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Abstract

Chronic pain following surgery limits social activity, interferes with work and causes emotional 

suffering. A major component of such pain is is reported as “resting” or spontaneous pain with no 

apparent external stimulus. Although experimental animal models can simulate the stimulus-

evoked chronic pain that occurs after surgery, there have been no studies of spontaneous chronic 

pain in such models. Here the Conditioned Place Preference (CPP) paradigm was used to reveal 

resting pain after experimental thoracotomy. Male Sprague-Dawley rats received a thoracotomy 

with 1 hour rib retraction, resulting in evoked tactile hypersensitivity, previously shown to last for 

at least 9 weeks. Intraperitoneal injections of morphine (2.5 mg/kg) or gabapentin (40mg/kg) gave 

equivalent 2-3h long relief of tactile hypersensitivity, when tested 12-14 days post-operative. In 

separate experiments, single trial CPP was conducted 1 week before thoracotomy and then 12 days 

(gabapentin) or 14 days (morphine) after surgery, followed the next day by one conditioning 

sesssion with morphine or gabapentin, both vs saline. The gabapentin-conditioned, but not the 

morphine-conditioned rats showed a significant preference for the analgesia-paired chamber, 

despite the two agents’ equivalent effect in relieving tactile allodynia. These results show that 

experimental thoracotomy in rats causes spontaneous pain, and that some analgesics, such as 

morphine, that reduce evoked pain do not also relieve resting pain, suggesting that 

pathophysiological mechanisms differ between these two aspects of long-term post-operative pain.
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INTRODUCTION

A broad variety of surgical procedures results in chronic post-operative pain that persists for 

at least 3 and sometimes 6 months or longer after surgery57,45,19,41. Among these 

procedures, thoracotomy ranks high with as many as half of patients reporting long-lasting 

pain2 that is characterized by movement-induced mechano-hypersensitivity (“evoked pain”) 

and by pain at rest that occurs without an apparent stimulus (“spontaneous pain”).46,27,80 

Peripheral tissue damage, including intercostal nerve damage, contributes to initiating post-

operative pain3,60, and continued afferent input is probably required for its maintenance28,16. 

However, the anatomical structures in spinal cord and brain, and their cellular mechanisms, 

which are modified by the initial and the ongoing afferent inputs, have not been 

unequivocally identified37,29.

Animal models of clinical pain syndromes have been useful for studying underlying 

mechanisms59,50, and post-thoracotomy pain has been modeled by a procedure in rats that 

has strong parallels to human surgery7. Pain-like behavior that is more elaborate than simple 

limb withdrawal or muscle twitches74,18 can be evoked after thoracotomy by tactile 

stimulation of the skin near and at a distance from the incision/retraction locus, respectively 

signalling primary and secondary hyperalgesia58. Such evoked responses are transiently 

reversed by systemic administration of morphine, implying that they are truly nocifensive 

indicators of a painful perception76. In contrast, spontaneous pain, which is a common 

clinical feature of post-thoracotomy and other chronic, neuropathic pain syndromes4, has not 

been demonstrated in this animal model. The purpose of this study was to do so.

METHODS

Animal Handling

Adult male Sprague-Dawley rats were purchased from Charles River Laboratory 

(Wilmington, MA) and kept in groups of two in the animal housing facilities at Brigham and 

Women's Hospital, with controlled relative humidity (20%–30%), at an ambient temperature 

of 24 ± 1 °C and maintained under a normal light-dark cycle (12:12 hr). Pelleted rat chow 

and tap water were allowed ad libitum. All experimental procedures were approved by the 

Harvard Medical Area Standing Committee on Animals (Boston, MA), and are in keeping 

with published guidelines for the use of laboratory animals (National Research Council, 

Guide, 2011). The rats were handled for 5-7 days before the procedure to familiarize them 

with the experimental environment, so as to minimize stress-induced analgesia and to 

establish baseline behavioral parameters for each individual animal73. At the time of 

thoracotomy surgery, animals weighed 280-310 g.
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Thoracotomy and Rib Retraction Surgery

