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Abstract

High gamma power has become the principal means of assessing auditory cortical activation in 

human intracranial studies, albeit at the expense of low frequency local field potentials (LFPs). It 

is unclear whether limiting analyses to high gamma impedes ability of clarifying auditory cortical 

organization. We compared the two measures obtained from posterolateral superior temporal 

gyrus (PLST) and evaluated their relative utility in sound categorization. Subjects were 

neurosurgical patients undergoing invasive monitoring for medically refractory epilepsy. Stimuli 

(consonant-vowel syllables varying in voicing and place of articulation and control tones) elicited 

robust evoked potentials and high gamma activity on PLST. LFPs had greater across-subject 

variability, yet yielded higher classification accuracy, relative to high gamma power. 

Classification was enhanced by including temporal detail of LFPs and combining LFP and high 

gamma. We conclude that future studies should consider utilizing both LFP and high gamma when 

investigating the functional organization of human auditory cortex.
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Introduction

Intracranial recordings (electrocorticography or ECoG) have become crucial for identifying 

the functional organization of human auditory cortex due to their high spatial and temporal 

resolution (e.g. Mukamel and Fried, 2012; Nourski and Howard, 2015). ECoG is a rich time-

varying measure that simultaneously reflects synaptic activity and action potentials from 

populations of neurons. Consequently, there is considerable interest in exactly which aspects 

of the ECoG signal recorded from the auditory cortex carry information relevant to sound 

processing. Addressing this is not only important methodologically but may also hint at 

fundamental ways in which populations of neurons code information.

Earlier studies using the intracranial methodology relied on analysis of time domain-

averaged local field potential (LFP) signals to examine response properties of auditory 

cortex (e.g. Celesia and Puletti, 1969; Lee et al., 1984; Liégeois-Chauvel et al., 1991, 1994; 

Halgren et al., 1995; Steinschneider et al., 1999; Howard et al., 2000). The averaged LFP 

(i.e., averaged evoked potential, AEP) emphasizes relatively low-frequency components of 

the ECoG signal that are both time- and phase-locked to the stimulus. This approach was in 

part aimed at identifying cortical generators of specific components of AEPs recorded using 

electroencephalographic methods and neuromagnetic fields recorded using 

magnetoencephalography in response to sound stimuli (e.g. Liégeois-Chauvel et al., 1994; 

Halgren et al., 1995; Howard et al., 2000).

With few exceptions (e.g., Sahin et al., 2009; Sinai et al., 2009; Chang et al., 2010; 

Steinschneider et al., 2011), more recent studies using intracranial methodology have 

focused on event-related band power (ERBP) of the high gamma frequency component (70–

150 Hz) of the ECoG (e.g. Crone et al., 2001). This approach often occurred at the expense 

of analysis of the time- and phase-locked activity as captured by the LFP. This paradigm 

shift has been driven by the findings that enhanced high gamma activity in the ECoG is 

closely related to increases in the blood oxygenation level-dependent signal as measured by 

functional magnetic resonance imaging methodology and to spiking activity in cortical 

neurons (Mukamel et al., 2005; Nir et al., 2007; Steinschneider et al., 2008). The focus on 

high gamma activity has yielded new understandings of the functional organization of 

human auditory and auditory-related cortex over the last decade. For instance, this analysis 

has helped characterize the functional representation of phonetic categories used in speech 

(Pasley et al., 2011; Mesgarani et al, 2014) and the powerful effects of selective attention in 

modulating auditory cortical activity when listening to competing speech streams (e.g., 

Mesgarani and Chang, 2012). Analysis of high gamma activity has also demonstrated tiered 

effects of attention across auditory and auditory-related cortical areas (Nourski et al., 2014b; 

Steinschneider et al., 2014). All these findings parallel those obtained from patterns of 

spiking activity in experimental animals (e.g., Fritz et al., 2003; Mesgarani et al., 2008; 

Tsunada et al., 2011; Steinschneider et al., 2013). However, at the same time, the 

aforementioned advances have not compared the utility of LFPs and high gamma activity in 

understanding auditory processing.

This focus may be limiting because intracranially recorded LFPs have also helped 

characterize underlying features of functional organization of auditory and auditory-related 
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cortex (e.g. Brugge et al., 2008; Chang et al., 2010). Furthermore, those studies that 

examined both high gamma and LFP revealed differences in the ways the two metrics are 

related to stimulus acoustics and perception (e.g., Nourski et al., 2009; Nourski and Brugge, 

2011). These studies raise the possibility that both the LFP and high gamma ERBP in the 

ECoG reflect relevant (and non-redundant) information about sounds. If this is the case, it 

raises key questions about what information may be carried by the LFP that is not seen in 

the high gamma activity. What is needed is a direct comparison of the two measures of 

cortical activity to determine their relative contributions for carrying meaningful information 

about complex auditory stimuli as a whole.

In this study, we objectively examined this issue by using a classification approach. Subjects 

passively listened to consonant-vowel (CV) syllables and pure tone stimuli. The contribution 

of different measures of cortical activity for carrying information about these stimuli was 

assessed by training a classifier (support vector machine, SVM) to identify properties of the 

stimulus [voicing, place of articulation (POA), and tone frequency] on the basis of various 

permutations of the LFP and high gamma ERBP signal.

Under typical preparations, the LFP is usually a linear scaled voltage signal. It can be both 

positive and negative. In contrast, high gamma activity is usually a rectified power signal 

that is logarithmically scaled and baseline-normalized. Classification analysis can abstract 

across the differences between LFP and high gamma signal representation, as its dependent 

variable is classification accuracy (in percent correct) rather than a difference in the signal 

per se. Moreover, a non-parametric approach like an SVM may be better equipped for 

factoring out these differences than parametric approaches. It is important to note that the 

LFP signal is not orthogonal or independent of the high gamma signal, as they both are 

derived from the same underlying ECoG waveform. Our goal was not to try to parse out the 

unique information contained in each signal, but rather to use these coarse measures to ask if 

there is anything that cognitive neuroscience may be missing by relying on one over the 

other. To achieve this goal, we focused on typical preparations of these signals, 

characterizing the LFP as voltage time series, and high gamma activity as rectified, log-

transformed and baseline-normalized ERBP.

Contrary to expectations, we found that classification accuracy based on LFPs was superior 

to that provided by high gamma activity. Best accuracy was often obtained when both 

measures were included in the analysis. Methodologically, this suggests that future studies 

should utilize neural activity captured both by the LFP and high frequency ERBP when 

investigating the functional organization of human auditory and auditory-related cortex; 

more broadly, it raises the possibility that by studying only local high gamma power we may 

be missing relevant aspects of sound encoding within the auditory cortex.

Methods

Subjects

Subjects consisted of 21 neurosurgical patient volunteers (16 male, 5 female, age 20–56 

years old, median age 33 years old). The subjects had medically refractory epilepsy and 

were undergoing chronic invasive ECoG monitoring to identify potentially resectable 
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seizure foci. Research protocols were approved by the University of Iowa Institutional 

Review Board and by the National Institutes of Health. Written informed consent was 

obtained from each subject. Participation in the research protocol did not interfere with 

acquisition of clinically required data. Subjects could rescind consent at any time without 

interrupting their clinical evaluation.

