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ABSTRACT The sequences, or primary structures, of
existing biopolymers-in particular, proteins-are believed to
be a product of evolution. Are the sequences random? If not,
what is the character of this nonrandomness? To explore the
statistics of protein sequences, we use the idea of mapping the
sequence onto the trajectory of a random walk, originally
proposed by Peng et al. [Peng, C.-K., Buldyrev, S. V., Gold-
berger, A. L., Havlin, S., Sciortino, F., Simons, M. & Stanley,
H. E. (1992) Nature (London) 356, 168-170] in their analysis of
DNA sequences. Using three different mappings, correspond-
ing to three basic physical interactions between amino acids, we
found pronounced deviations from pure randomness, and these
deviations seem directed toward minimization of the energy of
the three-dimensional structure. We consider this result as
evidence for a physically driven stage of evolution.

From the molecular point of view, biological evolution im-
plies the change of the set of sequences of existing proteins.
In the same spirit, prebiological evolution is also understood
as the creation and possibly subsequent change of some
primary ensemble of sequences (not necessarily protein
sequences). Thus, evolution can be viewed as some walk,
search, and optimization in sequence space. This space,
however, is astronomically big because the number of pos-
sible sequences is exponential in the length ofpolymer chains
involved. For this reason, an exhaustive search in sequence
space is well known to be prohibitively time consuming and,
therefore, at least some element of randomness seems inev-
itable for any understandable picture of evolution.

It can be shown mathematically that a random choice of a
point in sequence space, with uniform probability distribu-
tion over the entire space, is equivalent to a completely
random formation ofthe sequence in a letter-by-letter manner
without any correlations. Therefore, delicate deviations of
the sequences from pure randomness or correlations between
monomers along the sequences might be ofgreat importance,
as these changes can yield some fingerprint relating to the
process that has created the existing biopolymers.

Similar arguments were used to justify the concept that is
imaginatively formulated by the statement "proteins are
slightly edited random copolymers" (1). For example, it was
shown that the lengths distribution of a-helices in proteins
follows accurately what could be expected for just random
sequences (1). Some other tests can also be found (ref. 1 and
the references therein). We also mention that the small
degree of "editing" is closely related to the neutral theory of
evolution (2). In the spirit of the concept of "proteins as
edited random copolymers," we address here the aspect in
which they are "edited."
To look for this nonrandomness, one has to decode the

sequence in an appropriate manner. For example, some

peculiar correlations between monomers were recently found
in purine-pyrimidine representation of DNA sequences (3).
As for proteins, we expect that this decoding has to be related
to the three-dimensional structure and the folding properties
of a protein chain. Indeed, the three-dimensional structure of
protein is believed to be completely encoded in the sequence.
On the other hand, it is exactly the three-dimensional struc-
ture that defines all aspects of a protein's functionality and,
therefore, the properties of a protein in competition under
evolutionary selective pressure. In other words, the relation-
ship between the sequence and the selective promise of the
protein is mediated by the three-dimensional structure. Thus,
as the three-dimensional structure can be considered to be
"written" in the amino acid sequence in the "language" of
the interactions between amino acids, we decode protein
sequences according to the role of each particular residue in
the determination of the protein's three-dimensional struc-
ture. Namely, we consider three ways to decode protein
sequence, related to the three most important kinds of
volume interactions-Coulomb interaction, hydrophobic/
hydrophilic interaction, and hydrogen bonding.

"Brownian Bridge" Representation for Protein Sequences

Technically, we use the idea of Peng et al. (3) and map protein
sequence onto the trajectory of an artificial one-dimensional
random walker. More precisely, we construct for each se-
quence a one-dimensional walker that makes steps of size o-up
and down at discrete time moments i, 0 s i s L. The walker
is required to return to the origin after the entire trip ofL steps,
so that the corresponding trajectory is a Brownian bridge. A
purely random walker, which corresponds to a random se-
quence, is expected to travel =oWL from the origin on
mean-square-average. To reach farther, the walker must go
mainly in one direction for the first half-time (i < L/2) and
mainly back in the second half-time (i > L/2), thus approach-
ing the maximal distance of acL/2. On the other hand, to keep
as close to the origin as possible, the walker must compensate
each step to one direction by a subsequent opposite step.
Therefore, persistent types of correlations in protein se-
quences would be manifested in trajectories that go beyond the
random one, whereas alternating correlations would lead to
the trajectories that do not travel as far.
To use this test of nonrandomness, we have calculated for