Rats were briefly anesthetized with 4%–5% sevoflurane (Sevorane, Abbott Laboratory, 

North Chicago, IL, USA) before receiving intraperitoneal pentobarbital sodium (50 mg/kg; 

Nembutal , Akorn, Inc., Lake Forest, IL). Animals were then tracheally intubated by a 

method modified from Weksler et al.77. The endotracheal catheter was connected to a small 

animal pressure controlled ventilator (model TOPO220; Kent Scientific Corporation, 

Torrington, CN), which was set at a respiratory rate of 65-80/min. A CO2 analyzer 

(CapStar-100; IITC Inc., Woodland Hills, CA) was connected to the expiratory end to 

monitor end tidal CO2, which was maintained at 25-40 mm Hg for the entire surgical 

procedure.

The anesthetized rats were placed in the left decubitous position with a pillow under the 

contralateral armpit to elevate the surgical field. One 3 cm long incision was made in the 

skin of the right lateral chest wall along the fourth intercostal line, beginning from 1 cm 

lateral to the midline and 1 cm below the inferior angle of right scapula. The superficial and 

deep lateral thoracic muscles covering the ribs were incised and retracted to expose the 

intercostal muscles. A 1.0 cm incision was made through the intercostal muscle and pleura 

along the cranial border of the fifth rib. The blunt tines of a small retractor (Model 

17003-03, Goldstein, 3x3 sharp teeth with depth 4.5 mm, teeth width 6.5 mm; FST, Inc., 

Foster City, CA) were placed under the fourth and fifth ribs. The retractor was opened to 

separate the ribs by 1 cm, and was left in place for 60 min, as previously described7. The 

open wound was covered with wet-dressing gauze kept moist with sterile phosphate 

buffered saline (PBS). After one hour the retractor was closed and removed and the fourth 

and fifth ribs were approximated and ligated tightly with 4-0 chromic gut sutures (Covidien, 

Mansfield, MA). Air was aspirated from the pleural cavity with a 5-mL syringe attached to 

the polyethylene tubing to restore normal intrapleural pressure. The superficial muscle 

covering the ribs was then apposed with 4-0 Vicryl sutures (MYCO Medical, Cary, NC), 

and the skin was closed with 3-0 silk sutures (Angiotech, Reading, PA). The animals were 

allowed to recover in separate cages, and the endotracheal catheter was removed once 

spontaneous breathing was re-established.

Sham operated rats underwent anesthesia and incision with pneumothorax, but without 

retraction of the ribs. Previous study results65 were confirmed here to show that tactile 

allodynia does not last longer than 1-2 days in such rats (data not shown).

Drugs and Injections

Morphine sulfate, USP grade, was purchased from West-Ward Pharmaceuticals (Eatontown, 

NJ) and a stock solution of 2.5 mg/mL made by dissolving in sterile saline. Different 

volumes of this stock solution were injected intraperitoneally with a 30g needle attached to 

an 1 cc insulin syringe to achieve a final dose of 2.5 mg/kg. No signs of ataxia, locomotion 

or imbalance were detected after this dosing, suggesting that no major motor deficits were 

present. Gabapentin was purchased from Sigma-Aldrich Co. and a stock solution of 10 

mg/mL made by dissolving in sterile saline. Different volumes of this stock solution were 

injected intraperitoneally with a 30g needle attached to an 1 cc insulin syringe to achieve a 

final dose of 40 mg/kg.
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Behavioral Testing

The investigator conducting the behavioral testing was blinded as to the surgical condition 

of the animals (sham or TRR), but was aware of the drug (gabapentin, morphine or saline) 

that was injected. Tactile evoked responses. To test mechanical hyperalgesia, each rat was 

placed in a loose restraining cage (8cm × 9cm × 20cm) and allowed to rest there for 15 min. 

A series of calibrated von Frey filaments (VFH; Stoelting Co, Wood Dale, IL) with bending 

forces ranging from 0.4 to 15.0 g were applied perpendicularly to and 0.5 – 1cm away from 

the incision, starting from the lowest force, to calculate the threshold for a nocifensive 

response. Each VFH was probed twice, pressing with a 3-sec duration spaced 3-sec apart. 

