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Abstract

Background—Computed tomography (CT) scanning has emerged as an effective means of early 

detection for lung cancer. Despite marked improvement over earlier methodologies, the low level 

of specificity demonstrated by CT scanning has limited its clinical implementation as a screening 

tool. A minimally-invasive biomarker-based test that could further characterize CT-positive 

patients based on risk of malignancy would greatly enhance its clinical efficacy.

Methods—We performed an analysis of 81 serum proteins in 92 patients diagnosed with lung 

cancer and 172 CT-screened control individuals. We utilize a series of bioinformatics algorithms 

including Metropolis-Monte Carlo, artificial neural networks, Naïve Bayes, and additive logistic 

regression to identify multimarker panels capable of discriminating cases from controls with high 

levels of sensitivity and specificity in distinct training and independent validation sets.

Results—A three-biomarker panel comprised of MIF, prolactin, and thrombospondin identified 

using the Metropolis-Monte Carlo algorithm provided the best classification with a %Sensitivity/

Specificity/Accuracy of 74/90/86 in the training set and 70/93/82 in the validation set. This panel 

*Corresponding author: Anna E. Lokshin, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Suite 1.19d, 5117 Centre 
Avenue, Pittsburgh, PA 15213, USA. Tel.: +1 412 623 7706; Fax: +1 412 623 1415; lokshina@pitt.edu. 

HHS Public Access
Author manuscript
Cancer Biomark. Author manuscript; available in PMC 2015 September 01.

Published in final edited form as:
Cancer Biomark. 2011 ; 10(1): 3–12. doi:10.3233/CBM-2012-0229.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was effective in the classification of control individuals demonstrating suspicious pulmonary 

nodules and stage I lung cancer patients.

Conclusions—The selected serum biomarker panel demonstrated a high diagnostic utility in the 

current study and performance characteristics which compare favorably with previous reports. 

Further advancements may lead to the development of a diagnostic tool useful as an adjunct to 

CT-scanning.
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1. Introduction

The early detection of lung cancer, a devastating disease which accounts for more deaths in 

the US annually than prostate, breast and colorectal cancer combined [1], presents an 

opportunity to dramatically reduce disease mortality and greatly benefit overall public 

health. Non-small cell lung carcinomas (NSCLC) represent the vast majority of lung cancers 

and while the overall five-year survival for patients with this diagnosis is a disappointing 

15%, five-year survival for those patients diagnosed with stage IA NSCLC typically exceeds 

60% [2]. For these patients, effective treatment includes surgical resection accompanied by 

lymph node dissection [3]. A number of techniques, including thoracic radiography, sputum 

cytology, and computed tomography (CT), are currently being evaluated as diagnostic tools 

for lung cancer. The efficacy of these tools has been examined in clinical trials and while 

thoracic radiography and sputum cytology have failed to perform with adequate levels of 

sensitivity (SN) for early-stage disease [4,5], CT imaging has emerged as an effective 

technique in several studies [6,7]. The limitations of CT scanning are also well documented, 

the most prominent of which is the high identification rate of benign pulmonary nodules 

[8,9]. Such findings greatly reduce the specificity (SP) of CT, exacerbating the already high 

cost of the technology and leading to unnecessary patient anxiety and surveillance. Thus 

remains the need to identify additional effective methodologies.

Based on the demonstrated diagnostic utility of CT-scanning, this method is currently being 

evaluated as a population-based screening tool for lung cancer. Investigators participating in 

the National Lung Screening Trial [10], a randomized multicenter trial involving more than 

53,000 current and former smokers, recently released findings indicating a 20% reduction in 

lung cancer death in individuals screened by low-dose helical CT versus standard chest x-

ray [11]. These encouraging findings illustrate the promise offered by CT-based screening if 

certain limitations inherent to the technique can be successfully overcome. Although 

specific guidelines regarding the minimum levels of SN/SP required of any lung cancer 

diagnostic test have yet to be established, improvement upon currently demonstrated levels 

of SN/SP is certain to be a prerequisite for advancement. The FDA does cite specific criteria 

for effective screening in reference to the use of CT in pulmonary cancer [12]. Among these 

criteria, proposed by investigators at the Cleveland Clinic [13], is the requirement that any 

screening test directed at a disease with a prevalence of 5% or less must detect pre-clinical 

disease with a SN exceeding 95% when the SP is less than or equal to 95%, and vice versa. 