The patients were typically weaned from their antiepileptic medications during the 

monitoring period at the discretion of their treating neurologist. Experimental sessions were 

suspended for at least three hours if a seizure occurred, and the patient had to be alert and 

willing to participate for the research activities to resume.

In all participants, ECoG recordings were made from only a single hemisphere. All subjects 

but two had left-hemisphere language dominance, as determined by intracarotid amytal 

(Wada) test results; subject R149 had bilateral language dominance, and R139 had right 

language dominance. In ten subjects, the electrodes were implanted on the left side, while in 

eleven others recordings were from the right hemisphere (the side of implantation is 

indicated by the prefix of the subject code: L for left, R for right). The hemisphere of 

recording was language-dominant in twelve subjects (all subjects with left hemisphere 

implanted, R139, and R149) and non-dominant in nine other subjects (R127, R129, R136, 

R142, R175, R180, R186, R210 and R212). All subjects were native English speakers. 

Intracranial recordings revealed that the auditory cortical areas on the superior temporal 

gyrus were not epileptic foci in any of the subjects.

Subjects underwent audiometric and neuropsychological evaluation before the study, and 

none were found to have hearing or cognitive deficits that could impact the findings 

presented in this study. Sixteen out of twenty-one subjects had pure-tone thresholds within 

25 dB HL between 250 and 4 kHz. Subjects R127, L130 and R212 had a mild (30–35 dB 

HL) notch at 4 kHz, subject L258 had bilateral mild (25–30 dB HL) low frequency hearing 

loss at 125–250 Hz, and subject L145 had bilateral moderate (50–60 dB HL) high frequency 

hearing loss at 4–8 kHz. Word recognition scores, as evaluated by spondees presented via 

monitored live voice, were 100%, 98% and >91% in 13, 4, and 2 subjects, respectively. 

Speech reception thresholds were better than 20 dB in all tested subjects, including those 

with tone audiometry thresholds outside the 25 dB HL criterion. Importantly, frication and 

formant transition information relevant for consonant identification in the experimental 

stimuli (see below) was at or below 3 kHz, thus mitigating the detrimental effects on speech 

perception in subjects with hearing loss at 4 kHz and above.

Stimuli

Experimental stimuli were synthesized stop consonant-vowel (CV) syllables, used 

previously in Steinschneider et al. (1999, 2005, 2011), and pure tones. The speech syllables /

ba/, /da/, /ga/, /pa/, /ta/ and /ka/were constructed on the cascade branch of a KLSYN88a 

speech synthesizer (Klatt and Klatt, 1990). They contained 4 formants (F1 through F4), and 

were 175 ms in duration.

Synthesis was based on the voiced (/ba/, /da/, /ga/) tokens. For these, fundamental frequency 

began at 120 Hz and fell linearly to 80 Hz. All syllables had the same F1, which had an 
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onset frequency of 200 Hz and rose over a 30 ms transition to a 700 Hz steady state. F2 

started at 800 Hz for /b/, and 1600 Hz for /d/ and /g/; it reached its steady state of 1200 Hz 

after a 40 ms transition. F3 started at 2000 Hz for /b/, 3000 Hz for /d/ or 2000 Hz for /g/ and 

reached a steady state of 2500 Hz after a 40 ms transition. F4 did not contain a transition and 

was flat at 3600 Hz. Thus, /ga/ had the same F2 as /da/ and the same F3 as /ba/. A 5 ms 

period of frication exciting F2–F4 preceded the onset of voicing. Amplitude of frication was 

increased by 18 dB at the start of F2 for /ba/ and /ga/, and F3 for /da/. The result of this 

synthesis was that /ba/ and /da/ had diffuse onset spectra maximal at low or high 

frequencies, respectively, whereas /ga/ had a compact onset spectrum maximal at 

intermediate values, consistent with Stevens & Blumstein (1978). The voiceless syllables (/

pa/, /ta/, and /ka/) were identical to their voiced counterparts (/ba/, /da/, and /ga/) except for 

an increase in the voice onset time (VOT) from 5 to 40 ms. This was done by eliminating the 

amplitude of voicing for the 35 msec after the frication and replacing this with aspiration. In 

10 subjects out of 21, a control set of pure tone stimuli was also used. The tones had 

frequencies matching the 18-dB boosted formants of the CV syllables (800, 1600 and 3000 

Hz) and were 175 ms in duration.

Stimuli were delivered to both ears via insert earphones (ER4B, Etymotic Research, Elk 

Grove Village, IL) that were integrated into custom-fit earmolds. Stimuli were presented at a 

comfortable level (mean = 65 dB SPL, SD = 5.7 dB SPL). Inter-stimulus interval was 

chosen randomly within a Gaussian distribution (mean interval 2 s; SD = 10 ms) to reduce 

heterodyning in the recordings secondary to power line noise. Stimulus delivery and data 

acquisition were controlled by a TDT RP2.1 and RX5 or RZ2 real-time processor (Tucker-

Davis Technologies, Alachua, FL).

Design and Procedure

Experiments were carried out in a dedicated electrically-shielded suite in The University of 

Iowa General Clinical Research Center. The room was quiet, with lights dimmed. Subjects 

were awake and reclining in a hospital bed or an armchair. Stimuli were randomized and 

presented in a passive listening paradigm, without any task direction. There were 50 

repetitions of each stimulus.

Recording

Recordings were made from perisylvian cortex including the superior temporal gyrus (STG) 

(Howard et al., 2000, Nourski and Howard, 2015) using high density subdural grid 

electrodes (AdTech, Racine, WI). In all subjects but one (R149), the recording arrays 

consisted of 96 platinum-iridium disc electrodes (2.3 mm exposed diameter, 5 mm center-to-

center spacing) arranged in an 8×12 grid and embedded in a silicon membrane. In subject 

R149, an 8×8 grid (64 recording electrodes) was used. A subgaleal contact was used as a 

reference. Recording electrodes remained in place for approximately 2 weeks under the 

direction of the patients’ neurologists. Anatomical locations of recording sites were 

determined using structural magnetic resonance imaging, high-resolution computed 

tomography, and intraoperative photography. Data from recording sites overlying 

posterolateral superior temporal gyrus (PLST) were included in the analysis.
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Data processing

Recorded ECoG data were filtered (1.6–1000 Hz bandpass, 12 dB/octave rolloff), amplified 

(20×), and digitized at a sampling rate of 2034.5 Hz. Data analysis was performed using 

custom software written in MATLAB Version 7.14.0 (MathWorks, Natick, MA, USA). Pre-

processing of ECoG data included downsampling to 1 kHz for computational efficiency, 

followed by removal of power line noise by an adaptive notch filtering procedure (Nourski 

et al., 2013). Evoked cortical activity was visualized as AEPs, calculated by across-trial 

averaging of ECoG waveforms. Analysis of ERBP focused on the high gamma ECoG 

frequency band. High gamma ERBP was calculated for each recording site. Single-trial 

ECoG waveforms were bandpass filtered between 70 and 150 Hz (300th order finite impulse 

response filter), followed by Hilbert envelope extraction. The resultant high gamma power 

envelope waveforms were log-transformed, normalized to power in a prestimulus reference 

window (250-50 ms prior to stimulus onset), and averaged across trials for visualization. 

