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Abstract

Purpose—For the application of compressive sensing to parallel MRI, Poisson disk sampling 

(PDS) has been shown to generate superior results compared with random sampling methods. 

However, due to its limited flexibility to incorporate additional constraints, PDS is not readily 

extendible to dynamic applications. Here, we propose and validate a pseudo-random sampling 

technique that allows incorporating constraints specific to dynamic imaging.

Methods—The proposed sampling scheme, called variable density incoherent spatiotemporal 

acquisition (VISTA), is based on constrained minimization of Riesz energy on a spatiotemporal 

grid. Data from both a digital phantom and real-time cine were used to compare VISTA with 

uniform interleaved sampling (UIS) and variable density random sampling (VRS). The image 

quality was assessed qualitatively and quantitatively.

Results—VISTA improved the trade-off between noise and sharpness. Also, VISTA produced 

diagnostic quality images at an acceleration rate of 15, whereas UIS and VRS images degraded 

below the diagnostic threshold at lower acceleration rates.

*Correspondence to: Rizwan Ahmad, Ph.D., The Ohio State University, 420, West 12th Avenue, Room 126A, Columbus, OH 43210., 
ahmad.46@osumc.edu. 

SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of this article.
Supporting Figure S1. Long-axis view of real-time, free-breathing cine from volunteer A for six different acceleration rates and three 
different sampling patterns (UIS, VRS, and VISTA). From each image series, the worst (in terms of artifacts) frame is shown.
Supporting Movie S1. Cine results for volunteer A at acceleration rate of 5.
Supporting Movie S2. Cine results for volunteer A at acceleration rate of 10.
Supporting Movie S3. Cine results for volunteer A at acceleration rate of 15.

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2016 November 01.

Published in final edited form as:
Magn Reson Med. 2015 November ; 74(5): 1266–1278. doi:10.1002/mrm.25507.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions—VISTA generates spatiotemporal sampling patterns with high levels of 

uniformity and incoherence, while maintaining a constant temporal resolution. Using a small pilot 

study, VISTA was shown to produce diagnostic quality images at acceleration rates up to 15.
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INTRODUCTION

Led by technological advances, the field of MRI has evolved considerably over the last two 

decades (1,2). In recent years, compressive sensing has attracted considerable attention in 

the scientific community and demonstrated notable impact on several biomedical imaging 

applications, including MRI (3,4). For cardiac MR (CMR), recent studies have demonstrated 

that the combination of compressive sensing and parallel MRI (pMRI) enables high 

temporal resolution imaging with sufficient image quality (5–7)—with the caveat of 

robustness issues using current sampling schemes, especially in dynamic imaging.

An effective application of compressive sensing, which exploits the underlying 

compressibility of the image, has three major requirements: the image is sparse in some 

transform domain, the undersampling artifact is incoherent (noise-like) in the sparsifying 

transform domain, and the image is recovered by a nonlinear method that enforces both 

image sparsity and data consistency (8). For MRI, the first requirement is generally met as 

most MRI images are compressible in an appropriate transform domain, e.g., discrete 

Wavelet domain (9,10). In recent years, significant strides have been made toward the third 

requirement by developing fast recovery algorithms for large imaging problems (11–14). 

For the second requirement, the high degree of incoherence is generally achieved by 

employing either Cartesian patterns with random or pseudo-random sampling or non-

Cartesian patterns (8,15). Although non-Cartesian sampling methods allow far greater 

flexibility in designing low-coherence sampling patterns, such sampling schemes are highly 

sensitive to system imperfections and have found limited use in clinical practice (16,17). 

Therefore, in this study, we have focused exclusively on the Cartesian sampling, with fully 

sampled readout direction.

Although random sampling provides a high degree of incoherence (18), such sampling 

patterns can generate inconsistent results (10) due to excessively large gaps or clustering in 

the sampling pattern. The large gaps lead to high g-factor for pMRI—that is, ill conditioning 

of the underlying inverse problem (10)—and the clustering leads to high correlation among 

k-space data samples, degrading the acquisition efficiency. In contrast, pseudorandom 

sampling provides a high degree of incoherence while regulating the gaps between samples 

to a nearly uniform size. For pMRI, empirical evidence indicates that pseudo-random 

sampling methods based on Poisson disk sampling (PDS) tend to generate superior results 

compared with random sampling methods (10,19). For static applications, PDS with variable 

sampling density remains a popular pseudo-random sampling scheme (19,20). PDS, 

however, cannot be readily extended to k-t domain because it does not provide a mechanism 

to maintain a constant temporal resolution across frames. For PDS, enforcing a constant 
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temporal resolution after the fact can destroy its uniformity. Therefore, most dynamic MRI 

applications resort to using random sampling (21), which can have the tendency to generate 

inconsistent results (22).

In this study, we propose a new k-t sampling method called variable density incoherent 

spatiotemporal acquisition (VISTA). Like PDS or other pseudo-random methods, VISTA 

allows 1) uniform coverage of the acquisition domain with regular gaps between samples, 2) 

incoherence, and 3) frequent sampling of the central region of k-space with high SNR. 

Importantly, the iterative nature of the VISTA design allows additional flexibility not 

offered by other pseudo-random sampling techniques. For example, VISTA possesses a 

unique ability to 1) maintain a constant temporal resolution by fixing the number of readouts 

per frame, 2) guarantee a fully-sampled, time-averaged k-space to facilitate GRAPPA or 

SPIRiT kernel estimation, 3) limit eddy currents by controlling the extent of jumps (in k-

space) from one readout to the next, and (iv) allow distributing a precise, predefined number 

of samples. Here, we have validated VISTA using simulation as well as data from real-time, 

free-breathing cine. Although only applied to two-dimensional (2D) cine, VISTA can be 

extended to other applications and to higher dimensions.

