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Spatiotemporal Coding of Individual Chemicals by the
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Four of the five major sensory systems (vision, olfaction, somatosensation, and audition) are thought to use different but partially
overlapping sets of neurons to form unique representations of vast numbers of stimuli. The only exception is gustation, which is thought
to represent only small numbers of basic taste categories. However, using new methods for delivering tastant chemicals and making
electrophysiological recordings from the tractable gustatory system of the moth Manduca sexta, we found chemical-specific information
is as follows: (1) initially encoded in the population of gustatory receptor neurons as broadly distributed spatiotemporal patterns of
activity; (2) dramatically integrated and temporally transformed as it propagates to monosynaptically connected second-order neurons;
and (3) observed in tastant-specific behavior. Our results are consistent with an emerging view of the gustatory system: rather than
constructing basic taste categories, it uses a spatiotemporal population code to generate unique neural representations of individual

tastant chemicals.
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ignificance Statement

neurons can drive tastant-specific behavior.

Our results provide a new view of taste processing. Using a new, relatively simple model system and a new set of techniques to
deliver taste stimuli and to examine gustatory receptor neurons and their immediate followers, we found no evidence for labeled
line connectivity, or basic taste categories such as sweet, salty, bitter, and sour. Rather, individual tastant chemicals are repre-
sented as patterns of spiking activity distributed across populations of receptor neurons. These representations are transformed
substantially as multiple types of receptor neurons converge upon follower neurons, leading to a combinatorial coding format that
uniquely, rapidly, and efficiently represents individual taste chemicals. Finally, we found that the information content of these
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Introduction

By detecting and creating neural representations of the chemicals
animals contact, the gustatory system informs feeding and other
critical behaviors. Gustatory coding by the nervous system is
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thought to be relatively simple: every chemical (“tastant”) is as-
sociated with one of a small number of basic tastes (Erickson,
1984), and the presence of a basic taste, rather than the specific
tastant, is represented by the brain. In mammals as well as insects,
five basic tastes are recognized: sweet, salty, sour, bitter, and
umami (Yarmolinsky et al., 2009; Liman et al., 2014). The neural
mechanism for representing basic tastes is unclear. One general
proposal is that, in both mammals and insects, gustatory infor-
mation is carried through separate channels, from the periphery
to sites deep in the brain, by cells sensitive to a single basic taste
(“labeled line” code) (Frank, 1973; Marella et al., 2006; Yarmo-
linsky et al., 2009; Chen et al., 2011). An alternate proposal is that
basic tastes are represented by populations of cells, with each cell
sensitive to multiple basic tastes (“across fiber pattern” code)
(Pfaffmann, 1941; Dethier and Crnjar, 1982; Glendinning et al.,
2002, 2006; Lemon and Katz, 2007; Roussin et al., 2012).
Testing these ideas requires determining, point-to-point, how
tastes are initially represented within the population of receptor
cells and how this representation is transformed as it moves to
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higher-order neurons. However, it has been technically challeng-
ing to deliver precisely timed tastants while recording cellular
activity from directly connected cells at successive layers of the
gustatory system, particularly near the periphery. This is partly
because taste receptor cells in the vertebrate tongue and soft pal-
ate transmit their activity to both afferent neurons and other taste
cells through complex pathways that may interact and that do not
use synapses (Chaudhari and Roper, 2010). The gustatory system
of insects is analogous to the mammalian system in many ways,
but its simplicity enables the point-to-point analyses needed to
test basic ideas about gustatory coding.

To test basic ideas about gustatory coding, we studied the
gustatory system of the moth Manduca sexta, a large insect ame-
nable to gustatory stimulation, intracellular and extracellular
electrophysiological neural recordings, and behavioral tests.
Manduca are generalist foragers who use their ~8-cm-long pro-
boscis to discriminate chemically diverse tastants and to drink
nectar that contains plant-specific sugars and secondary com-
pounds (Baker and Baker, 1983; Goyret and Raguso, 2006). The
proboscis of moths can contain hundreds of sensilla, specialized
hair cells of which at least four morphologically identified types
have been implicated in gustation (Faucheux, 2013; Xue and
Hua, 2014) (see Fig. 1a). Each chemosensory sensilla contains
2—4 gustatory receptor neurons (GRNs) (Mitchell et al., 1999),
each of which expresses multiple gustatory receptors collectively
sensitive to a wide range of tastants (Hodgson et al., 1955; De-
thier, 1963; Baker and Baker, 1983; Jorgensen et al., 2006, 2007).
The number of gustatory receptors (GRs) in Manduca is un-
known, but there are likely a few dozen: a related moth species,
Bombyx mori, expresses at least 69 GRs (Zhang et al., 2011), and
the fruit fly Drosophila melanogaster expresses at least 68 (Liman
etal., 2014).