Peak-to-peak AEP amplitudes and peak high gamma ERBP were measured for each 

recording site overlying PLST within a time window of 0–200 ms after stimulus onset. 

Comparisons of AEP and high gamma response magnitudes between left and right 

hemisphere recording sites were made by averaging across sites and using independent-

samples t-tests.

Classification analysis

Classification analysis examined the relative amount of information contained in distributed 

patterns of activity across STG using either the local field potential (LFP) waveform or high 

gamma ERBP captured from individual trials. To accomplish this, a combination of LFP 

and/or high gamma ERBP at each STG site at each trial was used as a set of features to train 

a SVM classifier. These signals were extracted from 50 ms-wide time windows centered 

every 25 ms from 200 ms before stimulus onset to 1200 ms after stimulus onset. SVMs were 

trained to predict from the pattern of activity distributed across recording sites one of three 

properties of the stimulus: 1) the voicing of the speech sound (discriminating /b, d, g/ 

from /p, t, k/); 2) POA of that speech sound (a three-way contrast between /b/, /d/ and /g/); 

or 3) the frequency of a pure tone (800, 1600 or 3000 Hz). For the POA task, the analysis 

was also replicated with the three voiceless syllables /p, t, k/ and with all six syllables (i.e., a 

three-way contrast between /b, p/, /d, t/ and /g, k/), and highly similar results were obtained.

SVMs were trained separately for each subject for each task (voicing, POA, tone frequency) 

with a 15-fold procedure. Training data was carved into 15 approximately equal samples, 

each containing approximately the same number of trials from each of the stimuli to be 

discriminated. The SVM was then trained to identify boundaries on the basis of 14/15ths of 

the data and tested on the remaining 15th. Analysis then cycled through each 15th of the 

data until testing data was complete for the entire stimulus set. This was then repeated 10 

times (to account for variations in the random partitioning of the set) to obtain a final mean 

accuracy of a given classification task.

For the voicing classification there were 150 voiced sounds (/b, d, g/) and 150 voiceless 

sounds (/p, t, k/); when submitted to the 15-fold classification scheme this led to 280 training 

tokens and 20 testing tokens (per fold). For the place of articulation classification, there 
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were 50 tokens of /b/, 50 of /d/ and 50 of /g/; this led to 140 tokens used for training and 10 

for test (on each fold). Tone classification had the same data structure as POA.

SVMs were implemented in SVMlib (Chang & Lin, 2011). SVMs used the radial basis 

function as a kernel. Potential features (independent variables) for the SVMs included the 

LFP and high gamma ERBP (distributed across recording sites), averaged within 50 ms time 

windows. To account for information present in the temporal dynamics of each signal within 

that time window, the linear slope of the LFP or high gamma over time as well as their 

quadratic effects were estimated for use as potential features. This led to a 4×4 design 

matrix, wherein each measure (LFP or ERBP) could be (1) not present, (2) estimated as a 

mean; (3) mean +slope or (4) mean +slope + quadratic, thus yielding a total of 15 input 

combinations for each classification task (if neither measure was present, no analysis was 

possible).

SVMs have two free parameters, the penalty or cost of incorrect categorization, C, and the 

width of the kernel, Γ. For each subject, for each classification task (place, voicing, tone 

frequency), and for each particular combination of LFP and high gamma ERBP, the optimal 

values for C and Γ were estimated once using brute force search using all combinations of 8 

possible Cs (25 to 219) and 7 possible Γs (2−5 to 2−17), logarithmically spaced using the data 

from a 50 ms window centered at 100 ms after stimulus onset. Consequently, the analyses 

for the high gamma used Cs and Γs that were optimal for high gamma; analyses for LFPs 

used independently estimated Cs and Γs that were optimal for the LFP (and so forth for each 

of the 15 combinations). We were concerned that with so many classification jobs for 

different values of C/Γ, this could inflate the accuracy scores, since randomness across the 

K-folds would naturally lead to variation from run to run. To guard against this, after the 

optimal C and Γ were estimated, all classification jobs were redone with new 

randomizations of the data. From this final set of classifications, accuracy from the SVM 

was computed as the proportion of correctly identified tokens. These were analyzed using 

ordinary ANOVA and scaled with the empirical logit function (so that they distribute more 

linearly). Prior to conducting the ANOVAs, the data were checked for sphericity with 

Mauchly’s test of sphericity. When violations were found, degrees of freedom were adjusted 

with the Greenhouse-Geisser adjustment. These are indicated as FGG.

Results

Spatiotemporal properties of AEP and high gamma activity

CV syllables elicited robust evoked potentials and high gamma activity on PLST in both 

dominant and non-dominant hemispheres (Figs. 2, 3). Responses recorded from individual 

cortical sites appeared to be more distinct when comparing voiced and voiceless syllables 

(e.g. /ba, pa/) relative to the POA contrast (e.g. /ba, da/) (see Figs. 2B, 3B). For most of the 

subjects (of which the two shown here are representative) and for many recording sites, we 

found that both the initial positive and later negative peaks of the AEP were shifted to longer 

latencies in response to /pa/ relative to /ba/ and /da/. These differences likely reflect the 5 ms 

VOT for /ba/ and /da/, compared to the 40 ms VOT for /pa/. Differences across POA were 

much more subtle, likely reflecting the highly overlapping formants and formant transitions 

in these synthetic syllables (see Fig. 1).

Nourski et al. Page 7

Brain Lang. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Both positive and negative voltage deflections in the AEP and high gamma power were 

mainly confined to PLST. This can be seen in Figures 2c and 3c, which depict the evolution 

of both the AEP and high gamma ERBP over time from 50 ms to 250 ms in 50 ms steps. 

Clear differences between responses to voiced and voiceless stimuli can be observed as early 

as 100–150 ms in the neural patterns across PLST for these two representative subjects. For 

instance, in subject L178 the development of the initial negative wave of the AEP over 

PLST was present in the 100–150 ms interval for /ba/, but not for /pa/ (Fig. 2C). Similarly, 

the magnitude of the high gamma response in the same interval was greater for the voiced 

consonant relative to the voiceless (Fig. 2D). No obvious differences were observed to 

distinguish POA, as discussed above.

Variability of AEP and high gamma ERBP

There was considerable intra- and inter-subject variability in the timing of responses that 

was primarily observed in the AEP. This variability is exemplified by Figure 3, which 

illustrates response waveforms obtained from the non-dominant (right) hemisphere in 

subject R180. Intra-subject variability of the AEP is evident by the different morphology of 

waveforms recorded from sites X and Y. Inter-subject variability can be observed in the 

timing of the positive and negative peaks in the AEP, which was earlier than that seen in the 

dominant (left) hemisphere of subject L178 (cf. Fig. 2B). In contrast, the timing of high 

gamma activity was comparable between subjects, and the principal intra-subject variability 

was based on responses to the speech sounds differing in their voicing.