each of the amino acid sequences obtained from a data bank
(8) the trajectories of three different artificial walkers, each
related to a kind of physical interactions between residues-
hydrophobic (A), hydrogen bonds (B), and Coulomb (C). The
subsequent steps of each walker are given by the numbers {4}
defined as follows: forA, 4 = +1 if monomer number i in the
given sequence is highly hydrophilic (lysine, arginine, histi-
dine, aspartate, and glutamate) or 4i = -1 in any other case;
for B, 4i may be +1 or -1 for monomers capable (asparagine,
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glutamine, serine, threonine, tryptophan, and tyrosine) or
incapable (all others) of hydrogen bonding (4); for C, 4i may
be + 1, -1, or 0 for positively (lysine, arginine, and histidine)
or negatively charged (asparagine and glutamate) and neutral
(all others) monomer i, respectively (4).
To look for correlations by comparing the trajectories, we

have to exclude the dependencies on protein length, overall
composition, and the step size of the walker. This is done by
the following definition of trajectories:

r(k) - [ P)] [1]

where p denotes a given protein, (. . .)p means average over
the set of proteins, [. . .1 means take the next highest integer,
and Lp is the total number of amino acids in p. (i) To exclude
Lp-dependence, we rescale the number of steps taken (1) as
A = I/Lp, 0 < A < 1; (ii) to exclude the walker's drift due to
the protein overall composition, we subtract the term linear
in A for each protein by &ei(P) = {i(P) - 5(P), (P) = (1/
Lp)7X0 e(P) (in this way the trajectory is brought to the bridge
shape); (iii) to exclude the step-size dependence, we

divide by 0.(P) = jP0 [4(P) - P)j2. In other words, r(A) is
the distance traveled by the effective walker (i.e., with the
mean drift removed) after taking [ALpl steps of size ar.
Our procedure to construct the walkers is thus a modifi-

cation of the original Peng et al. (3) procedure, in such a way,
that (i) we average over an ensemble of different proteins
rather than along the chain and (ii) all the trajectories are
bridges.
The trajectories rA(A), rB(A), and rc(A), along with the

theoretically found trajectory

rrand(A) = A-1 + (1-A)-1 [2]

for purely random case, are shown in Fig. 1 for a set of
globular proteins [those coded as catalysts in the Data Bank
(8)]. The rA(A) and rB(A) bridges are clearly over r,a,d(A),
manifesting pronounced persistent correlations in the distri-
bution of hydrophobicity. Alternating correlations are found
between electrical charges on protein chains because rc(A) is
definitely under rrnd(A). This is the main finding of the work.

Brownian Bridges for Some Particular Sets of Proteins

Some developments of this main result are as follows. When
we look at early forms of life, such as prokaryotes, we find
that the corresponding Brownian bridges shown in Fig. 2 fit
quite well to a phenomenological scaling generalization of
Eq. 2 of the form

r2a-1

A-2a + (1-A)-2aI
[3]

yielding quantitative results of aA = 0.520 ± 0.005, aB = 0.520
± 0.005, and ac = 0.470 ± 0.005 for prokaryotes. Clearly, a

> 1/2 and a < 1/2 means persistent and alternating type of
correlations, respectively. To exclude small polypeptides as
well as multiglobular proteins, we have examined only pro-
teins with lengths between 110 and 750 amino acids. For
simplicity, we take Lo = 110-i.e., the shortest chain in the
ensemble, but we have found no special qualitative depen-
dance on Lo.
We stress here that a # 1/2 does not imply any fractal

interpretation, contrary to the DNA case, because we aver-
age over the ensemble of different sequences rather than over
the sliding window in one sequence.
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FIG. 1. Brownian bridges for hydrophilic (x), hydrogen bonding
(e), and Coulomb (+) mappings of sequences of proteins with
catalytic activity and, therefore, globular structure (a) and coiled
structure (b). (a) The general qualitative behavior for catalysts (aA >
1/2, aB > 1/2, and ac < 1/2) is seen, when compared with the bridge
corresponding to an ensemble of random sequences r,d (thick gray
curve)-i.e., a = 1/2. (b) Persistent correlations are found in all
mappings for coils.