THEORY

Here, we describe the distribution based on minimal Riesz energy (MinRE), an underlying 

concept for the proposed VISTA method. In addition, we provide implementation details for 

VISTA and SPIRiT-based image reconstruction (23).

MinRE

The problem of obtaining uniform distribution of samples using MinRE has been 

investigated extensively (24,25). In its original version, the problem consists of determining 

the position of N samples (or points) on an n-sphere in Euclidean (n + 1)-space such that a 

predefined measure of mutual distances among the samples is maximized. Practically, the 

distribution based on MinRE is obtained by minimizing a nonconvex cost function, U (26):

where

[1]

where c > 0 is a scaling constant,  represent N samples, with column vector 

being the Cartesian coordinates in n + 1 spatial dimensions defining the location of the jth 

sample on n sphere. Here, . The minimizing set of samples  is often 

referred to as “Fekete points.” For s = 1, U represents the electrostatic potential energy of N 

charged particles, each with charge c, on the sphere that repel each other according to the 

Coulomb’s law.
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The value of U can be minimized iteratively using a gradient descent method. In each 

iteration, every sample is displaced in the direction of steepest descent: . For the rth 

iteration, the displacement of the ith sample is given by

[2]

where the constant λ controls the displacement step size, and  represents the steepest 

descent direction for the ith sample. After updating the location of the ith sample (Eq. 2), it is 

projected back to the manifold (sampling domain), which, for a unit sphere, is equivalent to 

normalizing  to unit length. The process is repeated for all points, and it is iterated until 

convergence.

VISTA

For 2D dynamic CMR, we seek distribution based on MinRE on a k-t grid, which can be 

achieved by minimizing U over a 2D Cartesian grid under periodic boundary conditions. To 

create variable sampling density, we modify the original cost function by replacing c with 

, yielding

where

[3]

Here,  defines the Cartesian coordinates of the ith sample on the k-t grid, 

represents user-defined constraints on the distribution of samples, and 

, with diagonal matrix W specifying the relative scaling of t and k 

dimensions of the k-t grid. The minimizing set of samples  gives VISTA.

Unlike the traditional MinRE problem (Eq. 1),  in VISTA is not constant and varies 

with location on the k-t grid. In terms of the Coulomb’s law, this setup is analogous to 

introducing location-dependent changes in the magnitude of the electric charge on the 

samples. By reducing the magnitude of the charge near the center of k (phase encoding 

dimension), the sampling density toward the center can be increased. Although several 

parametric and nonparametric models can be used to represent  we have chosen it to be 

a Gaussian function,

[4]
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where 1 ≤ k ≤ K is the phase encoding index, and the parameters 0 ≤ α ≤ 1 and σ > 0 control 

the sampling density profile. Note,  is only a function of k but not t, because no density 

variation is desired along time.

For a given choice of  the value of U in Equation 3 can be minimized iteratively using a 

gradient descent method in which every sample is displaced in the direction of steepest 

descent in each iteration. For the ith sample, the negative of the steepest descent 

(displacement direction) is given by

[5]

where  is the gradient of  at location , and  represents matrix-

vector multiplication.

The iterative implementation of VISTA is suitable for incorporating a variety of constraints 

in the distribution of the samples. In this study, we have enforced three constraints: constant 

temporal resolution, fully sampled, time averaged k-space (FTAK), and sampling on a 

Cartesian grid. To ensure constant temporal resolution, we started with an initialization such 

that the number of samples across frames is either fixed or differ at the most by one. 

Subsequently, the second component of the gradient  was set to zero in each iteration to 

prohibit displacement across frames. The FTAK and Cartesian constraints were enforced 

similarly using gradient projections (27). FTAK facilitates kernel estimation for GRAPPA 

or SPIRiT, thus eliminating the need to collect additional calibration data.

The steps involved in computing VISTA are as follows:

Stage I (Optional)

S1-a: For a given k-t grid size and net acceleration rate, R, initialize with a frame-

invariant uniform sampling, with the sampling density given by .

S1-b: In each frame, add a small random jitter (in the phase encoding direction) to the 

location of the samples.

Stage II

S2-a: Use the 2D sampling from the S1-b step as an initialization and minimize U (Eq. 

3) by applying an iteration of gradient descent on all samples under periodic boundary 

conditions. Set the second component of the gradient, , to zero so that the samples 

do not drift along the temporal dimension.

S2-b: At the end of every mth iteration, use gradient projections to ensure FTAK and 

that the samples reside on a Cartesian grid.

S2-c: Repeat Stage S2-a and S2-b until convergence.

For illustration, the sampling patterns after steps S1-a, S1-b, and S2-c are depicted in Figure 

1.
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The S1-a step is intended to encourage in-frame uniformity. For a given  map, this step 

generates an identical distribution in each frame, with the distances between adjacent in-

frame samples determined by the profile . The S1-b step is included to ensure that there 

is some frame-to-frame variation in the distribution and thus avoid convergence to bad local 

minima in Stage II. Because VISTA is sensitive to initialization, the inclusion of Stage I 

promotes in-frame uniformity and positively impacts the output of Stage II. The parameter 

W, in Stage II, provides additional control over the uniformity in the k-t domain versus the 

uniformity in individual frames.