The VFH force was increased progressively until a defined response occurred (see below) 

and then reduced and again increased to verify the threshold force. Rats responding to the 

lowest force filament that was used, 0.4 g, were assigned this as the threshold, and those not 

responding to the highest force were assigned a “ceiling” threshold of 15.1 g. Higher forces 

were avoided to minimize the tactile sensitization that occurs with these stiffer VFHs.

Behavioral evaluations were made over the 2 days before thoracotomy, and averaged as the 

baseline threshold, and then again at post-operative days (PODs) 10 and 14, the last in order 

to assess gabapentin's ability to relieve post-operative hypersensitivity. In this case the 

analgesic was given to the rats twice, first for the conditioning phase of the Place Preference 

protocol (see below), and second, 4 days later, to assay the effect on mechanically evoked 

pain.

Because of the effects that preceding morphine administration has on the phramacodynamics 

of subsequent injections48, morphine was only given once to each group, either to test its 

ability to relieve tactile hypersensitivity or for Conditioned Place Preference. Morphine's 

ability to relieve post-operative mechano-hypersensitivity was assessed in 3 groups of rats. 

In these experiments rats were either not operated on (naïve, n=11), had a sham operation 

consisting of an incision without retraction (n=5), or had the full thoracotomy and retraction 

(TRR, n=12). Sham and TRR-treated rats were injected with morphine 13 days after the 

respective surgery, and the threshold for nocifensive responses measured at 0.5, 1, 2, 3, 4 

and 5 hrs.

Conditioned Place Preference

Single trial Conditioned Place Preference (CPP) was performed one week before and 10 day 

after thoracotomy surgery, following the method described by King et al.40,39. On POD10, 

conditioning sessions were started after verifying that the rats had develop tactile allodynia 

or not; rats without allodynia (threshold force >10g) were not tested further. The CPP 

apparatus contains a center chamber that can be opened or closed off to either of two end 

chambers (San Diego Instruments, San Diego, CA). During the preconditioning session, rats 

were placed in the middle chamber and familiarized with the environment with full access to 

all three chambers for 30 min/day for 2 days (POD10 and POD11). The two end chambers 

can be differentiated by texture of floor (rough vs smooth), wall pattern (gray wall vs 

horizontally striped wall) and odor (banana vs vanilla; Chapstik, Miller-Norton Company, 

Richmond VA). On the third day of CPP (POD12), the unconditioned bias of each rat was 

determined by monitoring its travel between all 3 chambers for 15 min. The time spent in 
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each chamber and the frequency of entries to every chamber were monitored by the 4 × 16 

photobeam arrays that detected position within each chamber. Rats that showed a pre-

conditioning place preference “bias”, with time spent in any one chamber more than 12 min 

or less than 2 min during this test period, were excluded from the CPP analysis.

On the “conditioning” day (POD13), animals were restricted to a single chamber 

immediately following saline vehicle or drug injection, for 30 minutes (after morphine or 

saline) or 60 min (after gabapentin). The group of rats that received morphine (n=12) was 

different from the group that received gabapentin (n=10; one rat was excluded from the CPP 

analysis because the rat showed a pre-conditioning place preference bias). On that 

conditioning day, rats were first administrated vehicle control (saline, i.p.) in the morning, 

and placed in a randomly chosen chamber. In the afternoon, four hours after the vehicle 

injection, the analgesic (morphine or gabapentin) was injected and the rat placed in the other 

chamber. Chamber pairings were counterbalanced such that as many rats received drug and 

were placed in the striped wall chamber as those that were placed in the gray wall chamber 

after drug. On the following, “test” day (POD14), 20 hours after the afternoon pairing of the 

conditioning day, rats were placed in the middle chamber with all doors open, allowing them 

free access to all chambers.