We designed a new stimulus and recording system that al-
lowed us to fully characterize, with high temporal resolution, the
timing of tastant delivery, and the dynamics of the tastant-elicited
responses of GRNs and their monosynaptically connected
second-order gustatory neurons (SONs), before, during, and af-
ter tastant delivery. Surprisingly, we were unable to find evidence
consistent with a basic taste model of gustation. Instead, we
found that the moth’s gustatory system represents individual tas-
tant chemicals as spatiotemporal patterns of activity distributed
across the population of GRNs. Further, we found these repre-
sentations are transformed substantially as multiple types of
GRNs converge broadly upon follower neurons. Our results sug-
gest that the gustatory system generates unique combinatorial
representations of individual tastants, enabling tastant-specific
behaviors.

Materials and Methods

Experimental animals. Behavioral and physiological experiments were
performed on a total of 244 male and female moths (M. sexta) 1-3 d after
eclosion. Moths were reared from eggs (Carolina Biological) on an arti-
ficial diet (Bell and Joachim, 1976) at 26°C in >70% humidity, under a
long-day photoperiod. Moths were housed individually in plastic cups
before the experiments, which were conducted during their light cycle.
Moths with fully extended wings, intact proboscis and antennae, and an
overall healthy appearance were used for experiments.

Tastant delivery system. The distal two-thirds of the moth’s proboscis
was threaded into a rigid tube and fixed in place with epoxy. A small piece
of mesh was installed 5 mm above the proboscis. The coiled proboscis
rested against this mesh, ensuring that, for each animal, the proboscis was
placed in the same location. Throughout each experiment, filtered water
was pumped continuously through the rigid tube and over the proboscis
by a peristaltic pump (Manostat Compulab 3) at 40 ml/min. The output
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of a pressurized 16-channel perfusion system (Bioscience Tools) was
inserted into the rigid tube 1 cm above the mesh. For experiments with
square pulses of tastant, compressed air from a PicoPump (World Pre-
cision Instruments, 10 psi) was directed for 1 s to the manifold of tastant
solutions, and one of 16 valves was opened to allow a bolus of a given
tastant containing a small amount of food coloring (Fast green FCF,
Sigma, 0.05% w/v) to enter the water flowing over the proboscis. Tastant
concentration was monitored by a color sensor (FS-V31m, FY35-FZ re-
flective fiber unit, Keyence) installed 5 mm below the perfusion system
output, adjacent to the proboscis. Color sensor signals, responding to the
food coloring in the tastants, were amplified 5X by a DC amplifier
(Brown-Lee model 440) and were recorded along with physiological data
(see below), providing a precise record of the stimulus. Each stimulus
pulse ended when the valve closed and the PicoPump was switched off;
0.05 w/v FCF produced color sensor signals 33.77 SD above the noise
level, calculated from the 4980 trials shown in Figure 2a. Control exper-
iments in which tastants were delivered with and without FCF (data not
shown) confirmed that the food coloring did not activate GRNs or alter
their responses to tastants.

To estimate the concentration of tastant reaching the proboscis after
entering the constant water stream, we performed a calibration experi-
ment (data not shown). We first confirmed that tastant concentration is
linearly related to the color sensor’s signal by delivering various concen-
trations (0—0.1 w/v) of FCF and measuring the color sensor’s response
amplitude. We found our sensor provided linear output throughout the
range of color intensity used in all experiments. We then tested whether
tastants were diluted when injected into the constant water stream. We
injected pulses of dyed tastant into a water stream containing the same
concentration of dye as the tastant. We defined the color sensor’s re-
sponse to this as 100% concentration. Then, we measured the fraction of
this color sensor signal with signals generated by injecting colored tastant
into uncolored water. We estimated that, after dilution in the water
stream, the concentration reaching the proboscis is ~77% of the concen-
tration of solutions listed throughout the text.

