the non-HIV-1 antigens represented by CMV-

pp65 and/or CEF peptide pools; data not shown. However, a CE specific T-cell response 

was seen in only one seronegative donor (2%). The single seronegative donor that responded 

had a positive CE specific response to an HLA-B*58 pol subpool, and the net magnitude of 
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the response was 85 SFC/106 PBMC. This sub-pool response could not be mapped to a 

single peptide.

The demographics and clinical features of the chronically HIV-1 infected individuals whose 

samples were used in this study are shown in Table 2. Our cohort was enriched with 

individuals with HLA-B*57 and B*53 among the protective and non-protective groups, 

respectively. Although both allelic groups were composed of African Americans, the non-

protective group was largely African American, female and receiving ART; this 

composition is reflective of the high HIV-1 disease burden observed for this racial group in 

US. The median CD4 and plasma viral load were similar between the 2 allelic groups (Table 

2). The relatively preserved CD4 T cells and low viral load in both groups is likely due to 

the fact that most patients in our HIV clinic are being treated with antiretroviral therapy 

(ART) unless their infection is fairly well controlled. Initially peptides in pools were tested 

(Table 1) and positive responses were enumerated using a criteria of >50 SFC/106 PBMC 

and 2 times the unstimulated control. These responses were further mapped to the sub-pool 

or to the single peptide level.

Overall 16% of the patients with a protective allele responded to at least one CE (Figure 

1A). For each protective allele, the overall response rate was 16%, 14% and 23% for B*27, 

B*57 and B*5801, respectively (Figure 1A). At the peptide level, 13%, 18% and 10% 

responses were detected for all B*27, B*57 and B*58 restricted peptides tested respectively 

(Figure 1B). Furthermore, nearly all of these mapped peptides were antisense derived (90%,) 

and were predominately located in the ARFs of HIV-1 accessory genes (>55%, Nef, Vpr, 

Vif and Vpu); data not shown. Regarding the magnitude of response in the protective allele 

group, the median magnitude of the response was higher at the single peptide level 

compared to the sub-pool and pools of peptide (data not shown, p<0.05).

For the non-protective allele group, we evaluated responses in a total of 50 CHI individuals 

with HLA-B*53 (N=46) and HLA-B*55 (N=4). The total number of peptide tested was 72, 

with 57 and 9 peptides being unique to B*53 and B*55, respectively, and 6 common to both 

alleles. In this group, we observed only one response to a B*53 peptide (2%) and the pool 

which contained it. Taken together, the overall response rate for the protective allele and 

non-protective allele group was 16% and 2%, respectively (p= 0.009, Figure 1A) despite 

similar median posterior probability (0.60) of predicted epitopes. On the other hand, no 

differences were observed comparing either the plasma viral loads or the absolute CD4 T 

cell counts when comparing the individuals with CE responses to those without such 

responses (1,243 and 1,430 RNA copies/ml and 458 and 571 cells/mm3, respectively). 

Furthermore CE responses were similar among patients on and off ART (data not shown).

Novel CD8 cryptic epitope specific responses targeted during chronic HIV-1 infection

In our study, we identified a total of twenty novel 9–10 mer peptides restricted by one or 

more of the protective alleles (Table 3) in seven HIV-1 infected individuals. These 

responses were restricted nearly equally by each of the 3 protective alleles studied (range 

20–45 %).
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Polychromatic flow cytometry was used to further characterize the CE specific CD8 T-cell 

responses. Using an ex-vivo ICS assay, our data showed that these CD8 T-cells elicit 

multifunctional cytokine and effector responses (Figure 2). In addition to IFN-γ, CE specific 

cells produce cytokines and effectors molecules including IL-2, TNF-α, CD107 and 

granzyme-B and perforin. Following our ex-vivo analyses (Figure 2), we expanded the CE 

specific CD8 T-cells in culture using autologous peptide pulsed monocytes as antigen 

presenting cells (APC). These cells readily proliferate and retain their multifunctionality 

(Supplementary figure 1). Using a similar approach for CE-CD8 T-cell expansion, we were 

also able to confirm the HLA-I restriction of CE to be similar to the computational 

prediction (Supplementary figure 2).