Ambulation time, numbers of entries to each chamber and time spent in each chamber were 

monitored for 15 minutes for analysis of chamber preference. Difference scores were 

calculated as these parameters measured during the “test” period minus the parameters 

measured during the “preconditioning” period.

Statistical Analysis

Threshold forces are presented as mean ± SEM, and are compared for statistically 

significant differences among groups by multi-group ANOVA followed by Tukey's test. 

When compared to the pre-operative baseline value or to the post- operative + pre-morphine 

value, these analyses are corrected for repeated measures adjustments. For CPP experiments, 

difference scores from the drug-paired chamber and the saline-paired chamber were 

analyzed using Kruskal-Wallis with multiple comparisons followed by post hoc Dunn's test. 

The correlation between the degree of allodynia reversal after gabapentin and the change in 

the CPP were analyzed by linear regression analysis. All statistical tests were conducted 

using SAS version 9.3 software (SAS, Cary, N.C.). Unless specifically noted, significance 

occurred for P<0.05.

RESULTS

Consistent with previous publications, rats showed tactile allodynia by a drop in threshold 

for nocifensive responses (Figure 1A) that had reached a constant minimum by 10 days after 

TRR surgery7,65,76. These earlier studies had also shown that tactile thresholds remained at 

this low level with no sign of abating for at least several months.

Systemic administration of gabapentin (40mg/kg, i.p.) partially reversed tactile 

hypersensitivity after TRR surgery. At 1h after gabapentin injection the average threshold 

was significantly higher than that of POD13 before i.p. gabapentin, but still below that of the 
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pre-operative threshold of this cohort. Examination of the responses of individual animals 

showed the variation in the degree and time-course of threshold change after gabapentin, 

with three of eleven rats (Nos. 1, 6, 9) threshold's fully reversing to pre-operative levels and 

two (Nos. 5, 10) not reversing at all (Figure 1B). There was no correlation between the pre-

operative thresholds and the post-operative response to gabapentin.

Spontaneous pain was assessed by Conditioned Place Preference. Among the conditioned 

place preference parameters, there were no significant differences in ambulation activity 

(Figure 2) and frequency of shuttling (Figure 3) between rats before and 12 days after TRR 

(during pre-conditioning testing), showing that surgery, and allodynia of the thoracic lumbar 

region did not affect locomotion. After surgery, times spent in the saline- or gabapentin-

paired chambers during pre-conditioning were statistically equivalent across all groups and, 

therefore, all data were pooled across groups for assessing pre-conditioning behavior (n=22).

After conditioning with gabapentin, TRR rats spent more time in the gabapentin-paired 

chamber than in the saline-paired chamber (Figure 4A). In contrast, naïve and sham rats 

showed no preference between the saline- or gabapentin-paired chamber, as rats spent equal 

amounts of post-conditioning times in both chambers. The difference scores from the 

individual rats confirmed that systemic gabapentin administration altered TRR-induced 

spontaneous pain because only TRR rats showed significantly increased time spent in the 

gabapentin-paired chamber (Figure 4B).

We questioned whether the degree of threshold reversal afforded by gabapentin treatment 

was predictive of the ability of this analgesic to cause place preference. Figure 5 compares 

the degree of allodynia reversal (% of change of threshold back to the pre-op value) after 

gabapentin with the difference scores of time spent in the gabapentin-paired chamber, for 

each individual rat. The lack of correlation between these parameters, shown by the very 

low linear correlation coefficient (R=0.0459; P>0.5) reveals the absence of any relationship 

between actions of gabapentin on the non-evoked, resting pain and the mechanical stimulus-

evoked pain.

Another lack of correlation between relief of evoked pain and place preference occurred in 

the morphine-treated rats. The reversal of the average post-operative fall in threshold by 

systemic morphine was quite similar to that from gabapentin (compare Figs. 6 and 1A). 

However, morphine failed to cause a preference for the paired chamber in TRR-treated rats 

(Figure 7). If anything, any morphine-conditioned preference was suggested in the sham 

population, although the difference did not reach significance. Correlations of these two 

parameters among the individual rats was not possible since different animals were tested 

for relief of evoked pain and conditioned place preference.