Current estimates place the prevalence of lung cancer in high-risk groups at 1–3% [9,14], 
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well below the 5% threshold, while the overall SN/SP of CT screening in this setting was 

recently reported at 90/92.6 [15]. Thus, a second-line test of sufficient accuracy might 

augment the performance of CT and provide a basis for an effective and efficient screening 

strategy.

The use of biomarker measurements as tools for early detection is a promising research 

innovation currently being applied to a number of human cancers. In lung cancer, biomarker 

evaluations have been conducted in serum, tissue, and sputum, with serum being the least 

invasive and hence, most desirable testing matrix. Several serum biomarkers, including 

CEA, Cyfra 21-1, TPA, squamous cell carcinoma antigen (SCC), stem cell factor (SCF), 

GM-CSF, and VEGF have demonstrated associations with NSCLC, however each of these 

has failed to demonstrated the requisite SN and SP to warrant clinical development as 

diagnostic tools [16–20]. Recently, a number of additional factors present in serum have 

been evaluated for their potential efficacy as lung cancer biomarkers. Such factors include 

E-cadherin, ICAM-1, E-Selectin [21], SAA [22], uPAR [23], HMGB1 [24], and 

angiopoietin-1 [25]. The disappointing performance of individual biomarkers and the 

emergence of additional biomarker candidates have led several investigators to develop 

multianalyte panels in hopes of achieving superior levels of SN and SP. A number of such 

panels comprised of both circulating proteins [26,27] and tumor-associated 

autoantibodies[28,29] have been evaluated in lung cancer with encouraging results. Here we 

report our evaluation of a diverse set of circulating proteins in the sera of patients diagnosed 

with NSCLC and several sets of age-, gender-, and smoking history-matched controls.

2. Materials and methods

2.1. Study population

Our initial training set included 62 patients diagnosed with primary lung cancer (93% 

NSCLC) evaluated at the UPCI Hillman Cancer Center. The enrollment of these patients 

was administered by the University of Pittsburgh lung cancer SPORE. Each of these patients 

was diagnosed with biopsy-proven untreated primary lung cancer and was consented to the 

UPCI Lung Research Registry, a University of Pittsburgh Institutional Review Board (IRB) 

approved clinical research protocol. Clinical specimens were annotated with clinical and 

demographic information including tumor histology, stage, pulmonary functional findings, 

gender, age at diagnosis, and smoking history. All blood samples were obtained prior to 

treatment or surgery. The NSCLC training set was compared to 142 control individuals 

enrolled in the Pittsburgh Lung Screening Study (PLuSS) [9]. Each NSCLC case was 

matched to a PLuSS control on the basis of age, gender, and smoking history and additional 

PLuSS controls within the range of these parameters were randomly selected to improve 

study power. The validation set consisted of 30 randomly and independently selected 

primary lung cancer cases and 30 unmatched PLuSS controls, enrolled in the same manner 

as the training set (Table 1). All blood samples were collected, processed, aliquoted, and 

stored according to a rigorous protocol. A 50 ml non-fasting peripheral blood sample was 

collected from each subject in the absence of anticoagulant using standard phlebotomy 

procedures for the preparation of serum. Serum aliquots were prepared and cryopreserved at 

−80°C and all aliquots used in this study were not thawed prior to the time of testing. All 
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individual biomarker analyses and development of multianalyte panels were restricted to the 

training set while samples designated for the validation set were blinded until study 

completion.

2.2. Biomarker analysis

Sera were evaluated for levels of 81 cancer-related protein biomarkers (Table 2) using 

multiplexed bead-based immunoassays as previously described [30].

The biomarker list was compiled based on a literature review of current proteins of interest 

within all fields related to lung cancer research. Biomarkers were selected from this list on 

the basis of suitable bead-based immunoassay availability. Each sample was tested in 

duplicate in order to assess the intra-assay reproducibility of biomarker measurements. 