Ofcourse, the statistical errors are greater for smaller subsets
of sequences. Nevertheless, the main qualitative finding (aA, aB
> 1/2, aC < 1/2) remains valid for all of the considered groups
ofglobularproteins. At the same time, we have to mention, that
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FIG. 2. Brownian bridges for hydrophilic (x), hydrogen bonding
(e), and Coulomb (+) mappings of sequences of prokaryote proteins
sequences. We find that these bridges fit well to Eq. 3 with aA = 0.520
± 0.005, aB = 0.520 ± 0.005, and ac = 0.470 ± 0.005 (Lo = 110). The
thin gray lines bounding a given bridge give the error spread specified
above.
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some of the bridges-for example, rA(A) for enzymes from
plants-exhibit clear irregularities and asymmetries, which
remain unexplained. For the subset of coil-like proteins (i.e.,
denoted to be coiled in acomment orkeyword ofthe data base),
we found aA, aB, and ac > 1/2; this is easily related to the
known periodicity of fibriiiar protein sequences.
To insure that these results are not artifacts of the proce-

dure used, we performed several control tests. In particular,
artificial shuffling of the units along the chain as well as
randomly shuffled versions of the maps A, B, and C all lead
to random sequences (a = 0.5 + 0.0025).
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Discussion o

To conclude, we speculate on the possible explanations for the
nonrandomness of protein sequences. As mentioned in the
Introduction, we believe that the deviations from randomness
seen are the fingerprints ofan evolutionary process, biological
or prebiological. On the other hand, the results aA, aB> 1/2,
ac < 1/2 appear to be a manifestation of some process driven
by physical interactions among monomers. Indeed, a se-

quence with a tendency toward alterating signs of charges
along the chain (ac < 1/2) has, at the same conformation,
obviously lower Coulomb energy compared with another
hypothetical sequence with blocks of the charges of the same
sign. Analogously, hydrophilic monomers energetically prefer
to concentrate at the loops that are on the surface of the
globule and thus in contact with the solvent. Therefore, there
is the coincidence: the set of protein sequences, known to be
a product of evolution, looks similar to the result of some

physical game with repulsion and attraction of monomers.
What could be the reason for this coincidence? Consider

recent works (5, 6), where two different procedures were
suggested to prepare or, at least, to imitate the preparation of
heteropolymers with sequences capable of renaturation into
a given molecular fold. One ofthem (5) is based on annealing
of the sequence of the polymer with a chosen target confor-
mation. Another procedure (6) implies, before polymeriza-
tion, prearrangement of monomers in space due to the
interplay of repulsive and attractive interactions. These pro-

cesses are both driven physically and lead, therefore, to aA,
aB> 1/2, and ac < 1/2. We have analyzed correlations along
the artificial sequences produced by our model of polymer-
ization (6) and found very reasonable agreement with the data
for real proteins (e.g., prokaryotes). We conclude from this
consideration that some physically driven process, where the
same set of monomer-to-monomer interactions is used as in
the renaturation of the existing proteins, is likely to be one of
the stages of evolution, biological or prebiological.
From this perspective, it might be instructive to compare

correlations in different groups oforganisms vs. evolutionary
age. Fig. 3 shows the bridges for proteins from several
different groups of organisms. As to the Coulomb bridge, an
evolutionary trend toward larger ac or less alternating cor-
relations is clearly seen. On the other hand, our data do not
reveal any trend with respect to cA and aB. This result is not
at all unexpected, as the Brownian bridges for hydrogen
bonding and hydrophilic mappings had greater variation and,
therefore, errors in a estimation than the Coulomb mapping,
so that a trend might not be seen even if there were one. If
one believes in the trend revealed by Fig. 3a, it implies that
biological evolution somehow allows the elimination of the
correlations imposed by the prebiological creation of se-

quences. We must stress, however, that this question re-
mains of much more speculative character than our main
finding, shown in Fig. 1.
One might consider our main results as only the reflection

of physical constraints involved with the formation of het-
eropolymers with a unique structure (similar to, for example,
obvious constraint that the total charge ofthe chain cannot be
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FIG. 3. Brownian bridges for a series of evolutionary groups: 0,
Prokaryota; 1, Chordata; 2, Tetrapoda; 3, Metazoa; 4, Mammnalia;
and 5, Rodentia. (a) Coulomb mapping, with a magnified region 0.3
S A C 0.7 in the lower center. There is a clearly seen trend, such that
the younger (larger label numbers) evolutionary groups have bridges
closer to rxd (thick gray curve). This trend can be characterized by
computing the difference (A) between the area under the Brownian
bridge for a given species and the area under the bridge for random
sequences. We have chosen the domain (0.3,0.7) for integration
(Inset) as the error becomes great outside of this range. The result is
seen in the upper right-hand corner. Another quantitative measure of
the evolutionary trend would be to fit each bridge with Eq. 3 and plot
ai vs. i; qualitatively, this approach leads to the same conclusion, but
because individual bridges do not necesarily fit very well to Eq. 3,
except for prokaryotes, this fit introduces some artificial errors. (b)
Using the hydrophilic mapping, again the prokaryote bridge fits well

to Eq. 3 with a > 1/2. As in the Coulomb case, the bridges for the
other evolutionary groups deviate more from Eq. 3 than the prokary-
ote bridge; however, the evolutionary trend found with the hydro-
philic mapping is not seen as clearly, as shown in the plot of Ai vs.

i in the upper right-hand corner.

too large)-i.e., the correlations obtained represent the fact
that certain sequences are more favorable due to physical
criteria. However, the sheer fact that correlations are seen in
the ensemble of proteins, which are assumed to be a product
ofevolution, is exactly how we understand our statement that
at least some stage ofbiological or prebiological evolution has
selected protein sequences based upon physical criteria.