DISCUSSION

Chronic post-operative pain remains a significant obstacle to healthy recovery from surgery. 

Thoracotomy results in chronic pain in as many as 50% of patients2, with evidence of a 

neuropathic pain component from nerve injury in many thoracotomy patients29,46,69. Nerve 

injury has also been documented in the animal model used here7,76. Animal models may be 
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useful in the development of treatments to prevent chronic pain and, the more problematical 

situation, to effect its reversal once it occurs. Most studies so far have focused on the hyper-

responsiveness to tactile or thermal stimulation as a measure of brief or prolonged post-

operative pain6,20,12,18,24,76 and have not dealt with the prevalent problem of chronic 

spontaneous pain, a hallmark of clinical post-operative and neuropathic pain but more 

difficult to evaluate in animals47.

Both peripheral and central mechanisms contribute to the enduring postoperative 

hyperalgesia, reflecting the neuroplasticity of primary afferent fiber excitability and central 

synaptic processing and connectivity61. Pharmacological efficacy in animal models studying 

evoked pain is modified by these neuro-plastic changes, as shown by the very different 

ability of drugs, such as resolvins31 and inhibitors of P-p38 MAPkinase78,32, to effectively 

prevent development of hyperalgesia when given pre-operatively yet have very limited 

capacity to reverse such hyperalgesia once it has developed.

With regard to acute clinical pain, inhibition of afferent input into the CNS during the 

immediate post-operative period is an effective anti-hyperalgesic strategy53,5,79,1, as is 

inhibition of NMDA receptor activity in the spinal cord during this period64,10,68. These 

clinical actions are paralleled by results from animal models that show diminished evoked 

pain as the response to local and spinal anesthetic blockade of, respectively, afferent 

discharge81,55 and its spinal input84,25,65,32.

Spontaneous pain has been virtually unexamined in animal studies of post-operative pain. 

Since, judging from their different pharmacological susceptibilities78,31,32, the cellular 

pathways in spinal cord that subserve the induction of post-operative pain differ from those 

involved in the maintenance of that pain, it is also possible that the mechanisms underlying 

chronic evoked hyperalgesia differ from those of chronic spontaneous pain. In the present 

paper we show the presence of spontaneous pain in a rat post-thoracotomy model, using the 

conditioned place preference paradigm with gabapentin. Unexpectedly, we discovered that 

morphine, which was as effective as gabapentin in temporarily relieving evoked tactile 

hypersensitivity, in agreement with the original study of Buvanendran et al.7 and with our 

previous that reported changes in the quality of the nocifensive response during morphine's 

relief of post-thoracotomy pain (Wang et al. 2013), was apparently ineffective in relieving 

spontaneous pain. Furthermore, although gabapentin was effective in temporarily relieving 

both tactile hypersensitivity and spontaneous pain, measured as averaged responses of a 

population, the relief of the evoked pain in individual rats showed no correlation to the relief 

from spontaneous pain in those same individuals. Mechanically evoked post-thoracotomy 

pain thus does not appear to be tightly coupled to spontaneous pain in this experimental 

model.

Systemic gabapentin is a broadly effective analgesic, relieving experimental evoked tactile 

hyperalgesia from spinal nerve ligation (SNL;43,75), peripheral inflammation21, diabetic 

neuropathy (DN,22) and a rodent model of herniorrhaphy that involves no peripheral nerve 

damage24. Gabapentin purportedly acts to reduce the pre-synaptic entry of Ca+2, through N-

type calcium channels, that is essential for release of neurotransmitters involved in pain 

transmission51,42,83,11, with targets located in spinal cord and brain71,72. Nerve injury leads 
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to an increased expression and functional contribution from these N-type channels49,82 and, 

importantly, in the amounts of these channels’ α-2 δ sub-units that are the putative binding 

site for gabapentin26. This change in expression may account for gabapentin's suppression of 

hyperalgesic conditions without having any anti-nociceptive activity at the same doses.