Observed differences in the circulating concentrations of each biomarker were evaluated by 

the Mann-Whitney non-parametric U test. The minimum level of significance was p < 0.01 

and the false discovery rate (FDR) was controlled at 5% according to the method of 

Benjamini and Hochberg [31]. To examine the interdependence of observed biomarker 

levels, the results were partitioned according to subject group (PLuSS, NSCLC) and the 

Spearman’s rank correlation coefficient was computed between all pairs of markers [32]. A 

significance threshold of p < 0.00005 was used to identify significant correlations, as this 

threshold yields zero significant correlations when the data are randomly permuted. This 

conservative estimate is intended to reduce the chances of identifying spurious correlations.

2.3. Multivariate bionformatics analysis

We applied four separate classification algorithms, termed Metropolis-Monte Carlo (MMC) 

[30], Naïve Bayes (NB) [33], Artificial Neural Network (ANN) [34], and Additive Logistic 

Regression (ALR) [35] to the development of multianalyte panels capable of discriminating 

NSCLC cases from PLuSS or Benign controls. For the development of panels in the 

Training set, the level of specificity was controlled at 90% to facilitate the identification of 

panels offering the highest levels of SN. Each algorithm minimizes the number of 

biomarkers selected to avoid overfitting bias. Panels consisting of 2–6 biomarkers were 

developed, and the optimal panel for the discrimination of NSCLC from PLuSS controls in 

the training set was subsequently applied to the validation set.

3. Results

Of the 81 serum proteins evaluated in our study, 25 were found to differ significantly 

between the NSCLC and control group (Table 3). The biomarker measurements displayed a 

high level of intra-assay reproducibility with CVs below 10% in each case, with the 

exception of ULBP-1 (Supplementary Table S1). Eight biomarkers were significantly higher 

in the NSCLC group, while 17 were significantly lower. The five most significant 

biomarkers in this analysis (p < 0.0001) included macrophage migration inhibitory factor 

(MIF), transthyretin (TTR), thrombospondin (THSP), soluble vascular cell adhesion 

molecule 1 (sVCAM-1), and tissue plasminogen activator inhibitor 1 (tPAI-1).

The Spearman’s rank correlation coefficient analysis of the biomarker data revealed several 

correlations among the evaluated biomarkers in each subject group (Fig. 1). In the PLuSS 
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group, a network of biomarker interdependence was identified in which multiple factors 

were correlated either directly or indirectly through intermediaries. THSP and RANTES 

were found to be correlated in both the PLuSS and the NSCLC group, however all other 

correlations were group dependent.

When the four classifier algorithms were applied to the training set results, several 

multimarker panels capable of discriminating the NSCLC group from the PLuSS controls 

were selected (Table 4). The MMC algorithm identified a 3-biomarker panel consisting of 

MIF, PRL, and THSP which demonstrated a SN of 74% at 90% SP. The NB and ANN 

algorithms each identified a six-biomarker panel with SN values of 75% and 76%, 

respectively at a SP of 90%. Each of these panels consisted of MIF, PRL, SAA, TTR, and 

RANTES, while the NB and ANN panels also included THSP and Cyfra 21-1, respectively. 

A four biomarker panel consisting of MIF, PRL, THSP, and ErbB2 was identified by the 

ARL algorithm which displayed a SN of 70% at a SP of 90%. Overall accuracy for each of 

the panels in the training set was similar (85–87%). As the MMC, NB, and ANN derived 

panels all performed similarly in the training set, the MMC-derived panel of MIF, PRL, and 

THSP was selected for further analysis on the basis of parsimony.

The MIF, PRL, THSB panel and algorithm was next applied to the validation set. Here, each 

validation serum was assigned a diagnosis based on algorithm parameters and this diagnosis 

was compared to the actual diagnosis after unblinding. Performance in the validation set was 

similar to that observed in the training set yielding SN/SP/ACC values of 70/93/82 (Table 

4). The performance of the selected panel in the training and validation sets was evaluated 

by ROC analysis (Fig. 2). The MIF, PRL, THSB panel provided an AUC = 0.850 (95CI: 

0.823–0.934) in the training set and an AUC = 0.894 (95CI: 0.810–0.979) in the validation 

set. The ROC analysis was used to evaluate SP at the elevated levels of SN required of a 

second-line diagnostic test. At a SN of 90%, 95%, and 98%, the panel provided SPs of 56%, 

40%, and 30%, respectively.