Differences in response morphology of the AEP observed between the two exemplary 

subjects were representative of the variability seen across all subjects (Fig. 4). While AEPs 

at individual sites may display the characteristic morphology as described by Howard et al. 

(2000) using brief click-train stimuli, this morphology was not always preserved when the 

responses were averaged across the portion of the STG covered by the recording grid. In 

contrast, high gamma ERBP averaged across STG sites in each subject, while varying 

somewhat in latency, had a much more consistent time course across subjects (Fig. 4, right 

column).

The inter-subject variability of AEPs and high gamma responses was further examined by 

computing the grand average waveforms for all left (367 sites in 10 subjects) and right (356 

sites in 11 subjects) hemisphere recording locations on the STG. Results are shown in Figure 

5, with averaged left and right hemisphere responses plotted in teal and purple, respectively. 

For the AEP, and despite the pronounced inter-subject variability (see Fig. 4A), grand 

average waveforms featured the characteristic Pα-Nα-Pβ-Nβ morphology as described 

previously (Howard et al., 2000) (see Fig. 5A, upper panel). Peaks Pα, Nα and Pβ of these 

grand average AEP waveforms had latencies of 56, 127 and 216 ms for the left hemisphere 

sites and 59, 127 and 217 ms for the right hemisphere sites. These values are later than the 

mean peak latencies previously reported for AEPs evoked by 100 Hz click trains (Howard et 

al., 2000; 45, 90 and 162 ms, respectively). The peaks of grand average high gamma 

responses overlapped the peak and falling phase of the Nα AEP component, consistent with 

previous studies (Crone et al. 2001, Steinschneider et al., 2011). Variability across subjects 

and recording sites, depicted as 95% confidence intervals, followed a similar time course for 
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the AEP and high gamma ERBP and paralleled the magnitude of the responses themselves, 

peaking shortly after 100 ms.

Hemispheric differences were also observed, and were characterized by larger grand average 

AEP peak-to-peak amplitude (t(19)=2.19, p = 0.041) and peak high gamma ERBP [t(19) = 

2.73; p = 0.013)] over the right hemisphere as compared to the left hemisphere sites (Fig. 

5B). These differences were observed despite no obvious systematic bias in electrode 

coverage between the hemispheres.

Classification analysis

Time course of classification performance—Initial classification analysis was 

intended to determine the optimal post-stimulus time window for each LFP and high gamma 

ERBP feature in each classification task. The goal at this point was simply to determine a 

single time window at which to conduct more detailed analyses of the different possible 

feature-sets. For this analysis, the slope and quadratic effect of LFP and high gamma were 

ignored, and SVM classifiers were trained with mean LFP , mean high gamma ERBP 

, or both of them. The data were extracted from sliding 50 ms windows (25 ms overlap) 

centered from −0.2 to +1.2 s after stimulus onset.

Results of this analysis are shown in Figure 6A for voicing, POA and tone classification. 

Voicing classification accuracy was excellent, peaking at 84.56%, and was superior to tone 

(60.10%) and POA (44.63%) classification. While this may be attributed to the fact that the 

latter two had a lower chance level (~33%) than the voicing classification (50%), converting 

accuracy to odds ratios indicates that voicing was still substantially better than POA, though 

similar to tones (Voicing: 1.69, Tone: 1.80, POA: 1.29). The lower classification accuracy 

for POA likely reflects the overlapping formant structures of these synthetic syllables, 

leading to speech sounds that are less distinct from one another than a set of syllables that 

vary in their voicing. In all three cases, LFP and LFP+high gamma classifiers outperformed 

high gamma alone. Finally, for all three types of classifier inputs and for all three 

classification tasks, performance was maximal or near-maximal at around 100 ms (see Fig. 

6A). Thus, for ease of exposition, the following analyses focused on the 75–125 ms time 

interval. Despite the differences across features and classification goals, all of the 

classification tasks were significantly above chance at this 100 ms window (Table 1).

LFP vs. high gamma—The next analysis examined classifier performance at 75–125 ms 

after stimulus onset. Three feature sets were compared: mean LFP in that window, mean 

high gamma ERBP in that window, and the combination of the two. Results are shown in 

Figure 6B for voicing, POA and tone classification tasks. Each of the three classification 

jobs was analyzed with a separate one-way ANOVA comparing empirical logit-transformed 

accuracy as a function of measure type, and with planned comparisons comparing mean LFP 

to mean high gamma ERBP and their combination to mean LFP alone. For voicing, there 

was a significant effect of measure [FGG(1.1,22.3) = 18.48, p < 0.0001]. Follow-up 

comparisons revealed better performance for LFP than high gamma ERBP [F(1,20) = 12.1, 

p = 0.002] and no additional benefit for adding high gamma to LFP [F(1,20) = 2.2, p = 

0.152]. For POA, there was an overall significant effect [FGG(1.5,29.0) = 6.13, p = 0.005]. 
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Follow-up contrasts showed greater accuracy for LFP than high gamma ERBP [F(1,20) 

=7.14, p= 0.015], and no advantage of adding both measures over LFP alone (F(1,20)=1.35, 

p=0.25). Finally, for the tone contrast, there was an overall significant effect of measure 

[FGG(1.1,10.0) = 6.09, p = 0.01]. This time, however, the benefit for LFP over high gamma 

was only marginally significant [F(1,9) = 4.42, p= 0.065], but the addition of high gamma 

power to LFP was not significant [F(1,9) = 2.12, p = 0.18]. Thus, when only the mean LFP 

or high gamma ERBP was considered, the mean LFP was significantly (for voicing and 

POA) or marginally (for tone) superior to high gamma ERBP alone. There was no statistical 

support for added benefit of combining the two measures.

It is possible that the enhanced classification accuracy achieved by LFP was in part due to 

the use of both positive and negative voltage of the LFP signal, whereas high gamma 

activity was calculated using a rectified signal (power). The latter was a necessary 

processing step due to the fact that induced high gamma activity is time-locked, but not 

phase-locked. To address this possible confound, we also examined classification accuracy 

based on full-wave rectified LFP signals. Classification accuracy for the voicing task was 

the highest when the LFP was not rectified. A similar result was obtained for POA 

classification. For both tasks, high gamma power by itself yielded the poorest performance, 

though the rectified LFP yielded only slightly better classification accuracy (data not 

shown).

Another potential confound is the use of the LFP that was not low-pass filtered, and thus 

would include high gamma activity. This additional activity, coupled to the lower-frequency 

components that dominate the LFP, might have enhanced classification accuracy for the 

LFP, as it contained both high and low frequency components. Therefore, we performed a 

control analysis using LFPs that had been lowpass-filtered at 70 Hz (i.e., the lower boundary 

of the high gamma frequency band). For both voicing and POA, lowpass-filtered LFPs 

showed accuracy profiles that were almost identical to the unfiltered LFPs, and were 

markedly higher than those derived from high gamma power alone (data not shown).