The tastant delivery system was controlled by a computer (Optiplex
780, Dell) running custom LabVIEW software (PCI-MIO-16E-4 DAQ
cards, National Instruments). All trials of a given tastant were delivered
in sequence as a block (5-8 trials), and blocks of tastants were delivered
in random order. All tastant presentations were separated by 10 s. All 16
tastant tubes of the perfusion system converged into a single manifold, so
the first trial of each block of tastant delivery consisted of a mixture of
current and previous tastants. Because of this, the first trial with each
tastant was excluded from analysis.

Tastant stimuli. Some tastants and concentrations were selected be-
cause of their known ecological importance to Manduca, who feed pri-
marily on plant nectar that is rich in sucrose and also contains potentially
toxic alkaloids (Baker and Baker, 1983; Adler, 2000; Hare and Walling,
2006). Other tastants and concentrations were selected because they are
very widely used to represent the basic taste categories (Marella et al.,
2006; Kvello et al., 2010; Weiss et al., 2011). All tastants were obtained
from Sigma-Aldrich at the highest available purity and were dissolved in
reverse osmosis filtered (Millipore) water before experiments. Pure water
was also used as a control for mechanical or other stimulation. Tastant
solution concentrations match those commonly used in the gustation
literature. Unless a different concentration is given in the text, tastants
used were as follows: sucrose, glucose, trehalose, maltose (1000 mwm,
“sweet” tastes); sodium chloride, lithium chloride, and potassium acetate
(1000 mm, “salty” tastes); caffeine (100 mm), (—)-lobeline hydrochlo-
ride, berberine chloride, and denatonium benzoate (10 mm, “bitter”
tastes; these concentrations of “bitter” tastants were delivered, as is rou-
tine in the gustation literature (Marella et al., 2006; Weiss et al., 2011)
because these chemicals do not readily dissolve into water (higher con-
centrations are therefore unlikely to have physiological relevance). As
noted above, all tastants were further diluted by the delivery water
stream.

Physiological preparation. Intact moths (N = 73) were fitted into tubes
with their heads exposed. After protecting the proboscis and antennae by
placing them in small plastic tubes secured with epoxy, a wax cup was
built up around the ventral side of the head capsule. The dorsal part of the



Reiter et al. @ Spatiotemporal Coding by the Gustatory System

head capsule was first opened, and the buccal compressor muscle (Davis
and Hildebrand, 2006) was cut to ensure the brain’s stability during
recordings. This opening was then sealed with wax. The ventral side of
the head capsule was then opened, and the wax cup was filled with Man-
duca physiological saline (Christensen and Hildebrand, 1987), bathing
the brain. The labial palps, exoskeleton, and trachea covering the
subesophageal zone (SEZ) (Ito et al., 2014) of the brain were removed.
The saline was then removed and replaced with a solution of collagenase/
dispase (Roche Diagnostics) crystals dissolved in saline (10% w/v). After
this caused the dilator-3 muscles (Davis and Hildebrand, 2006) to tear
(2-3 min), the collagenase mixture was replaced with saline. The sheath
covering the SEZ and the proximal maxillary nerve was then removed
with fine forceps. For stability, a platform made from a flattened insect
pin was inserted through the esophagus underneath the SEZ, and secured
with wax to the tube containing the moth. During experiments, a con-
stant flow of fresh saline was delivered to the exposed brain.

Electrophysiology. Borosilicate glass tubes (outer diameter 1.0 mm,
Sutter Instruments) were pulled into sharp electrodes for intracellular
recordings by a horizontal puller (P87, Sutter Instruments) to a resis-
tance of 80—120 M(). Intracellular solution was 1 M KAc or 5% Neuro-
biotin (Vector Labs) dissolved in 1 M KCL. To stabilize recordings from
SONs, —0.05 nA current was injected throughout experiments. Some
SON's were filled with neurobiotin by injecting 0.5-1 nA positive current
at 0.33 Hz for 5-10 min.