The performance of the MIF, PRL, THSP panel was further evaluated within several subsets 

of our cohort (Table 5). The model was extremely effective in the correct classification of 

control individuals that demonstrated pulmonary nodules of low, moderate, and high 

suspicion, and correctly classified 64–65% of Stage I NSCLC in each set. With the 

exception of the SCC patients, represented by only 7 individuals in the validation set, 

performance within the control and NSCLC subgroups was similar in both the training and 

validation sets.

4. Discussion

The biomarker alterations identified in our analysis include known tumor markers, growth 

and angiogenic factors, several classes of inflammatory mediators, adipokines, apoptosis-

related factors, adhesion molecules, and hormones. The diversity of our findings are 

reflective of the variety of molecular alterations observed in lung cancers including those 

involving components of receptor tyrosine kinase signaling, angiogenesis pathways, 

apoptosis regulation, and cell cycle control. In addition to the identification of factors 

originating from the tumor itself, our approach is also uniquely designed to measure 
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systemic protein alterations derived from the tumor microenvironment and host response. 

Protein alterations originating from these distinct biological compartments do not 

necessarily correlate with each other and are thus more likely to provide complementary 

information resulting in improved diagnostic utility. To the best of our knowledge, 6 of the 

25 biomarker alterations we observed have not been previously reported with regard to 

association with NSCLC. These include alterations in sV-CAM, SDF-1α, TRAIL, PDGF-

BB, HE4, and angiostatin. We identified a number of biomarkers demonstrating significant 

correlations within our subject cohort. These observations were based solely on the 

biomarker measurements performed in this analysis and additional study will be required to 

confirm, validate, and characterize the presence of such correlations. However, the absence 

of significant correlations among the vast majority of biomarkers included within our 

multianalyte panels is suggestive of their complementary performance and combined 

diagnostic utility. It should be noted that the conservative approach taken herein does not 

rule out the existence of additional, less significant biomarker correlations.

The top performing multianalyte panels selected by our bioinformatic algorithms represent 

various combinations of eight protein biomarkers. This list of eight biomarkers recapitulates 

the advantageous nature of combining factors likely to originate from the tumor (PRL, 

ErbB2, Cyfra 21-1), the stromal microenvironment (MIF, THSP), and the host response 

(SAA, TTR, RANTES, PRL). While each of these proteins has been previously evaluated in 

sera of lung cancer patients, the current investigation represents the first reported study of 

THSP, PRL, and RANTES as diagnostic biomarkers. Although PRL is classically viewed as 

a pituitary hormone with functional roles in lactation and reproduction, expanded 

pathological roles are the subject of intense investigation. Such investigations include large 

epidemiological studies which conclusively characterize PRL as a risk factor in breast 

cancer (reviewed in [36]). Experimental evidence also strongly suggests the expression of 

PRL in non-pituitary tissues and normal peripheral blood lymphocytes (reviewed in [37]). 

This expression, likely driven by a distinct extrapituitary gene promoter, has been associated 

with breast, prostate, and gynecological tumor development [38–40]. THSP is an 

endogenous inhibitor of angiogenesis and its production and delivery by platelets represents 

a critical host response mechanism during tumorigenesis [41]. This mechanism is supported 

by the observation that while tissue expression of THSP occurs at low levels in NSCLC 

[42], circulating levels of this protein hold considerable prognostic information [43]. The 

chemokine RANTES (CCL5) has been previously implicated as mediator of tumor cell 

migration and invasion in lung cancer [44,45].