Contribution of fine-grained temporal dynamics—While the foregoing analysis 

favored LFP over high gamma as a neural information carrier about speech sounds and 

tones, it is possible that a more precise characterization of how a given measure changes 

within a given time window might provide more information about the stimulus. To 

examine this, the slope and the quadratic effect of time (on the LFP or high gamma ERBP) 

were analyzed in addition to the means of those measures. This analysis addressed two 

issues: (1) whether these more fine-grained measures of LFP showed any improvement over 

the mean LFP alone, and whether adding the mean high gamma to these LFP measures 

would improve classification performance; and (2) whether these more fine-grained 

measures of high gamma ERBP provided better classification accuracy, and whether adding 

mean LFP offered any additional improvement.

Contribution of fine-grained temporal dynamics of the LFP—Classification 

accuracy on each of the three tasks is depicted in Figure 7A as a function of increasing 

temporal detail of the LFP measure (i.e., adding slope and quadratic effect within 50 ms 

windows), and of adding mean high gamma ERBP. There was a substantially greater benefit 
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for adding the slope or quadratic to the mean LFP. However, there was little additional 

benefit from adding mean high gamma ERBP. This was confirmed in a series of 3 (LFP 

measure: mean/slope/quadratic) × 2 (mean high gamma: yes/no) ANOVAs for each of the 

three classification tasks.

The first ANOVA examined voicing classification (see Fig. 7A, left panel). There was a 

significant effect of LFP measure [F(2,40) = 34.38, p < 0.001]. Follow-up tests suggested 

that this was due to the fact that adding slope to the mean LFP resulted in a significant 

increase in accuracy [F(1,20) =76.55, p < 0.001], although adding the quadratic resulted in 

no additional benefit (F < 1). There was no main effect of adding mean high gamma ERBP 

(F < 1) and no interaction [F(2,40) =1.62, p = 0.21]. Thus, while a more detailed 

characterization of the LFP signal within 50 ms windows (slope) could improve 

classification performance, adding mean high gamma ERBP did not provide further 

improvement.

Analysis of classifier performance on POA revealed a similar pattern of effects to voicing. 

There was a significant effect of LFP measure [FGG(2.0,39.0) = 24.75, p < 0.001] (see Fig. 

7A, middle panel). As before, planned comparisons suggested that adding the slope of LFP 

to the mean improved performance [F(1,20) = 20.15, p < 0.001], and that adding the 

quadratic led to further improvements in classification accuracy over the slope [F(1,20) = 

7.19, p = 0.014]. In contrast to voicing classification, there was a significant main effect of 

adding mean high gamma ERBP to the LFP [FGG(1,20) = 8.29, p= 0.009], but no interaction 

between LFP and high gamma ERBP [FGG < 1]. Thus, adding high gamma appears to 

benefit performance, although as Figure 7A shows this is numerically much smaller than 

increasing the temporal detail of the LFP measure.

Finally, analysis of tone classification revealed a main effect of LFP measure [F(2,18) = 

13.75, p < 0.001] (see Fig. 7A, right panel). This was due to a significant increase in 

performance when slope of LFP was added to the mean alone [F(1,9) = 36.125, p < 0.0001]. 

There was also a marginal additional benefit of adding the quadratic over and above the 

slope [F(1,9) = 3.48, p = 0.09]. In contrast to POA classification (but like voicing), the main 

effect of adding mean high gamma was not significant (F < 1) and there was no interaction 

between LFP measure and high gamma [F(2,18) = 1.28, p = 0.30].

Contribution of fine-grained temporal detail of high gamma power—The next set 

of analyses examined whether increasingly detailed measures of the time course of high 

gamma ERBP would improve classification accuracy. Figure 7B shows the effect of 

increasing specificity of the temporal dynamics of high gamma ERBP, and of adding mean 

LFP to voicing, POA and tone discrimination (left, middle and right panel, respectively). 

Adding slope and quadratic terms to mean high gamma ERBP did not significantly increase 

classification accuracy, and in some cases even decreased it. Further, for every measure of 

high gamma, adding mean LFP information provided a fairly substantial increase in 

performance.

This was confirmed in a series of 3 (high gamma measure: mean/slope/quadratic) × 2 (LFP 

mean: yes/no) ANOVAs for each of the three classification tasks. The ANOVA for voicing 
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found no main effect of high gamma measure [FGG(1.2, 24.7) = 4.21, p = 0.29] (see Fig. 7A, 

left panel). Consistent with earlier findings, there was a main effect of LFP [FGG(1,20) = 

34.27, p < 0.001]: adding information about mean LFP significantly improved accuracy for 

every type of high gamma measure. There was a significant interaction [FGG(1.5,30.6) = 

16.04, p < 0.001], reflecting the fact that adding the LFP made a larger contribution to 

performance when high gamma was characterized by its mean only.

The analysis of POA showed a main effect of high gamma measure [FGG(1.6,32.6) = 4.79, p 

= 0.02] on classification accuracy (see Fig. 7B, middle panel). However, this was due to the 

fact that adding increasing temporal position in the coding of the high gamma ERBP (the 

slope and quadratic terms) decreased performance. In fact, planned comparisons revealed no 

significant decrement for adding slope to the mean alone [F(1,20) < 1], but a significant 

decrement between the slope and quadratic [F(1,20)=10.03, p=.005]. As before, adding 

mean LFP was significant [FGG (1,20) = 11.76, p = 0.003]. The interaction was marginally 

significant [FGG(1.4,27.4) = 3.29, p = 0.069]. Thus, the only way to improve POA 

classification from the mean high gamma ERBP alone was to add mean LFP to it.

For tone classification, there was a main effect of high gamma measure [F(2,18) = 12.78, p 

< 0.0001]. As with POA, increasing temporal detail led to poorer performance. Planned 

comparisons revealed that adding slope to mean high gamma ERBP resulted in a significant 

loss of classification accuracy [F(1,9) = 12.14, p = 0.007] (Fig. 7B, right panel). Adding the 

quadratic resulted in a marginally significant decrement in accuracy over and above the 

slope [F(1,9) = 4.39, p = 0.065]. Once again, the main effect of LFP was significant [F(1,9) 

= 8.07, p = 0.019]: adding mean LFP to high gamma provided a gain in accuracy. High 

gamma and LFP did not interact [F(2,18) = 2.08, p = 0.15]. Thus, increasing temporal detail 

of the high gamma signal did not improve performance on tone classification, though adding 

mean LFP did.