The uniformity of the distribution based on MinRE has been studied extensively (28,29), but 

the incoherence of such sampling patterns has not been considered. We argue that VISTA, 

when initialized with random or perturbed patterns, results in incoherent sampling patterns 

in the ambient k-t domain. Figure 2 reports the 2D point spread function (PSF) of MinRE 

and VISTA patterns. The PSF was computed by taking the 2D Fourier transform of the 

sampling pattern in the k-t domain. Here, the side lobes of the PSF are used as a surrogate 

measure of incoherence. The PSF of the distribution based on MinRE has a visible annulus 

and strongly resembles the previously reported PSF of PDS (19). Compared with the 

distribution based on MinRE, VISTA has slightly stronger coherence, which reflects the 

structure introduced by additional constraints enforced in VISTA. Note, MinRE and VISTA 

exhibit incoherence in the ambient sampling domain, which may or may not fully translate 

to incoherence in a transform domain (4), but this limitation is not unique to VISTA and 

extends to almost all random or pseudorandom sampling patterns.

Advantages Over PDS

Dynamic pMRI, with two spatial and one temporal dimension, is not a true three-

dimensional (3D) problem. Although the sparsity promoting regularization can be applied in 

the joint 3D spatiotemporal domain, the self-consistency constraint, which originates from 

employing multiple receiver coils, still applies to individual 2D frames and can benefit from 

the in-frame uniformity of the sampling. Therefore, uniformity of the distribution both in the 

k-t domain and in individual frames, along with the incoherence in the k-t domain, plays an 

important role in determining image quality. This is where VISTA offers a distinct 

advantage over random sampling and PDS. VISTA, by controlling the initialization (Stage I) 

and the diagonal entries of W in Equation 3, can manage uniformity in both 2D k-t domain 

and individual frames, while PDS has no mechanism to control in-frame uniformity of the 

sampling. Also, unlike PDS, VISTA can ensure FTAK, which facilitates kernel estimation 

for SPIRiT-type methods or coil sensitivity estimation for SENSE-type methods.

Figure 3 illustrates the relative merits of VISTA over PDS. The VISTA and PDS sampling 

patterns shown in Figure 3a were used to simulate data from a 120 × 120 dynamic phantom 

with 48 frames. (The phantom construction and the reconstruction process are described 

later.) Figure 3b displays the number of samples (i.e., readout lines) in each frame. In Figure 

3c, the sampling patterns in the seventh frame are shown. From Figure 3c, it is clear that the 

uniformity provided by PDS in the k-t domain (Fig. 3a) did not translate to uniformity in 

individual frames. The sampling in individual frames of PDS was clustered and thus was not 

conducive to pMRI. Figure 3d shows error images (×5) for the seventh frame. Across all 
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frames, the reconstruction from PDS had 76% higher root mean squared error (RMSE) 

compared with the reconstruction from VISTA.

More importantly, PDS sampling, in its current form, cannot ensure a constant temporal 

resolution. The varying number of samples in each frame (Fig. 3b) makes PDS unsuitable 

for dynamic applications, where constant temporal resolution is desired. There is no trivial 

way to enforce a constant temporal resolution in PDS while maintaining the uniformity of 

the distribution. On the other hand, VISTA generates a sampling pattern by maximizing the 

separation among the samples via a cost function minimization, and this framework allows 

enforcing constant temporal resolution while maintaining uniformity. Due to the 

aforementioned limitations of PDS for dynamic applications, it has been excluded from the 

rest of the study.

Image Recovery

The recently described SPIRiT (23,30)—an autocalibrating pMRI reconstruction method—

offers a framework to incorporate sparsity-promoting spatiotemporal regularization into 

pMRI reconstruction and thus exploit both the sparsity of MRI signal and the incoherence of 

VISTA. Here, we have used a reconstruction framework (ℓ1-SPIRiT) that combines SPIRiT 

with ℓ1 -regularization in the joint spatiotemporal domain (23). If y represents the acquired 

noisy k-space data, x represents the desired fully sampled k-space data for all coils and all 

frames, S denotes the sampling pattern based on VISTA, and Gx represents frame-by-frame 

application of SPIRiT kernels, then x can be estimated by solving

[6]

where F represents the frame-by-frame inverse 2D Fourier transform, ψ denotes the 

sparsifying transform for the spatiotemporal image Fx, operator 𝓡 represents a hybrid ℓ2 – 

ℓ1 norm (ℓ2 norm across coils followed by ℓ1 norm across the sparsifying domain), and λ1 

and λ2 control the extent of data consistency (second term in Equation 6) and regularization 

(third term in Equation 6), respectively. Note that the application of VISTA is not tied to ℓ1-

SPIRiT, and other pMRI recovery methods can equally benefit from the proposed sampling 

technique.

METHODS

Generating Different Sampling Patterns

In this study, we compared image reconstruction using VISTA with image reconstruction 

using two commonly employed sampling methods: uniform interleaved sampling (UIS) and 

variable density random sampling (VRS). In VRS, each frame had an independent, random 

sampling pattern. For a fair comparison, the sampling density of VRS was adjusted such that 

it matched the sampling density of VISTA. Also, additional samples, if required, were added 

to the last frame of VRS to ensure FTAK.

2D VISTA was computed using two stages described in the previous section. The cost 

function, U, in Equation 3, was minimized using a gradient descent method under periodic 
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boundary conditions. We chose the value of s to be 1.4. To vary sampling density, we chose 

α = 1/ 4 and σ = K/4. For the 2 × 2 diagonal matrix, W, we chose W(1,1) = 1 and W(2,2) = 

max(R/8, 1). A total of 120 iterations were used to minimize U. There was no difference in 

the parameter values or the implementation of VISTA used for simulation and in vivo 

studies except for the k-t grid size. For simulation, VISTA sampling patterns were generated 

on a 120 × 48 k-t grid, whereas for in vivo data, VISTA patterns were generated on a 144 × 

48 k-t grid. Before acquisition, the samples in all odd frames were sorted in ascending order, 

while the samples in all even frames were sorted in descending order. This reordered zig-

zagging through k-space minimizes gradient jumps from one readout line to the next and 

thus limits eddy currents associated with rapid gradient switching (31). The comparison 

among the three sampling methods was made across eleven different acceleration rates: R = 

3–12, 15. Some of the sampling patterns used for in vivo data are shown in Figure 4. A 

MATLAB (MathWorks, Natick, Massachusetts, USA) code to implement VISTA can be 

downloaded from https://github.com/osu-cmr/vista.