Several of the biomarkers included in our multimarker panels have been characterized 

previously for diagnostic potential. Overexpression of the multifunctional cytokine MIF has 

been associated with an increased risk of recurrence and decreased overall survival in lung 

cancer [46,47]. MIF has also been shown to stimulate angiogenic and pro-inflammatory 

effects in an autocrine manner in NSCLC [48,49], and is currently the focus of targeted 

therapeutic development [50]. The combined use of serum levels of MIF and SAA was 

recently utilized in the classification of NSCLC from controls with limited efficacy [51]. 

SAA was also identified using SELDI-TOF MS as part of a 17-protein signature capable of 

discriminating lung cancer cases from controls with a high level of SN and SP [52]. 
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Elsewhere, serum levels of SAA were associated with advanced disease and poor prognosis 

[53,54]. In several other recent studies, serum levels of TTR could discriminate lung cancer 

from controls with a SN/SP of 78.5/77.5 [55], while Cyfra 21-1 along with 5 other serum 

biomarkers accurately classified 85% of NSCLC patients and high-risk individuals [56]. 

Cyfra 21-1 has been previously characterized as a marker of squamous cell carcinoma of the 

lung with potential utility in predicting treatment response [57]. Although a number of 

studies have concluded that erbB2 provides only limited diagnostic information for lung 

cancer when used alone, its use as a negative prognostic indicator has been well documented 

[58–60].

In the current study, the combined evaluation of a broad array of cancer-associated serum 

proteins along with several distinct bioinformatic approaches has led to the identification of 

a multimarker panel which demonstrates proof-of-principle for the development of 

biomarker based diagnostic tools for NSCLC. The diagnostic capability of the approach 

described herein meets or exceeds several recent reports regarding the use of biomarker 

panels in lung cancer diagnosis in terms of SN, SP, and accuracy, and the relatively small 

size of the optimal panel of MIF, PRL and THSP coupled with the overall flexibility of our 

classification algorithm make the current strategy an attractive alternative for clinical 

development [27,61,62]. The MMC algorithm has also been successfully applied in two 

recent studies regarding the diagnosis of ovarian cancer [30,63]. The performance 

demonstrated by our selected panel in the current study does not reach the level 

recommended by the FDA for a successful diagnostic test for lung cancer. Thus, this panel 

would not serve as an effective standalone test. However, a second-line test utilizing these 

biomarkers, utilized as an adjunct to CT-scanning, may prove effective. In this setting, a 

diagnostic biomarker panel must perform at a maximal level of SN to ensure that all cases 

are promptly referred for pathologic examination while maintaining a suitable level of SP in 

order to reduce the number of false positive test results generated by CT. The MIF, PRL, 

THSP panel indentified here provided levels of SP ranging from 30–56% at SNs greater 

than 90%, illustrating its potential. Further evaluation of this panel should be designed to 

examine its ability to classify highly suspicious CT-identified nodules as cancer or benign. 

Although the consistent selection of PRL and THSP by each of our evaluated algorithms 

represents a significant step forward in the development of diagnostic protein signatures, the 

identification of additional useful biomarkers will be required to achieve a performance 

worthy of clinical development. Upon further validation and optimization, serum biomarker 

panels could provide an effective means of further assessing the malignant potential of 

patients designated as having a high risk for lung cancer on the basis of CT findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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List of Abbreviations

ACC accuracy

ALR additive logistic regression

ANN artificial neural network

AUC area under receiver operator characteristic curve

CEA carcinoembryonic antigen

CT computed tomography

CV coefficient of variation

FDR false discovery rate

GM-CSF granulocyte macrophage colony stimulating factor

HE4 human epididymus protein 4HMGB-1 – high mobility group protein B1

ICAM-1 inter-cellular adhesion molecule 1

MIF macrophage migration inhibitory factor

MMC Metropolis-Monte Carlo algorithm

NB naïve Bayes algorithm

NSCLC non-small cell lung cancer

PDGF-BB platelet derived growth factor – BB

PLuSS Pittsburgh lung screening study

PRL prolactin

ROC receiver operator characteristic curve

SAA serum amyloid A

SCC squamous cell carcinoma antigen

SCF stem cell factor

SDF-1a stromal cell derived factor 1 alpha

SN sensitivity

SP specificity

sVCAM-1 soluble vascular cell adhesion molecule 1

THSP thrombospondin

TPA tissue polypeptide antigen

tPAI-1 tissue plasminogen activator inhibitor 1

TTR transthyretin

ULBP-1 UL16 binding protein-1
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uPAR urokinase plasminogen activator receptor