The above analyses were all carried out using a 50 ms analysis window. Longer windows of 

integration might be more optimal for analysis of high gamma power. To address this 

possibility, we examined classification accuracy by analyzing high gamma responses using 

different time windows (50, 100, 150 and 200 ms), all centered at 100 ms after stimulus 

onset, and describing the temporal dynamics within each of these windows using the mean, 

slope and quadratic (Supplementary Fig. 1). For voicing classification analyzed using longer 

time windows, accuracy using mean high gamma alone decreased from 71.2% (50 ms time 

window) to 63.9% (200 ms time window). Adding more detailed temporal descriptors (slope 

and quadratic) yielded improvement in accuracy at time windows longer than 50 ms. This 

effect was especially prominent for the 200 ms time window, though this improvement 

(74%) was only somewhat better than mean ERBP in the 50 ms (71%), and still inferior to 

the LFP alone in the 50 ms window (77%). Results for POA analyses were more variable. In 

general, longer time windows yielded slightly increased accuracy when analyzing the mean 

alone, or when adding more precise measures of within-window temporal dynamics (slope 

and quadratic) (see Supplementary Fig. 1).

Interim summary—The previous analyses support the following conclusions. Increasing 

the temporal specificity of the LFP, but not high gamma ERBP measure, can lead to 
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significant gains in classification performance. This was the case for adding the slope, and in 

some classification tasks, the quadratic. Thus, there is information in the detailed time 

course of the LFP that was not available in high gamma ERBP. While adding LFP improved 

classification accuracy over and above high gamma alone, the converse (adding high gamma 

over and above LFP) was only true in isolated cases, and the effects were numerically small. 

This indicates that even with the relatively coarse measure of the LFP (mean+slope), there is 

more information carried in the LFP than in the high gamma.

The time course of information—The primary goal of the final analysis was to 

determine if at any time interval some version of the high gamma-based classifiers could 

exceed performance of the LFP-based classifiers. A secondary goal was to investigate how 

long the information present in either measure persisted in the cortical activity after stimulus 

onset. Rather than examining the accuracy over the full time course for all 15 different 

combinations of LFP and high gamma band power, this analysis was simplified by 

determining the following in each subject: (1) the single best LFP-only analysis (mean, 

mean+slope, or mean+slope+quadratic) across the full time course; (2) the single best high 

gamma-only analysis (mean, mean+slope, or mean+slope+quadratic) across the full time 

course; and (3) the single best analysis across all 15 combinations. The time course of 

classifier accuracy was then compiled for each of these three analyses. Results for each of 

the three classification tasks are shown in Figure 8. Three main observations can be drawn 

from this analysis. First, the best LFP-only classification always exceeded the best high 

gamma-only classification. Second, the best LFP-only classification was close (if not 

identical) in accuracy and time course to the best overall classification. For 29 of 52 

classification analyses carried out on data from individual subjects (21 for voicing, 21 for 

POA, and 10 for tone), the best overall analysis did not use high gamma ERBP in any form. 

Third, the information present in the LFP lasted longer in time than that present in the high 

gamma ERBP. Thus, even when the analyses were expanded to the full time course and used 

features flexibly for each subject, there was substantial information in the LFP about the 

identity of the stimulus that was not available in the high gamma ERBP alone.

Discussion

The goal of this study was to compare the information that can be extracted by two 

electrophysiological measures: the LFP and the high gamma band power. These 

comparisons should be interpreted as a comparison of standard methods for processing the 

electrophysiological signal; it is important to note that the LFP and high gamma power are 

not orthogonal measures of neural activity. Nonetheless, a classification approach using a 

non-parametric classifier can overcome some of these differences to allow us to quantify the 

information that can be extracted from each measure.

There were two major findings from these analyses. First, there was high variability across 

both recording sites and subjects in the morphology of the AEP. Variability of the high 

gamma response was substantially smaller. Second, despite this variability, the LFP 

generally carried significantly more information about the identity of the syllables and tones 

than the high gamma activity alone. This was true even when the fine-grained temporal 

changes within 50 ms windows were considered for both signals over the time course of 
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analysis. Moreover, there was an inconsistent benefit to the use of both measures: while in 

some classification tasks high gamma appeared to offer additional information beyond the 

LFP, in others it did not. The possible causes and consequences of each finding are 

discussed below.

Spatiotemporal properties and variability of AEP and high gamma ERBP

As reported previously (e.g. Crone et al., 2001; Chang et al., 2010; Steinschneider et al., 

2011; Nourski et al., 2014c), speech sounds as well as pure tones elicit large-amplitude 

AEPs and high gamma ERBP overlying PLST in both hemispheres. Ambiguity exists 

regarding the generators of the AEP recorded directly over the lateral surface of the STG. 

Several studies have suggested that Heschl’s gyrus and surrounding regions (e.g., planum 

temporale) of the superior temporal plane provide major contributions to the AEP recorded 

from lateral STG (Crone et al., 2001; Edwards et al., 2005). This issue is non-trivial, as one 

of the major results of this study was the superiority of the low-frequency LFP in identifying 

test stimuli over that provided by high gamma activity. LFPs have been shown to represent 

both local activity within the immediate vicinity of the recording contact, as well as volume-

conducted activity emanating from distant sites (Kajikawa and Schroeder, 2011). If the AEP 

is generated by activity within the superior temporal plane, then we would be comparing 

informational content from vastly different core and non-core regions of auditory cortex.

The AEPs recorded from the majority of subjects featured major peaks that showed positive-

negative-positive deflections below the Sylvian fissure; a pattern consistent with radial 

sources generated within PLST and not tangential sources located within the superior 

temporal plane. This conclusion is supported by the observation that the N1 component of 

the scalp-recorded AEP is maximal near the vertex, consistent with major generators within 

the superior temporal plane (Scherg et al., 1989; Liégeois-Chauvel et al., 1994). The timing 

of the N1 component overlaps with the initial prominent negativity (Nα) observed on PLST. 

If the AEP recorded from PLST was generated within the superior temporal plane, one 

would expect a positive peak at that time, reflecting the polarity inversion of the N1 

component. This was not the case in the present study. Present observations parallel 

previous studies of AEPs recorded from PLST (e.g., Howard et al., 2000; Steinschneider et 

al., 2011), wherein the sequence of the most prominent peaks was an initial positivity (Pα), 

followed by an initial negativity (Nα), and a second positivity (Pβ). Furthermore, when the 

AEPs from all subjects were averaged together, the waveform representing the grand 

average response on PLST showed the Pα-Nα-Pβ-Nβ peak sequence, as reported by Howard 

and colleagues (2000) (see Fig. 4).

The precise etiologies of the large inter-subject variability are unclear, but may represent in 

part the complexities of gross anatomy in this region (Zilles et al., 1997; Leonard et al., 

1998; Hackett, 2007) that would result in variable contributions of radial and tangential 

sources to the AEPs. By clinical necessity, electrode coverage was non-uniform across 

subjects, possibly contributing to the observed variability. This variability would be 

increased if there was uneven coverage over the various functionally distinct subdivisions of 

non-primary auditory cortex on PLST. Finally, it is possible that variability in the processing 
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of sounds contributed to variations in AEP amplitude and morphology (Boatman and 

Miglioretti, 2005).