DISCUSSION

Our understanding of cryptic epitopes (CE) has significantly improved since the first 

antisense protein was described in 1988 “as a novel protein on the genomic DNA plus 

strand” 25. Antisense transcription for HIV-1 was later shown 35,78,79 and He et al elegantly 

demonstrated its common occurrence in the human genome 23. Although traditionally 

derived epitopes (TE) have long been considered to be the sole source of HLA-I presented 

immunogens, the functional relevance of the ARF encoded cryptic epitopes (CE) has only 

recently begun to emerge. Therefore, this would imply that the total breadth of epitope 

presentation has heretofore been largely under estimated.

Consistent with our previous findings that HLA-I CE are commonly targeted in HIV-1 

infection 39, we observed a significant rate of CE targeting, especially from anti-sense 

derived peptides. Our data shows a bias towards the preferential targeting of CE restricted 

by protective compared to non-protective alleles. This observation could have been skewed 

by two factors. Firstly, it is possible that the binding prediction algorithms for protective 

allele are better than non-protective allele since the former group is much better studied. 

However, this is unlikely to be the main reason since the peptides in both group were 

selected based on a posterior probability of >0.5 and the number of peptides tested in each 

group were comparable. Furthermore, the prediction models used in the current manuscript 

have worked well previously for both allelic groups (i.e. PA and NPA) 39,40,80. Secondly, 

based on the observation that at a population level protective alleles are associated with 

more traditional epitopes that have evidence of escape 81, it can be speculated that the 

protective allele group has the ability to target more CE as well. Conversely, patients with 

HLA types associated with rapid disease progression recognize a small fraction of the TE 

restricted by the non-protective alleles 72. It is therefore not surprising that the CE restricted 

by these alleles are also not frequently targeted.

Although previous work 39,40 has shown that the breadth of CE specific CTL do correlate 

with markers of disease progression, we were unable to see a significant correlation between 

CE targeting and plasma viral load. One possible explanation is that the median viral load in 

our entire cohort was very low making correlations difficult. Nevertheless, multiple prior 

studies have shown that overall, individuals with protective alleles have lower viral load 

compared to individuals who lack these HLA-I types 8283848586. Moreover, this effect can be 

Bansal et al. Page 7

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



seen early following viral infection suggesting that CE responses could perhaps be partly 

responsible for the enhanced viral control afforded to these patients.

There are fairly convincing data that the protective alleles’ favorable effect on disease 

progression is in a large part attributed to HIV-1 Gag targeting 87–899082, although 

targeting 4,91,92 of other proteins has been shown to be important during acute infection. 

HIV-1 and SIV specific CE CD8 T cell responses have also been directed towards ARFs of 

all of the viral proteins that have been analyzed 39,40,44,46,54,93,94. Consistent with prior 

work, the current study demonstrated CE responses to ARFs of all of the genes analyzed, 

including the accessory genes 44,46. Interestingly, targeting CE in the ARFs of accessory 

genes such as Tat, Nef, and Vif was also frequently seen in macaques including those 

exhibiting elite control of SIV 95–98. Therefore, CE targeting ARFs can be an important 

source of immmunogens for enhancing the overall repertoire of virus specific T cell 

responses.

The preferential targeting of antisense peptides is consistent with our prior work that showed 

that there is potential to encode more antisense peptides 39 relative to sense direction. A 

recent study also found a higher number of predicted epitopes were derived from antisense 

ARFs 44. In the current study, we found that nearly half of CE specific responses were 

targeted towards peptides translated from the ARFs of accessory genes (vif, vpr, vpu and 

nef) followed by pol antisense ARFs. The latter is in line with our previous data 39 showing 

that the potential number of antisense pol-CE far outweighs the number of pol TE. In 

parallel, the multi-functionality of CE specific T cell responses is comparable with those 

seen for TE making CE attractive as viable immunogens that can likely act in concert with 

TE to broaden the overall CD8 T-cell response.