Appendix A

Derivation of Eq. 1. We start with a given ensemble of
protein sequences. With the decoded sequence {h, {,
{L}, we map it onto the trajectory as

x(l)=o ,. [Al]
t=1

a
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The walker defined by Eq. Al may have a strong drift, so that
the leading term in x(l) might be linear in 1; this is related
simply to the mean composition of the chain considered.
Because overall composition is beyond our interest here, we
define the reduced trajectory:

y(l) = x(l) - (/L)x(L), [A2]
L being the total number of links in the entire polymer chain.
Obviously, the y-walker returns back to the origin after the
entire "trip." The corresponding trajectory y(l) is called a
"Brownian bridge."

In principle, y is expected to scale as La with chain length.
For example, we have considered y2(L/2) for each protein
and made the logarithm-logarithm plot, where each point
corresponds to one particular protein and has coordinates L,
y2(L/2). These plots indicate clearly the tendency toward
power-law dependence of the type y2(L/2) L2. However,
because of restricted statistics available and great fluctua-
tions, it is hard to come to convincing conclusions with this
approach.
To collect all data in a comparable form, we have rescaled

all the Brownian bridges compensating for different proteins
with different lengths and variances of { distribution by

y2
z2(Ak) = f s[A3]

where (. . .) = averaging over a given protein sequence (e.g.,
= (1/L)XL1,), and to exclude L-dependence, we rescale the

number of steps taken (1) as A = IIL, where 0 c A - 1.
With the rescaled trajectories z2(A), we perform averaging

over the ensemble of proteins:

r(A) = (Z2(A))ensemb1e, [A4]

which, when combined with Eqs. Al-A3, yields Eq. 1.

Appendix B

Derivation of Eq. 3. A Brownian bridge is generally the
trajectory of a random walk that starts and terminates at the
same point in space-say, in the origin. Let us consider first
the simplest case of a random walk without correlations, and
let us evaluate the probability distribution for the walker
displacement z as a function of "time" 1, OP,(z). This can be
considered as the probability for two walkers to meet each
other at the point z at the "moment" 1: both ofthem start from
the origin, but the first begins at zero time and walks for the
time 1, whereas the second begins at the time L and walks
back in time for the period L - 1. For the uncorrelated
process, we have thus

9Pi(z) = Pl(Z)'PL-l(Z). [Bi]

Because there are no correlations, p(z) is simply the standard
Gaussian distribution

p1(z) = (lar)-1/2exp[- [B21

where a is a parameter. We see, therefore, that in this case

gll(z)= const-exp - L-+ ) [B3]

where const is normalization factor, and r(l) = (z2(l)) = f
z2P1(z)dz thus obeys Eq. 2.
We now return to a more general case. Scaling arguments

imply that the distribution p(z) is of the form

E(=cs[(
pl(z) = const-exp al'

[B4]

where a and /3 are critical exponents. Supposing Eq. Bi is
valid (which generally may not be true), one easily gets the
expression for P1(z) and then for r(l) = (z2(1)). At ,3 = 2 we
recover exactly Eq. 3. It is clear from the derivation that
applicability of Eq. 3 is restricted from two sides-namely,
the validity of Eq. Bi and the supposition /3 = 2. Our
statistical analysis shows no need in trying other values of /3,
as well as in consideration of any generalization of Eq. Bi.
The simple variant of Eq. 3, considered as purely phenom-
enological, works reasonably well.
To understand the physical meaning of critical exponent a,

one has to look at Eq. B4. In terms of random-walk repre-
sentation, Eq. B4 implies that rms displacement ofthe walker
scales as la with "time" 1. Certainly, it is analogous to the
excluded volume problem in polymer physics, where the size
of polymer chain is known to scale as 1" with chain length 1,
where v > 1/2 [3/5 in classical Flory theory (7)] or v < 1/2
(1/3 for dense globule), depending on the prevailing of
repulsive or attractive monomer-to-monomer interactions,
respectively. Therefore, a is analogous to the critical expo-
nent of correlation radius. It is worthwhile to mention here
that a > 1/2 was found for DNA sequences (3).
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