The time course of high gamma activity was much less variable than that of the AEP across 

subjects (see Fig. 4B). On average, peak activity occurred on the falling phase of the Nα 

peak of the AEP, consistent with earlier findings (Steinschneider et al., 2011). Sources of 

variability likely include differences in sensitivity of different cortical sites to specific 

acoustic attributes of speech sounds and tones, state of arousal of the subject during the 

passive-listening paradigm, differences in electrode coverage and response timings within 

PLST (Nourski et al., 2014a). In the latter study, high gamma activity was shown to have the 

shortest onset latency in the middle portion of PLST, increasing in both anterior and 

posterior directions along the gyrus. Overall, the current data support the conclusion that 

both the AEP and high gamma activity primarily represent local cortical activity on PLST, 

though contributions for volume-conducted activity from superior temporal plane, especially 

for the AEP, cannot be ruled out.

Overall, findings from intracranial AEP data parallel those observed in the scalp-recorded 

AEP. It has been suggested that PLST is the main generator of the T-complex as recorded 

with temporal scalp electrodes (Wood and Wolpaw; 1982; Scherg et al., 1989; 

Steinschneider et al., 2011). The amplitude of both the scalp-recorded T-complex and the 

AEP recorded directly from PLST is greater overlying the right hemisphere (Wolpaw and 

Penry, 1975; see Fig. 5). The amplitude of the T-complex was greater over the right 

hemisphere when compared to the left even with ipsilateral stimulation. Further, the marked 

variability of the intracranially-recorded AEP morphology across subjects (see Fig. 4) 

parallels that seen in the scalp-recorded T-complex (Wolpaw and Penry, 1975). In turn, this 

variability may limit the utility of assessment of T-complex amplitude and morphology at 

the single-subject level. However, at the group level, the T-complex can reflect normal 

development of the auditory cortex (Ponton et al., 2002; Mahajan and McArthur, 2013), 

cortical plasticity (Itoh et al., 2012), phonological processing (Wagner et al., 2013) and has 

been shown to be aberrant in language disorders such as specific language impairment 

(Shafer et al., 2011; Bishop et al., 2012) and dyslexia (Hämäläinen et al., 2011). Therefore, 

assessment of the AEP recorded directly from PLST offers the opportunity to clarify the 

underlying detailed neural events and their spatiotemporal organization reflected in the T-

complex.

Stimulus classification based on LFP and high gamma ERBP

As a rule, classification accuracy using the mean of either LFP, high gamma ERBP or both 

peaked at 100–200 ms. This timing for discrimination of stimulus attributes parallels 

multiple previous findings. Using LFPs, Chang et al. (2010) showed the most robust 

discrimination of stop consonants at around 110 ms. Similarly, Nourski et al. (2014c) 

showed peaks in classification accuracy for pure tones at around 100 ms using the 

distribution of high gamma activity across perisylvian cortex. The importance of this time 

frame extends to non-invasive studies, including those showing that accurate perceptual 

encoding of speech in complex listening environments peaks at around 100 ms (e.g. Ding 

and Simon, 2012).
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Classification using the lower-frequency components embedded in the LFP was superior to 

that based on high gamma ERBP. This observation held across all classification tasks 

(voicing, POA, tone). Further, addition of information contained in high gamma activity 

only minimally improved classification accuracy compared to that based solely on the LFP. 

These results are surprising, given that spatial patterns of high gamma activity within PLST 

have been shown to reflect phonemic identity (Mesgarani et al., 2014) and accurately 

discriminate pure tone stimuli (Nourski et al., 2014c). However, these intracranial studies 

did not concurrently compare the information provided by lower-frequency components 

embedded in the LFP. Therefore, it is unclear whether high gamma activity would have been 

superior to the low-frequency LFP if both analyses were conducted. Importantly, the study 

of Chang et al. (2010) did focus analysis on LFPs and was able to demonstrate categorical 

differences in the representation of stop consonants based on POA. By extension, non-

invasive event-related potentials and neuromagnetic responses examining lower-frequency 

components of neural activity have been capable of precise classification of speech and 

other complex sounds (e.g. Alain et al., 2002; Luo and Poeppel, 2007; Toscano et al., 2010; 

Ding and Simon, 2012).

In the current study, classification of voicing and classification of tones were superior to that 

based on POA. More natural (and acoustically diverse) stimuli were not examined in our 

study. We predict that better accuracy would have been obtained when multiple cues 

normally associated with POA [such as temporally dynamic spectra and voicing onset (e.g. 

Alexander and Kluender, 2008)], are factored into the analysis. It cannot be excluded, 

however, that use of more sophisticated classification algorithms or techniques for pre-

processing the input may enhance classification accuracy to those identified in previous 

studies. However, this should be understood in light of the fact that the goal of the SVM-

based analysis in the present study was to demonstrate that there is available information in 

the neural activity, without making assumptions as to how the brain actually identifies and 

classifies sound stimuli.

Finer-grain characterization of LFP waveform morphology, as captured by the addition of 

slope, and, to a lesser extent, quadratic, revealed enhanced classification accuracy. This 

enhancement means that the phase of the LFP, as well as its amplitude, provide relevant 

information to the classifier. This is consistent with previous observations that the phase of 

relatively low frequency components of cortical LFPs carries complementary information to 

that present in amplitude (Luo & Poeppel, 2007; Herrmann et al., 2013; Ng et al., 2013). 

This was not the case in our characterization of fine-grained time course of high gamma 

ERBP. This observation likely reflects the relative similarity of high gamma temporal 

envelopes measured at different sites across voicing and POA contrasts (see Figs. 2B, 3B). 

Supporting evidence for the importance of slope in the LFP may be observed using current 

source density analysis performed on LFPs recorded from the primary auditory cortex. This 

analysis has shown variation in the slope of the rising and falling phase of current sinks 

based upon the attributes of specific stimuli (e.g., Steinschneider et al., 1998; Happel et al., 

2010). By extension, the relevance of the slope of LFPs in the current study might in part 

reflect the strength of response elicited by any given stimulus at a given cortical site.
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When classification analysis was based on high gamma averaged within time windows 

longer than 50 ms (up to 200 ms), classification accuracy of voicing deteriorated. Adding 

more detailed temporal descriptors (slope and quadratic) yielded improvement in accuracy at 

these longer time windows. It is likely that more fine-grained temporal descriptors better 

captured information about stimulus onset and the later onset of voicing over a more gradual 

unfolding signal (high gamma activity). The disparity of results between voicing and POA 

can be explained by the fact that POA information is primarily encoded by spatially 

distributed patterns of activity elicited by the spectral differences present at syllable onset. 

While longer time windows might encode formant transition information and allow for a 

more accurate estimate of these distributed patterns, we used synthetic syllables where 

formant transition information overlapped across the syllables varying in POA (See Fig. 1). 

Analyzing classification performance at longer time windows using natural speech might 

still be beneficial, but this test was beyond the scope of the current manuscript and will have 

to be examined in subsequent studies.