Implementation of ℓ1 -SPIRiT

ℓ1-SPIRiT was implemented by solving the optimization problem given in Equation 6 via 

nonlinear conjugate gradient (NLCG) with backtracking line-search. To compute the 

derivative of the last term in Equation 6, a smoothing technique was used that replaces the 

nonsmooth ℓ1 norm with a smooth version by defining

where ε > 0 is a small positive real number (smoothing parameter) and xi and  are the ith 

element of x and its complex conjugate, respectively.

To jointly exploit the structure across space and time, we applied the regularization in the 

joint 3D spatiotemporal domain. We used weighted 3D redundant Haar wavelet with single-

level decomposition as the sparsifying transform, Ψ (32). The detail subbands along the third 

(time) dimension (LLH, LHH, HLH, and HHH) were weighted by R, the net acceleration 

rate. This weighting was intended to capture the higher temporal correlation expected at 

higher R as a result of increased frame rate. Because the edges in individual coil images 

appear at the same spatial position, wavelet coefficients exhibit similar sparsity patterns 

across coils. To exploit this structure across coils, a recently proposed joint sparsity model 

was used, which employs a hybrid ℓ2 – ℓ1 norm for the wavelet coefficients (19,33).

The SPIRiT kernels of size 7 × 7—which are used to construct the matrix G in Equation 6—

were estimated from FTAK. For the VRS and VISTA datasets, we chose λ1 = 1 × 10−2, λ2 = 

5 × 10−6. For the UIS datasets, we chose λ1 = 1 × 10−2, λ2 = 10 × 10−6. For all datasets, 

weighting of the detail subbands of the 3D redundant Haar wavelet along the time 

dimension was set equal to R. Before processing, the measured k-spaced data, y, was 

normalized by multiplying with . These parameters were selected based on 

our experience with the simulated data. The same parameters were used for simulation and 

in vivo data.
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A total of 30 NLCG iterations were used to perform the minimization in Equation 6. For the 

first 27 (90%) iterations, the estimated data were replaced with the measured noisy data, 

whereas for the last three (10%) iterations, the estimated data were allowed to evolve and 

were not replaced with the measured noisy data. We also observed that initialization had a 

significant impact on the number of iterations it takes for ℓ1-SPIRiT reconstruction to 

converge. In this study, we used an initialization that employed view-sharing (34) across 

three adjacent frames followed by the application of GRAPPA with a 2 × 11 kernel size. 

This initialization led to faster convergence, well before 30 NLCG iterations. After the final 

iteration, the individual coil images were combined using the sum-of-squares method.

Performance Metrics

Variable density sampling patterns and regularized image recovery methods invariably offer 

a trade-off between image sharpness and SNR, much like the bias-variance trade-off 

encountered in the estimation theory. Therefore, it is important to measure both of these 

quantities. For the in vivo cine data, we used two quantitative performance metrics of noise 

and edge sharpness and one qualitative performance metric based on expert evaluation of 

overall image quality. The sharpness was quantified for the left ventricular boundary in 

short-axis orientation. To improve measurement accuracy, all frames were used collectively 

to measure the sharpness. For each sampling method, three expert readers—a physicist 

(O.P.S.) with over 20 years of CMR experience, a cardiologist (J.C.) with level III 

certification in CMR, and a radiologist with 5 years of CMR experience—evaluated the 

overall image quality using a Likert scale (where 1 is the worst and 5 is the best), with a 

score of 3 or more representing adequate diagnostic quality. For the simulation data, where 

the noiseless ground truth was available, we used three quantitative performance metrics: 

RMSE, noise, and edge sharpness.

The sharpness quantification method used in this study is based on parametric modeling of 

image edges, where the image intensity profiles across user-selected edges are modeled by a 

sigmoid function (35,36). There are no standard methods for measuring SNR or noise when 

spatiotemporal regularization is applied because it correlates noise across space and time. In 

this study, we extended the image difference-based method (37) such that the impact of 

correlation across neighboring frames is minimized. First, we selected image region or 

regions which are either static or have minimal signal, e.g., the peripheral air regions. 

Second, the data from these regions were organized into a 2D matrix, with the ith column 

containing all the pixels from the selected regions in the ith frame. Third, the ordering of the 

columns was randomized to minimize the impact of correlation across neighboring frames. 

Fourth, the forward difference was computed across columns by subtracting the ith column 

from the (i + 1)th column. Fifth, the resulting matrix, with i – 1 columns, was rearranged into 

a 1D vector. Finally, the standard deviation of the vector was defined as noise.

Simulation

To compare imaging results from UIS, VRS, and VISTA, a 120 × 120 dynamic digital 

phantom (38) with 48 temporal frames was created in MATLAB. The phantom consisted of 

both dynamic and static features. The dynamic ellipses had a periodic motion, with the 

frequency of the motion (number of cardiac cycles per frame) inversely proportional to the 
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acceleration rate, R. To emulate experimental conditions, 12 uniformly spaced circular 

receive coils were simulated around the phantom using the Biot-Savart law. The image 

frames generated from the sum-of-squares of fully sampled, noiseless data were used as the 

ground truth; six such . frames are shown in Figure 5.