VEGF vascular endothelial growth factor
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Fig. 1. 
Biomarker correlations. Individual biomarker levels were partitioned according to subject 

group (PLuSS, benign, NSCLC) and Spearman’s rank correlation coefficient was computed 

between to identify networks of markers within each group. The topology of each network is 

presented wherein correlated biomarkers are connected by a solid line. Biomarkers 

connected by multiple lines share a dependence on a third analyte. A significance threshold 

of p < 0.00005 was used to identify significant correlations. Levels of all tested biomarkers 

were included in this analysis and the absence of any particular biomarker implies a lack of 

significant correlation with any other biomarker.
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Fig. 2. 
ROC analysis of selected multimarker panel. A multimarker panel consisting of MIF, PRL, 

and THSP was identified by MMC analysis of data collected for 81 circulating proteins in 

62 NSCLC patients and 142 matched, CT-screened controls. A distinct set of 20 additional 

NSCLC patients and 30 matched, CT-screened controls was utilized for validation of the 

selected panel. ROC analysis was performed using GraphPad PRISM (La Jolla, CA), area 

under the curve (AUC) values with 95% confidence intervals are provided for each set. 

Performance in the training set is represented by the solid line, while performance in the 

training set is represented by the dashed line.
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Table 2

Complete list of evaluated biomarkers

Biomarker class Biomarkers

Tumor markers AFP, CA 15-3, CA 19-9, CA 72-4, CEA, HE4, Mesothelin, SCC

Inflammatory mediators Adiponectin, CD40L (TRAP), Eotaxin-1, GROα, IL-1Rα, IL-2R, IL-6, IL-6R, IL-8, IP-10, Leptin, 
LIF, MCP-1, MCP-3, MIF, MPO, RANTES, SAA, sE-Selectin, TNF-α, TNF-RI, TNF-RII

Growth/Angiogenenesis factors and 
receptors

Angiostatin, bFGF, EGF, EGFR, ErbB2, G-CSF, HGF, IGFBP-1, M-CSF, NGF, PDGF-BB, SCF, 
SCGF-B, SDF-1a, Thrombospondin, VEGF

Adhesion molecules and proteases Kallikrein 10, MMP-1, MMP-7, MMP-8, MMP-9, MMP-12, sI-CAM, sV-CAM, tPAI, TIMP-1, 
TIMP-2, TIMP-3, TIMP-4

Apoptosis mediators Cyfra 21-1, DR5, sFas, sFasL, TRAIL

Hormones ACTH, FSH, GH, Insulin, LH, Prolactin, PTH, TSH

Bone Factors Osteocalcin (OC), Osteopontin (OPN), Osteoprotegerin (OPG)

Other proteins HSP 70, MICA, Resistin, TTR, ULBP-1, ULBP-2
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Table 5

Performance of MIF, PRL, THSP panel in selected patient/control groups

Training set Validation set

Lung Cancer Patients

NSCLC, Adeno 25/33 (75.8%) 7/10 (70%)

NSCLC, SCC 21/29 (72.4%) 4/7 (57.1%)

NSCLC, NOS NA 6/8 (75%)

Small cell/pleomorphic NA 4/5 (80%)

Stage I 18/28 (64.3%) 11/17 (64.7%)

Controls

No nodule/benign nodule (1–3 mm) 74/85 (87%) NA

Low suspicion nodule (4–7 mm) 43/45 (95.6%) 15/15 (100%)

Moderate/high suspicion nodule (8–20 mm) 11/11 (100%) 13/15 (86.7%)

Values represent the proportions of each subset that were correctly classified as lung cancer patients or controls (% correct in parentheses); Test 
specificity was 90% in the training set and 93% in the validation set.

Adeno: adenocarcinoma; SCC: squamous cell carcinoma; NOS: not otherwise specified (undifferentiated).
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