Taken together, data from this study suggests that there are multifaceted players involved in 

exacting viral control in individuals endowed with protective alleles. Some of the attributes 

working in tandem or in concert to control a viral infection include the ability to mount 

fitness cost imposing CD8 T-cell responses, elicit multifunctional responses 70, superior 

ability of responses to cross-recognize variants 99,100, and a broader TCR usage. Perhaps a 

greater breadth of responses via CE may yet be another dimension to this equation. In 

summary, understanding the full extent of immune targeting of protein products derived 

from ARFs not only provides insight into the full extent of virus specific CTL responses to 

HIV-1 but could yield information which can be effectively utilized to increase the breadth 

of future CTL based HIV-1 vaccines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Patient and peptide responder frequency data for CE specific T-cell responses as 
assessed in an IFN-γ ELISpot assay in a cohort of chronically HIV infected individuals
(A) Percentage patient responder frequency for each group of individuals carrying non-

protective (B*53/55) and protective (B*27/57/58) HLA-class I alleles is shown. SN= HIV 

seronegative donors; (B) Response frequency (%) elicited to each peptide pool. The fraction 

on top of each bar indicates the number of positive responses over total tested for that group.
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Figure 2. Functionality of CE specific CD8 T-cell responses restricted by protective alleles as 
measured in an ex-vivo ICS assay
PBMC from a chronically HIV infected donor (HLA-A: 0201/0205, HLA-B:0702/5703, 

HLA-C:0701/0702) were stimulated with 10uM peptide in presence of co-stimulatory 

antibodies and intracellular transport inhibitors for 12 hours at 37°C. Representative data 

showing IFN-γ and perforin production from CE specific CD8 T-cells in response to 

B*5801 restricted Env RF4 (FIY9= FYFSSPSIY) and B*5801 restricted Gag RF5 (LF9= 

LPLWEGQIF) peptides. Response to SEB is shown as a positive control. Using Fischer’s 

exact test, p-value for FIY9 response relative to media was 1.1 × 10−6 for IFN-γ, and 4.0 × 
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10−6 for perforin. For LF9 response, the p-values for media compared to IFN-γ and perforin 

were 2.7 × 10−5 and 4.4 × 10−5 respectively. This patient was on ART and the plasma viral 

load and absolute CD4 counts were 49 and 611 respectively.
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Table 3

List of novel immunogenic cryptic epitopes (CE)

Cryptic epitope

Patient ID Sequence Name HLA-Ia ARF-frameb

CMI-1 HLLAQLSFF HF9 B57 Nef-RF6

YMNCYQDNF YNF9 B57 Pol-RF4

YCMDFQAQF YQF9 B57 Pol-RF6

NYCYYCCYY NY9 B57 Vpu-RF4

CMI-2 FYFSSPSIY FIY9 B5801 Env-RF4

CMI-3 WPLVFWGLF WF9 B57 Vif-RF5

YYGPHNYCYY YY10 B57 Vpu-RF4

FYEYYGPHNY FNY10 B5801 Vpu-RF4

CMI-4 RQWQQFHQYY RY10 B27 Pol-RF3

TRLYTFRRK TK9 B27 Pol-RF3

HRFYYSLTL HL9 B27 Pol-RF4

CMI-5 IYIWCFTKL IL9 B27 Vif-RF5

FPKPEALFW FW9 B57 Gag-RF4

CMI-6 FPHFQQPFF FF9 B5801 Gag-RF5

LPLWEGQIF LF9 B5801 Gag-RF5

GLFYLLWLNW GW10 B5801 Nef-RF4

CMI-7 FPCSNPHPVY FVY10 B5801 Vif-RF4

HPLAFLEIY HY9 B5801 Vif-RF5

DPNASLFLLY DY10 B5801 Vif-RF6

YPRKMSNSF YF9 B5801 Vpr-RF4

a
EpiPred predicted HLA-I restriction

b
alternate reading frame of an HIV-1 gene and frame number (RF3=sense and RF4–6=antisense)
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