Real-Time Cine

Real-time cardiac cine data were acquired with UIS, VRS, and VISTA (3T Siemens, 32-

channel cardiac array) at eleven different acceleration rates (R = 3—12, 15) from four 

healthy volunteers labeled A, B, C, and D. When the net acceleration rate was not an integer, 

the reported R represents the value after rounding the net acceleration rate to the nearest 

integer. The acquisition was performed under free-breathing conditions in both short and 

long-axis orientations. Other imaging parameters were as follows: 48 frames; matrix = 224 × 

144; field of view = 360 × 288 mm2 for volunteers A, B, and C and 400 × 320 mm2 for 

volunteer D; slice thickness = 8 mm; SSFP sequence; TE of 1 ms, TR of 2.7 to 2.8 ms, 

receiver bandwidth = 1500 Hz/pixel; and flip angle = 60°. To collect data on the scanner, 

each sampling pattern was stored and retrieved as a lookup table. The acquisition order of 

the three patterns was randomized to minimize bias. For each volunteer, all 66 datasets 

(three sampling patterns, eleven acceleration rates, and two views) were collected back-to- 

back in one session. All aspects of the human study were approved by the local Institutional 

Review Board, and all subjects gave written consent for participation.

Computing Resources

All the data processing—including computation of VISTA and implementation of ℓ1-

SPIRiT—was performed off-line using a single workstation. The workstation was equipped 

with 64-bit MATLAB. It had an eight-core Intel Core i7-960 CPU running at 3.20 GHz with 

24 GB system memory. For in vivo experiments, VISTA was computed in advance and the 

resulting sampling patterns were stored as lookup tables. During acquisition, the phase 

encoding indices were read directly from the tables. Once the data were collected, they were 

transferred to the dedicated workstation where they were processed and analyzed. For faster 

reconstruction, the frequency encoding direction was cropped in image space to 

approximately half of its original size, and the 32-channel data were compressed to generate 

12 virtual channels (39).

RESULTS

Simulation

For the three sampling patterns considered in this study, Figure 6 shows the reconstruction 

results for six of the eleven acceleration rates. The difference images, after 5-fold 

amplification, are also shown. The frames shown here represent the worst-case scenario (i.e., 

out of the 48 frames available for each sampling method, we have displayed the frame with 

the highest RMSE for that method). Figure 7 shows the four quality metrics of the 

reconstructed images. Because temporal regularization affects static and dynamic edges 

differently, sharpness for a static and a dynamic edge is reported separately. The 

reconstruction time for each dataset was approximately 20 min.
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Real-Time Cine

Figure 8 and Supporting Figure S1 show the reconstruction results for six of the eleven 

acceleration rates for UIS, VRS, and VISTA for volunteer A. Figure 8a shows frames for the 

short-axis view, and Figure 8b shows temporal profiles for pixels along the dashed line 

drawn on the top-left image in Figure 8a. The arrows in Figure 8b point to the visible 

artifacts in the reconstruction. Supporting Figure S1 is similar to Figure 8a but shows the 

long-axis view for volunteer A. The frames shown in Figures 8a and S1 represent the worst-

case scenario (in terms of visible artifacts) for each of the selected datasets. If all frames in a 

reconstructed image series had the same quality, the frame was picked at random. The cine 

results for volunteer A are also captured in three movies for acceleration rates of 5 

(Supporting Movie S1), 10 (Supporting Movie S2), and 15 (Supporting Movie S3). The 

frame rate of the movies was adjusted in accordance to the acceleration rate so that each 

movie displays the real-time dynamics of the heart. Figure 9 shows the image quality 

metrics. The edge sharpness was measured for the left ventricular boundary in the short-axis 

orientation for volunteers A and B. Both noise and edge sharpness were measured separately 

in all four volunteers but are reported for the first two volunteers only. The results from the 

other two volunteers were similar and are not shown. The results of overall image quality as 

assessed by three expert readers are reported in Table 1. The reconstruction time for each 

dataset was approximately 25 to 30 min.

DISCUSSION

The proposed VISTA sampling when coupled with joint spatiotemporal reconstruction 

results in high-fidelity images with minimal aliasing artifacts. As indicated by simulation 

and small in vivo study, the VISTA reconstruction exhibits lower RMSE, higher SNR, and 

higher edge sharpness compared with UIS and VRS. The evaluation by the experts also 

indicates that VISTA-based images retain adequate diagnostic quality at high acceleration 

rates. For rate 12, only one of the 24 scores assigned to VISTA-based reconstruction was 

below 3 (diagnostically unacceptable). Likewise, only one of the 24 scores assigned to 

VISTA-based reconstruction was below 3 for rate 15. In contrast, for UIS and VRS, 100% 

and 58% of the scores were below 3 at rate 12, respectively, and 100% and 83% of the 

scores were below 3 at rate 15, respectively.

The image quality for UIS and VISTA is similar at low acceleration rates (Table 1 and 

Figure 9), where the problem is well-conditioned and does not rely heavily on the 

regularization. At high acceleration rates, where the image recovery relies more on the 

regularization, VISTA consistently outperforms UIS. At high acceleration rates, UIS 

generates images with strong undersampling artifacts. Such artifacts are visible at R > 6 in 

both the simulation and the in vivo data. To suppress these excessive artifacts in UIS, we 

used slightly higher regularization (λ2) compared with VISTA and VRS, but this higher 

value had a modest impact on the image quality. Further increase in λ2 for UIS resulted in 

severe image blurring.