It is possible that superior classification analysis by LFPs relative to high gamma ERBP 

might have been due to electrode placement that did not optimally capture sources of 

prominent high gamma activity in a given subject. To examine this question, we analyzed 

classification accuracy over time using the best combination of features (LFP and high 

gamma ERBP) in each subject individually. In all cases, LFP-based classification was 

superior to high gamma-based analysis and the combination of the two did not enhance 

classification accuracy. This consistent observation argues against bias of electrode 

placement that preferentially optimized the capture of the LFP signals versus that seen in 

high gamma power.

Functional interpretation of LFP and high gamma ERBP

At the cortical level, LFPs primarily represent synaptic rather than neuronal spiking activity. 

In contrast, high gamma power is a surrogate measure for spiking activity of neuronal 

aggregates (Friedman-Hill et al. 2000; Frien et al., 2000; Brosch et al., 2002). Thus, the LFP 

and high gamma power measurements are reflections of different aspects of neural 

processing within cortex, and may play different roles in representing sound information. In 

the current study, classification performance was superior when features of the LFP were 

analyzed. In contrast, in an earlier report, high gamma activity within PLST, but not the 

AEP, was modulated strongly by attention and behavioral task (Nourski et al., 2014b; 

Steinschneider et al, 2014).

It must be borne in mind that electrode grids are positioned above lamina 1 in the subdural 

space. Intracranial studies in experimental animals using current source density analysis 

have shown that superficially recorded LFPs are dominated by synaptic activity in 

supragranular layers (Javitt et al., 1994; Steinschneider et al., 1994). These analyses suggest 

that negativities as recorded from subdural electrodes primarily reflect excitatory 

postsynaptic potentials within supragranular layers with passive current return occurring 

primarily at more proximal dendritic sites (Steinschneider et al., 1992). This interpretation 

suggests that these negativities would be associated with increases in high gamma activity as 

neurons become depolarized within their apical dendrites. This “up-state” is well-established 
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in the literature (e.g. Schroeder and Lakatos, 2009; Lakatos et al., 2013), and we suggest that 

the peak of high gamma activity occurring at or shortly after the Nα peak of the AEP reflects 

this dynamic (see Fig. 5A).

In conclusion, the current findings bring us back full circle to the relevance of the AEP and 

low frequency components of the LFP. In the past, analysis of the AEP was preeminent 

when studying human electrophysiology. Subsequently, a paradigm shift occurred where the 

use of high frequency gamma activity became preeminent at the expense of the analysis of 

the AEP. Results suggest that future studies examining intracranial recordings should 

consider utilizing data obtained from both electrophysiologic features. Both time- and 

phase-locked low-frequency components as well as high gamma activity provide valuable 

information regarding sound processing. Further, phase coupling between different cortical 

regions will likely provide additional information about the ever-changing neural ensembles 

engaged in speech perception. While the current study only examined the relatively early 

stages of processing, it is likely that multiple methodologies will have to be utilized to 

identify the neural stages engaged in higher-order language functions such as syntactic, 

lexical and semantic processing. It is hoped that these detailed intracranial studies will be of 

great translational relevance when trying to understand both normal and aberrant 

electrophysiologic responses obtained in investigations using non-invasive techniques.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Local field potentials (LFP) provide greater classification accuracy than high 

gamma.

• Classification accuracy using LFPs is enhanced by adding fine temporal detail.

• Highest accuracy is achieved when using both measures.
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Figure 1. 
Waveforms and spectrograms (top and bottom rows, respectively) of the six CV syllables 

used in the study.
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Figure 2. 
Responses to CV syllables from the dominant (left) hemisphere in a representative subject 

(L178). A: Location of the 96-contact subdural grid. B: AEP and high gamma ERBP 

recorded from two exemplary sites (X and Y, location marked in panel A) in response to 

syllables /pa/, /ba/, and /da/. C, D: Cortical activation maps showing AEP and high gamma 

ERBP (C and D, respectively), elicited by the three CV syllables (rows) and averaged within 

50 ms consecutive time windows (columns).
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Figure 3. 
Responses to CV syllables from the non-dominant (right) hemisphere in a representative 

subject (R180). See legend of Figure 2 for details.
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Figure 4. 
Morphology of AEP and high gamma ERBP waveforms, averaged across responses to 

voiced CV syllables (/ba/, /da/, and /ga/) over recording sites overlying STG in each subject 

(rows). Dashed lines denote mean latencies of Pα, Nα, Pβ and Nβ components of AEP 

waveforms elicited by click train stimuli, as described by Howard et al. (2000).
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Figure 5. 
Morphology and variability of AEP and high gamma ERBP waveforms. A: Grand average 

AEP (top) and high gamma ERBP (bottom) and their 95% confidence intervals are shown 

for left and right hemisphere sites (teal and purple, respectively). Plots represent responses 

to voiced CV syllables (/ba/, /da/, and /ga/), recorded from sites overlying STG in all 

subjects. Dashed lines denote mean latencies of Pα, Nα, Pβ and Nβ components of AEP 

waveforms elicited by click train stimuli, as described by Howard et al. (2000). B: 

comparison of peak-to-peak AEP amplitudes (top) and peak high gamma ERBP (bottom). 

Mean values and S.E.M. are plotted for left and right hemisphere sites in teal and purple, 

respectively. Significance was established using independent-samples t-tests.
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Figure 6. 
Classification analysis of CV syllables based on voicing and POA (top and middle rows) 

and pure tones (bottom row), based on LFP, high gamma ERBP, or both measures, averaged 

within 50 ms windows (plotted in blue, red and green, respectively). A: Classification 

accuracy as a function of time window averaged across all subjects (N = 21 for voicing and 

POA, N = 10 for tone classification). Vertical shaded bars denote the 75–125 ms window 

used for subsequent analyses. B: Mean classification accuracy for the three tasks within the 

75–125 ms window and across-subject S.E.M. Dashed lines indicate chance level (50% for 

voicing and 33% for POA and tone classification).
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Figure 7. 
Contribution of LFP and high gamma measures to classification accuracy in the 75–125 ms 

window; classification of CV syllables based on voicing and POA (left and middle column) 

and pure tones (right column). A: Effects of adding slope and quadratic to mean LFP with or 

without adding mean high gamma ERBP. B: Effects of adding slope and quadratic to mean 

high gamma ERBP with or without adding mean LFP. Error bars denote across-subject 

S.E.M. Dashed lines indicate chance level (50% for voicing and 33% for POA and tone 

classification).
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Figure 8. 
Classification analysis of CV syllables based on voicing and POA (top and middle panels) 

and pure tones (bottom panel). Across-subject (N = 21 for voicing and POA, N = 10 for tone 

classification) average accuracy based on LFP and/or high gamma measures that yielded the 

best performance in each subject. Dashed lines indicate chance level (50% for voicing and 

33% for POA and tone classification).
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Table 1

One sample t-tests comparing classification accuracy at 75–125 ms after stimulus onset to chance.

Measure
Voicing POA Tone

T(20) p T(20) p T(9) p

Mean LFP 
10.83 <0.0001 8.08 <0.0001 5.07 0.007

Mean high gamma 
10.92 <0.0001 5.06 <0.0001 7.82 <0.0001

13.92 <0.0001 7.14 <0.0001 6.10 0.0002
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