Multichannel extracellular recordings were made using custom-built
bundles of twisted-wire electrodes (tetrodes), preamplifier, and amplifier
(Biology Electronics Shop, Caltech) (Perez-Orive et al., 2002). Such elec-
trodes have proved highly effective for recording neural activity in Man-
duca (Ito et al., 2008, 2009). Probes were made with 3-8 electrode wires,
with the best recordings obtained from probes with 4 wires; probes with
fewer wires yielded fewer well-isolated units, and probes with more wires
were difficult to fit into the small maxillary nerve. These tetrodes were
inserted into the exclusively afferent (Davis and Hildebrand, 2006) max-
illary nerve, allowing any recorded cells to be unambiguously classified as
first-order afferent neurons. Tetrodes were positioned across the full
depth and cross section of the nerve, allowing random sampling of these
cells. Pilot intracellular recordings made from this location with sharp
glass electrodes showed responses matching those obtained with tetrodes
(data not shown). The maxillary nerve contains mechanosensory as well
as gustatory afferent neurons. Because our tastant delivery system pre-
sented a constant mechanical input throughout the experiment, neurons
responding specifically to tastant presentations could be distinguished
from mechanosensory cells and could be identified unambiguously as
GRNs. Data were collected at 40 kHz (custom LabVIEW software), am-
plified 3000 times, and bandpass filtered 300 Hz to 6000 Hz.

Histology. For dextran fills of the maxillary nerve, a patch pipette (~10
M) was backfilled with a 5% solution of dextran crystals (tetramethyl-
rhodamine, 3000 MW, Invitrogen) dissolved in water, and the solution
was pressure injected into the nerve after connecting the back of the
pipette to a 10 cc syringe. As described previously (Ito et al., 2009), brains
with neurobiotin-filled neurons were conjugated with streptavidin
AlexaFluor-488 or -568 (Invitrogen). Whole-mounted brains were im-
aged by a Zeiss 510 inverted confocal microscope. Some labeled SONs
were immunostained for GABA using a published protocol (Perez-Orive
et al., 2002). Briefly, after imaging, brains were rehydrated through an
ethanol series and then washed in Triton X-100 (PBST). Brains were
agitated in 10% goat serum overnight and then incubated for 5 d in a goat
serum-PBST solution containing rabbit anti-GABA antibodies (Sigma)
diluted 1:100. Brains were then washed for 4 h in PBST and then incu-
bated in goat anti-rabbit IgG conjugated to AlexaFluor-633 or -568. After
a final wash in PBS, brains were dehydrated, cleared, and imaged as
above.

Image processing. Z stacks of neurobiotin and dextran fills of GRNs/
SONs were examined using FluoRender software (University of Utah).

Scanning electron microscopy. Proboscises, which tend to curl tightly,
were linearized by threading them into glass capillary tubes filled with
fixative (2.5% glutaraldehyde, 1% PFA, in 0.12 M sodium cacodylate
buffer, pH 7.38) and refrigerated overnight. The capillaries were then
flushed 4 times with buffer, refixed for 2 h in 1% osmium in buffer,
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washed 4 times with water, stained en bloc with 1% uranyl acetate in water
for 1 h, washed 4 times in water, and dehydrated in an ethanol series. Two
15 min changes of hexamethyldisilazane (Sigma) were performed, with
the last one evaporated off in a chemical fume hood. Proboscises were
then cut into three segments (distal, middle, proximal), positioned on
carbon adhesive tape with silver paint, coated with 10 nm gold in an EMS
575X sputter coater (Electron Microscopy Sciences), and imaged with a
Hitachi $3400-N1 SEM (Hitachi High Technologies). Mosaic images
shown in Figure 1a were prepared in Photoshop (Adobe).

Identification of SONG. Pilot experiments, including both physiological
recording and anatomical reconstruction, revealed that our blind sharp
electrode recordings from the SEZ came from only two clearly different
types of neurons (data not shown). One type extended an axon down
through the cervical connective toward the body ganglia and showed
unambiguous, stereotypical subthreshold membrane potential activity,
spike shape, and baseline spike rate (n = 16 recordings and fills in 16
moths). We were subsequently able to use these features to reliably iden-
tify these descending neurons from their physiological characteristics
alone. The other type of neuron was the SON discussed in the main text
(n = 12 recordings and fills in 12 moths). All recorded neurons not
identified as descending neurons were analyzed as SONG.