Compared with VISTA, the performance of VRS is consistently worse, even at low 

acceleration rates, where the poor g-factor associated with VRS is not adequately 

compensated by its incoherence. A frame-by-frame examination of the image series reveals 
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that VRS does not generate consistent results across all frames. This fact is evident from 

Figure 6, which displays the worst-case scenario. This uncertainty in the performance of 

VRS is often mitigated by including a fully sampled region in the center of the k-space. 

Because each coil in the array has a different phase map, its center of k-space center is 

slightly shifted from the nominal position. To account for this variation, the fully sampled 

region is selected conservatively and often spans a nonnegligible fraction of the k-space to 

cover the high energy regions in all coils. The downside of this approach is that it limits the 

net acceleration that can be achieved using VRS. In addition, this approach reduces the 

sampling density for higher spatial frequency regions. We have experimentally observed 

(data not shown) that increasing the sampling density in the central regions of k-space 

progressively degrades image resolution. Therefore, although the uncertainty in VRS results 

can be reduced by densely sampling the center of k-space, this strategy may only further 

degrade the image sharpness.

For both the phantom and the in vivo data, VISTA offers a better sharpness–noise trade-off 

(i.e., it is simultaneously superior in both categories). Interestingly, the sharpness curves of 

dynamic boundaries in the digital phantom (Fig. 7d) decrease steeply with acceleration rate 

and do not match the sharpness curves from the cine results that exhibit an initial increase 

followed by a more gradual decrease in sharpness (Fig. 9c and 9d). The steeper decline in 

phantom sharpness can be attributed to higher initial sharpness of the digital phantom. For 

real-time cine results, the initial increase in measured sharpness, which is observed for all 

three sampling methods, reflects the impact of intraframe cardiac motion that is present in 

the cine data and not in the phantom data. For a given experimental setup, a lower 

acceleration rate equates to a lower temporal resolution for real-time cine. Therefore, the 

effect of the intraframe motion gets progressively worse with a decrease in acceleration rate, 

leading to sharpness loss at lower acceleration rates. This intraframe motion is also 

responsible for the relatively lower quality scores at rates 3 and 4 (Table 1).

VISTA offers a framework to generate pseudo-random, incoherent sampling patterns with 

parametrically controlled sampling density. More importantly, the iterative nature of VISTA 

allows flexibility that is not present in other pseudo-random sampling methods. For 

example, in VISTA, it is possible to ensure that the average-all data are fully sampled in k-

space or that the number of readout lines in each frame is fixed. Also, VISTA has the 

potential of offering other advantages that have not been validated here. For example, by 

manipulating the matrix W in Equation 3, it is possible to generate sampling with anisotropic 

acceleration (19).

Our current MATLAB implementation of VISTA is significantly slower compared with 

other pseudo-random methods. For the data presented here, it took approximately 2 to 3 min 

to compute VISTA for the worst-case scenario (largest k-t grid, lowest acceleration). 

However, our current implementation of VISTA can be sped up by C++ implementation and 

parallel computing using graphical processing units. For a given CMR application, we 

anticipate that the number of tables required to cover a wide range of experimental 

conditions will only be in the hundreds. Therefore, look-up tables also provide a viable 

solution. Another limitation of VISTA is the possibility of converging to bad local minima. 
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However, after including a random jitter (S1-b in Stage I) in the initialization, we did not 

observe such an occurrence.

The flexibility of VISTA inadvertently introduces free parameters. For the VISTA setup 

reported in this study, the user is responsible for selecting four parameters: s, α, σ, and 

second diagonal entry of W [i.e., W(2,2)]. We selected s = 14, but selecting a different value 

in the range of 1 ≤ s ≤ 1.5 did not have a significant impact on incoherence or image quality. 

The values of a and s control the sampling density and thus offer a trade-off between image 

sharpness and robustness. Densely sampling the center of k-space—at the expense of 

sampling in the peripheral regions—improves robustness but degrades image sharpness. 

Note, the problem of selecting an optimal sampling density is not unique to VISTA and is 

common to all random or pseudo-random sampling methods and requires further 

investigation. Based on our experience with the simulation data, we chose α = 1/4, σ = K/4, 

and W(2, 2) = max(R/8, 1). We anticipate that application-specific tuning of these 

parameters may be necessary for optimized performance.

CONCLUSIONS

In this study, we proposed a pseudo-random, incoherent sampling technique, VISTA, which 

is based on minimal Riesz energy problem. Compared with other pseudorandom methods 

(e.g., PDS), VISTA has the unique ability to incorporate a variety of problem-specific 

constraints. In this study, VISTA was applied to real-time CMR, where it not only provided 

an incoherent sampling with variable density but also ensured a constant temporal resolution 

and a fully sampled time-averaged data. VISTA was validated using simulation and in vivo 

data. Compared with other commonly employed sampling strategies, VISTA generates more 

consistent results with superior noise–sharpness trade-off, especially at high acceleration 

rates.
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Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank Juliana Serafim da Silveira for evaluating image quality.

Grant sponsor: National Heart, Lung, and Blood Institute; Grant number: R01HL102450.