Peripheral nerve hyperexcitability accompanying DN is partially reversed by daily 

administration of gabapentin (50mg/kg/day), which also lowers the DN-elevated TTX-

sensitive Na+ channel Nav1.7 and the activated p-ERK1,2 levels of isolated dorsal root 

ganglia back towards control levels85. Whether these actions of gabapentin are indirect 

results of N-type Ca+2 channel blockade or due to direct actions on Na+ channels is not 

known.

The broad distribution of N-type channels in the nervous system parallels the many and 

varied effects of gabapentin on emotional and neurological activities, including anxiety. Rats 

given gabapentin i.p., at doses one-half and lower than the one used here, have significantly 

less anxiety as expressed by their willingness to perform in elevated maze and forced 

swimming tests (Kilic et al. 2014). Although this anxiolytic action presents a potential 

confound in interpreting the post-operative pain behavior described here, we suspect that 

changes in overall ambulation and frequency of entry would occur, in addition to a 

preference for the place where anxiety was reduced, and we did not detect such changes.

Pain-related activity in the CNS is also affected by gabapentin. Both electrically- and 

mechanically-stimulated responses of spinal dorsal horn (DH) neurons, which are elevated 

after SNL8, are suppressed by systemic gabapentin (10-100 mg/kg s.c.;9). Relevant to the 

current study, SNL also increases spontaneous firing of wide dynamic range neurons located 

in the deep DH (LV-VI)8, firing that is sensitive to systemic (s.c.) gabapentin and spinal 

(i.t.) morphine, yet is unaffected by systemic (i.v.) morphine71, a finding of potential 

relevance to the current work. The correlation between the pharmacological profile of 

“spontaneous” DH neurophysiological activity and that of spontaneous pain suggests that 

this spontaneous firing of these neurons is tightly coupled to spontaneous pain. Such 

“spontaneous” firing of WDR neurons might be truly ectopic, independent of other inputs 

and capable of excitation of more rostral pain processing loci in the brain, or it might be a 

substrate for the maintenance of hyperexcitability in these other pain encoding regions of the 

CNS. In turn, “spontaneous” activity in DH neurons might be a spinal manifestation of 

unstimulated, ectopic activity detected in peripheral afferent fibers after nerve injury (partial 

sciatic nerve ligation;63). Both the tactile allodynia in this partial ligation model and the 

ectopic activity are suppressed by systemic gabapentin56, as noted above, gabapentin 

suppresses the expression of Nav1.7 Na+ channels known to be critical for peripheral pain 

coding (cit, Nav1.7).

Changes in “spontaneous” activity in the DH can also be manifestations of changes in brain 

activity. Regardless of their mechanistic origins, peripheral and spinal hyperactivity after 

nerve injury leads to changes in brain and, notably, in the descending modulatory system of 

the brainstem. The brainstem sends both facilitatory and inhibitory projections to the spinal 

cord, that, respectively, positively and negatively modulate the throughput of nociceptive 

signaling to the brain, and intense acute pain usually results in activation of the brainstem's 
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inhibitory projections23,30. After nerve injury leading to hyperalgesia, however, the overall 

activity in the brain is actually reduced33 although stimulus-evoked activity in the brainstem 

is relatively increased. Strikingly, systemic gabapentin blocks this general deactivation of 

the brain and also suppresses the brainstem's stimulus-evoked activation33. Perhaps these 

two effects of gabapentin respectively account for its ability to suppress spontaneous pain 

and evoked hyperalgesia. It would be interesting to examine the ability of systemic 

morphine to effect these changes in brain activity as a validation of the proposed 

mechanisms for spontaneous chronic post-operative pain.