Data analysis. All analyses were performed with scripts custom written
in MATLAB (The MathWorks). Unless otherwise specified, statistics re-
ported throughout the text are mean = SEM. Nonparametric statistical
tests were used for results shown in Figure 6b, cbecause these data did not
pass Lilliefors test of normality (p < 0.05).

Spike sorting. We used a semiautomated, model-based spike sorting
method that has proved highly effective for tetrode recordings made
from neurons in Manduca (Ito et al., 2008, 2009). This method compares
the whole waveform of spike signals across multiple tetrode channels.
After sorting extracellular spike waveforms as cited by Pouzat et al.
(2002), quantitative estimates of cluster quality were made using the
method of Hill et al. (Fee et al., 1996; Hill et al., 2011). To judge whether
a cluster was well isolated and stable throughout an experiment, we con-
sidered whether the sorted waveforms had physiological shapes, whether
they were well isolated in principal component space, and whether the
estimated Type 1 and Type 2 errors (arising from spikes missed through
signal thresholding, spikes misclassified because of overlap with other
clusters, and the occurrence of nonphysiological interspike intervals) fell
beneath 5% of the dataset. To prevent any bias in our selection of units,
spike sorting and unit selection were performed before any analysis of the
responses of GRNSs to tastants. As noted above, pilot intracellular record-
ings made from the maxillary nerve with sharp glass electrodes showed
responses matching those obtained with tetrodes following spike sorting.

Determining whether a neuron responds to a tastant. We examined
recordings from neurons in an animal stimulated with a tastant by first
estimating the firing rate of a neuron by smoothing trial-averaged spike
times with a Gaussian filter (SD = 60 ms). We defined background
activity as the firing rate of the neuron in the first second of the trial,
before the tastant was delivered. Because it is not always obvious when a
neuron is responding to a stimulus, we considered a range of response
thresholds (T). A neuron was considered to respond to a tastant if, fol-
lowing tastant delivery, its firing rate exceeded its mean background
activity plus the product of T and the SD of the background activity, or
fell below the mean background activity minus the product of T and the
SD of the background activity. Figures show a range of responses thresh-
olds; throughout the text, response statistics were calculated using a
threshold of T = 5. Also, throughout the text, “response strength” was
defined as the absolute value of the difference between the mean firing
rate during the stimulus time and the background activity.

Tastant discrimination task. Twelve-way classification of tastant iden-
tity was performed using all the recordings from GRNs shown in Figure
2a. Seven-way classification of tastant identity using SONs or GRNs (see
Fig. 7c) was performed using sucrose, trehalose, maltose, NaCl, KAc,
caffeine, and lobeline, as shown in Figure 7a.

The spike rate of each neuron in the analysis was first estimated by
smoothing the single trial spiking activity with a Gaussian filter (SD = 60
ms). In a few trials, classification performance exceeded chance at times
before the tastant was delivered because of slow changes in spike rate that
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could “wrap around” from one trial to the next (e.g., some responses of
GRN 70 and 72; see Fig. 2a). To remove this artifact, for classification
analysis only, in each trial the mean of the first second of each trial
(baseline activity) was subtracted from the trial. As desired, this manip-
ulation lowered the baseline classification success to chance while leaving
peak classification performance unaffected. The dimensionality of the
dataset was then reduced using principal component analysis, with the
number of components chosen to preserve >90% of the dataset’s vari-
ance. The resulting dimensionality was 19 for 12-way GRN classification
and 8 for 7-way SON classification.

We next performed a standard classification task, using variable
lengths of GRN responses following tastant delivery to study how inte-
grating tastant representations over time affects classification success.
With leave-one-out cross validation, we averaged the population activity
evoked by different trials of N (either 12 or 7) tastant presentations to
obtain N cluster centroids. Classification was considered successful if the
left out trial was closest, measured by Euclidean distance, to the centroid
evoked by the tastant used to generate the test trial. This procedure was
repeated for every trial of every tastant presentation. Results were aver-
aged over trials, producing N trial mean classification rates for the N
tastants. The plots in Figures 4a and 7c show the mean = SEM of these
data.