REFERENCES

1. Sobol WT. Recent advances in MRI technology: implications for image quality and patient safety. 
Saudi J Ophthalmol. 2012; 26:393–399. [PubMed: 23961024] 

2. Attili AK, Schuster A, Nagel E, Reiber JHC, van der Geest RJ. Quantification in cardiac MRI: 
advances in image acquisition and processing. Int J Cardiovasc Imaging. 2010; 26(suppl 1):27–40. 
[PubMed: 20058082] 

3. Wang G, Bresler Y, Ntziachristos V. Compressive sensing for biomedical imaging. IEEE Trans 
Med Imaging. 2011; 30:1013–1016. [PubMed: 21692237] 

4. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR 
imaging. Magn Reson Med. 2007; 58:1182–1195. [PubMed: 17969013] 

Ahmad et al. Page 13

Magn Reson Med. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Kim D, Dyvorne HA, Otazo R, Feng L, Sodickson DK, Lee VS. Accelerated phase-contrast cine 
MRI using k-t SPARSE-SENSE. Magn Reson Med. 2012; 67:1054–1064. [PubMed: 22083998] 

6. Jung H, Park J, Yoo J, Ye JC. Radial k-t FOCUSS for high-resolution cardiac cine MRI. Magn 
Reson Med. 2010; 63:68–78. [PubMed: 19859952] 

7. Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging 
for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med. 2010; 64:767–776. 
[PubMed: 20535813] 

8. Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. IEEE Signal Process Mag. 
2008; 25:72–82.

9. Majumdar A, Ward RK. An algorithm for sparse MRI reconstruction by Schatten p-norm 
minimization. Magn Reson Imaging. 2011; 29:408–417. [PubMed: 20952139] 

10. Lustig, M.; Alley, M.; Vasanawala, S.; Donoho, DL.; Pauly, JM. L1 SPIR-iT: Autocalibrating 
parallel imaging compressed sensing; Proceedings of the 17th Annual Meeting of ISMRM; 
Honolulu, Hawaii, USA. 2009. p. 379

11. Becker S, Bobin J, Candes E. NESTA: a fast and accurate first-order method for sparse recovery. 
SIAM J Imaging Sci. 2011; 4:1–39.

12. Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. 
SIAM J Imaging Sci. 2009; 2:183–202.

13. Osher S, Mao Y, Dong B, Yin W. Fast linearized bregman iteration for compressive sensing and 
sparse denoising. arXiv Prepr. 2011 arXiv1104.0262. 

14. Som S, Schniter P. Compressive imaging using approximate message passing and a markov-tree 
prior. IEEE Trans Signal Process. 2012; 60:3439–3448.

15. Ahmad, R.; Potter, L.; Kuppusamy, P. Oscillating radial trajectories for reduced undersampling 
artifacts; Proceedings of the 17th Annual Meeting of ISMRM; Honolulu, Hawaii, USA. 2009. p. 
575

16. Jung Y, Jashnani Y, Kijowski R, Block WF. Consistent non-cartesian off-axis MRI quality: 
calibrating and removing multiple sources of demodulation phase errors. Magn Reson Med. 2007; 
57:206–212. [PubMed: 17139618] 

17. Brodsky EK, Samsonov AA, Block WF. Characterizing and correcting gradient errors in non-
cartesian imaging: are gradient errors linear time-invariant (LTI)? Magn Reson Med. 2009; 
62:1466–1476. [PubMed: 19877274] 

18. Candes EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Process Mag. 
2008; 25:21–30.

19. Vasanawala SS, Murphy MJ, Alley MT, Lai P, Keutzer K, Pauly JM, Lustig M. Practical parallel 
imaging compressed sensing MRI: summary of two years of experience in accelerating body MRI 
of pediatric patients. Proceedings of the 2011 IEEE International Symposium on Biomedical 
Imaging: From Nano to Macro. :1039–1043.

20. Ramani S, Fessler JA. Regularized parallel mri reconstruction using an alternating direction 
method of multipliers. Proceedings of the 2011 IEEE International Symposium on Biomedical 
Imaging: From Nano to Macro. :385–388.

21. Feng L, Srichai MB, Lim RP, Harrison A, King W, Adluru G, Dibella EVR, Sodickson DK, Otazo 
R, Kim D. Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE. Magn Reson 
Med. 2013; 70:64–74. [PubMed: 22887290] 

22. Liu D-D, Liang D, Zhang N, Liu X, Zhang Y-T. Under-sampling trajectory design for compressed 
sensing based DCE-MRI. Annual International Conference of the IEEE Engineering in Medicine 
and Biology Society. 2013; 2013:2624–2627.

23. Murphy M, Alley M, Demmel J, Keutzer K, Vasanawala S, Lustig M. Fast l1-SPIRiT compressed 
sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. 
IEEE Trans Med Imaging. 2012; 31:1250–1262. [PubMed: 22345529] 

24. Hardin D, Saff E. Discretizing manifolds via minimum energy points. Not AMS. 2004; 51:1186–
1194.

25. Kovari T, Pommerenke C. On the distribution of Fekete points. Math-ematika. 1968; 15:70–75.

26. Bendito E, Carmona A, Encinas AM, Gesto JM. Estimation of Fekete points. J Comput Phys. 
2007; 225:2354–2376.

Ahmad et al. Page 14

Magn Reson Med. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Luenberger, DG. Optimization by Vector Space Methods. New York: Wiley Interscience; 1969. 

28. Marzo J, Ortega-Cerda J. Equidistribution of the Fekete points on the sphere. Constr Approx. 2008; 
32:513–521.

29. Kuijlaars ABJ, Saff EB, Sun X. On separation of minimal Riesz energy points on spheres in 
Euclidean spaces. J Comput Appl Math. 2007; 199:172–180.

30. Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging reconstruction from 
arbitrary k-space. Magn Reson Med. 2010; 64:457–471. [PubMed: 20665790] 

31. Bieri O, Markl M, Scheffler K. Analysis and compensation of eddy currents in balanced SSFP. 
Magn Reson Med. 2005; 54:129–137. [PubMed: 15968648] 

32. Liu J, Lefebvre A, Zenge MO, Schmidt M, Mueller E, Nadar MS. 2D bSSFP real-time cardiac 
CINE-MRI: compressed sensing featuring weighted redundant Haar Wavelet regularization in 
space and time. J Cardiovasc Magn Reson 2013. 2013; 15:49.