If the experimental findings of the current study also hold in the clinical domain one would 

conclude that drugs that are effective in suppressing evoked, e.g. movement-related post-

thoracotomy pain, such as that caused by stretching or coughing, might be ineffective in 

dealing with spontaneous pain. Furthermore, if one psycho-physiological logical 

consequence of spontaneous pain is an elevated guarding reflex, then the tonic, unprovoked 

resting pain could result in heightened vigilance for and responsiveness to evoked pain, even 

when that evoked pain had been suppressed by directed peripheral treatments.
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Perspective

Spontaneous pain, a hallmark of chronic post-operative pain, is here demonstrated in a rat 

model of experimental post-thoracotomy pain, further validating use of this model for 

development of analgesics to treat such symptoms. Although stimulus-evoked pain was 

sensitive to systemic morphine, spontaneous pain was not, suggesting different 

mechanistic underpinnings.
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Highlights

● Experimental thoracotomy with rib retraction in the rat causes tactile allodynia.

● Systemic delivery of gabapentin or morphine can temporarily relieve this 

allodynia.

● Gabapentin but not morphine conditions a Place Preference response.

● Thus, spontaneous pain is present at 1-2 weeks after thoracotomy.

● The mechanisms underlying allodynia differ from those for spontaneous pain.
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Figure 1. 
(A) Systemic gabapentin injected on post-operative day 13 raises the mechanical threshold 

for nocifensive response back towards pre-operative levels. *P<0.05 compared to the pre-

operative level (repeated measures ANOVA on responses after gabapentin) shows that the 

relief by gabapentin never reaches the pre-operative condition. † P<0.05 compared to the 

threshold at POD 13 (repeated measure ANOVA), just before gabapentin injection, shows 

that relief is only significant for the 1 h after gabapentin. (B) Responses to gabapentin of 
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threshold in individual rats in the group that is averaged for Figure 1A. TRR, thoracotomy 

with rib retraction.
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Figure 2. 
(A) The change of ambulation activity of rats in conditioned place preference apparatus 

before and after TRR surgery. Data were obtained from the preconditioning test on POD12 

or before surgery, from a recording of the number of times any of the motion-sensing light 

beams was broken during a 15 min test period. (B) Difference in ambulation (post-op – pre-

op) verified no significant ambulation activity change after TRR surgery. Data are expressed 

as means ± S.E of 11 rats per group.
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Figure 3. 
(A) The change of shuttling activity (frequency of entries to every chamber) of rats in 

conditioned place preference apparatus before and after TRR surgery. Data were obtained 

from the preconditioning test on POD12 or before surgery of recording for 15 min. (B) 

Difference in frequency of shuttling (post-op – pre-op) showed no significant shuttling 

change after TRR surgery. Data are expressed as means ± S.E (n = 11 for each group).
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Figure 4. 
Systemic gabapentin administration alleviated TRR-induced spontaneous pain. (A) 

preconditioning times spent in the saline- or gabapentin-paired chambers were equivalent 

across all groups and all data were pooled across groups for preconditioning graphical 

representation (mean ±SE, n=22). After conditioning, TRR rats spent more time in the 

gabapentin-paired chamber than in the saline-paired chamber. Naïve and sham rats showed 

no preference for the saline- or gabapentin-paired chamber. (B) TRR rats showed 

significantly increased of difference scores in the gabapentin-paired chamber. *P<0.05 
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compared with sham group (Kruskal-Wallis analysis with multiple comparisons with post 

hoc Dunn's test).
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Figure 5. 
The correlation between the degree of allodynia reversal (change of threshold back to pre-op 

value) after gabapentin and the difference scores in the gabapentin-paired chamber for each 

individual rat.
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Figure 6. 
Systemic morphine injected on post-operative day 13 partially reversed tactile allodynia 

after TRR. *P<0.05 compared with the pre-operative level (repeated measures ANOVA). † 

P<0.05 compared to the threshold at POD 13 (repeated measure ANOVA), just before 

morphine injection, shows that relief is only significant for the 0.5 h after morphine. Data 

are expressed as means ± S.E of 7 rats.
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Figure 7. 
Systemic morphine administration failed to alter TRR-induced spontaneous pain. (A) 

preconditioning times spent in the saline- or morphine-paired chambers were equivalent 

across all groups and all data were pooled across groups for preconditioning graphical 

representation (mean ±SE, n=28). (B) After conditioning, the rats in all groups showed no 

preference for the saline- or morphine-paired chamber.
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