33. Fornasier M, Rauhut H. Recovery algorithms for vector-valued data with joint sparsity constraints. 
SIAM J Numer Anal. 2006; 46:577–613.

34. Markl M, Hennig J. Phase contrast MRI with improved temporal resolution by view sharing: k-
space related velocity mapping properties. Magn Reson Imaging. 2001; 19:669–676. [PubMed: 
11672625] 

35. Dijk J, van Ginkel M, van Asselt RJ, van Vliet LJ, Verbeek PW. A New Sharpness Measure Based 
on Gaussian Lines and Edges. Computer Analysis of Images and Patterns: Lecture Notes in 
Computer Science. 2003; 2756:149–156.

36. Ding, Y.; Ahmad, R.; Xue, H.; Ting, ST.; Jin, N.; Simonetti, OP. ISMRM Workshop on Data 
Sampling and Image Reconstruction. Sedona, Arizona, USA: 2013. Comparing Boundary 
Sharpness of SENSE and GRAPPA. 

37. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise 
ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J 
Magn Reson Imaging. 2007; 26:375–385. [PubMed: 17622966] 

38. Palaniappan P, Simonetti OP, Ding Y. De-noising of dynamic magnetic resonance images by the 
combined application of wavelet filtering and Karhunen-Loeve transform (KLT). J Cardiovasc 
Magn Reson. 2012; 14:W71.

39. Buehrer M, Pruessmann KP, Boesiger P, Kozerke S. Array compression for MRI with large coil 
arrays. Magn Reson Med. 2007; 57:1131–1139. [PubMed: 17534913] 

Ahmad et al. Page 15

Magn Reson Med. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 1. 
Rate-8 VISTA distribution on a 64 × 64 grid at the various stages of implementation. 

Horizontal and vertical axes represent time and phase encoding directions, respectively. a: 
Distribution from S1-a step in Stage I. The spacing between the phase-encoding lines is 

determined by the profile c (Eq. 4). b: The distribution in panel a after adding a random 

frame-by-frame jitter (S1-b, Stage I). c: From the initialization given in panel b, the final 

pattern achieved by minimizing the cost function given in Equation 3 (S2-c, Stage II).
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FIG. 2. 
Comparison of PSFs for rate-8 random, MinRE, and VISTA distributions on a 64 × 64 grid. 

In the first set (a–d), no constraints were imposed on the distribution. In the second set (e–f), 

two constraints were imposed on the distribution: constant temporal resolution and variable 

density along the phase encoding direction. a: Random sampling. b: PSF of the sampling in 

panel a. c: The corresponding MinRE distribution. d: PSF of the sampling in panel c. e: 
Random sampling with constant temporal resolution and variable density. f: PSF of the 

sampling in panel e. g: The corresponding VISTA distribution with constant temporal 

resolution and variable density. h: PSF of the sampling in panel g. The peak side lobe in 

panel h is 26% stronger than the peak side lobe in panel d.
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FIG. 3. 
Comparison of VISTA (left) and PDS (right). a: The two sampling patterns on a 120 × 48 k-

t grid, with R = 12. Here, the horizontal axis represents time (frames), and the vertical axis 

represents the phase encoding direction. Each sample on the 2D grid represents a readout 

line along the third orthogonal direction (not shown). b: The number of samples (readout 

lines) in each column (frame) of the sampling grid. c: The sampling patterns in the seventh 

frame. Here, FE and PE denote frequency encoding and phase encoding directions, 
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respectively. d: The error images (×5) corresponding to the seventh frame. [Color figure can 

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 4. 
Sampling patterns on a 144 × 48 grid used for in vivo acquisition. Here, the horizontal axis 

represents time (frames), and the vertical axis represents the phase encoding direction. Each 

sample on the 2D grid represents a readout line along the third orthogonal direction (not 

shown). a: Uniform interleaved sampling (UIS). b: Variable density random sampling 

(VRS). c: VISTA distribution. Only six (out of eleven) acceleration rates are displayed.
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FIG. 5. 
Representative frames from the 120 × 120 digital phantom used in simulation. The phantom 

contains both static (ellipses and a rectangle) and dynamic (ellipses) features. The frames 

were selected to capture the distinct phases of the cyclic motion of the dynamic features.
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FIG. 6. 
Representative simulation results for six different acceleration rates. The worst (in terms of 

RMSE) frame from each dataset is presented. a: Results from the UIS distribution. b: 
Results from the VRS distribution. c: Results from the VISTA distribution. In each panel, 

the first row displays frames from the reconstructed images, and the second row represents 

the magnitude of the difference image after 5-fold amplification.
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FIG. 7. 
Quantification of simulation results. The comparison is made in terms of RMSE (a), noise 

(b), and image sharpness (c, d). For sharpness measurement, both static (c) and dynamic (d) 

features were considered. [Color figure can be viewed in the online issue, which is available 

at wileyonlinelibrary.com.]
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FIG. 8. 
Short-axis view of real-time, free-breathing cine from volunteer A. a: Individual frames 

from UIS, VRS, and VISTA with six different acceleration rates. From each image series, 

the worst (in terms of visible artifacts) frame is presented. b: Temporal profiles along the 

dashed line drawn on the top-left image in panel a. [Color figure can be viewed in the online 

issue, which is available at wileyonlinelibrary.com.]
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FIG. 9. 
Quantification of real-time cine results from volunteer A (a and c) and volunteer B (b and 

d). The comparison is made in terms of noise and image sharpness. For the sharpness 

measurement, a left ventricular boundary (inset) is used. [Color figure can be viewed in the 

online issue, which is available at wileyonlinelibrary.com.]
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