Standard hierarchical clustering was performed using the Euclidean
distance between the spiking responses of the GRN population (n = 83),
smoothed as above, over entire trials (10 s). Distance between spiking
responses was normalized by dividing by the average intertrial distance
across all delivered tastants.

Determining whether neurons were monosynaptically connected. We used
standard electrophysiological measures to determine whether particular
GRNs and SONs were monosynaptically connected. We calculated the
spike-triggered average (STA) between every pair of simultaneously re-
corded GRN (recorded extracellularly by tetrodes) and SON (recorded in-
tracellularly). If a given GRN and SON are monosynaptically connected,
spikes in the GRN will align precisely, after a very brief and consistent syn-
aptic delay (<5 ms), with well-shaped EPSPs in the SON (Jortner etal., 2007;
Papadopoulou et al., 2011; Cassenaer and Laurent, 2012) (see Fig. 6a), as
detailed below. Several factors could potentially mask the presence of an
EPSP in the STA and thus had to be addressed. Because the presence of SON
spikes immediately following a GRN spike would mask any EPSP waveform,
we only considered GRN spikes that were not followed by an SON spike
within 200 ms. Tastant delivery sometimes induced strong fluctuations in
the SON membrane potential that could potentially mask EPSPs. To mini-
mize this confound, we excluded GRN spikes occurring during our square
pulse tastant stimulation. Because this procedure prevents an assessment of
synaptic connectivity between SONs and GRNs that were completely silent
in the absence of tastant, to assess connectivity to these GRNs, we also
opened our tastant valve without applying air pressure, providing a weak
stimulus sufficient to sporadically activate otherwise silent GRNs, but not
strong enough to induce strong membrane potential variability. STAs were
judged to indicate monosynaptic connections if a physiologically plausible,
and significant short-latency, EPSP waveform was seen following the time of
GRN spikes. Significance was achieved when a waveform crossed 5 SDs from
the background activity calculated from the average 100 ms before GRN
spiking (8 of 70 pairs). The start of the EPSP waveform was estimated as the
time-point where the STA crossed 3 SDs above the background. This was
required to occur within 5 ms of the GRN spike (7 of 8 pairs). The mean
latency of these pairs was 2.80 = 0.28 ms, consistent with monosynaptic
delay (Jortner et al., 2007; Papadopoulou et al., 2011). Tastants used for
paired recordings were sucrose (100 and 1000 mm), NaCl (100 and 1000
mM), caffeine (10 and 100 mm), and water, as in Figure 6c.

Behavioral assay. We measured the probability and duration of pro-
boscis extension elicited by a variety of tastants: 50, 250, 500, 750, and
1000 mM sucrose; glucose; trehalose; maltose; NaCl; and KAg; 5, 25, 50,
75, and 100 mwm caffeine; and 0.5, 2.5, 5, 7.5, and 10 mm (—)-lobeline
hydrochloride (see Tastant stimuli). A total of 171 1- to 2-d-old unfed
moths were fixed vertically in tubes with the head exposed and the prox-
imal third of the proboscis threaded into narrow tubing (Ito et al., 2008).
The moths’ eyes were painted over with ink to eliminate visual cues.
Animals rested in position for 15-20 min before experiments began.
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Each behavioral trial began with manual delivery of 50 ul of a tastant
solution (Sorenson 200 ul pipette) to the distal two-thirds of the probos-
cis. Five minutes later, the proboscis was washed with distilled water, and
the next tastant stimulus was delivered. A single moth was used for 5 such
behavioral trials, each separated by 5 min. All trials were recorded by a
digital video camera (Flea 3, Point Gray) for later analysis. Stimuli were
presented in random order, with the experimenter blind to the stimulus
throughout testing and scoring. There were no significant differences in
the average extension rate between the first and last of 5 trials ( x> test,
X>(1,N=342) = 0,p = 1), indicating an absence of order effects. Epochs
of proboscis extension were manually scored from video using a GUI
custom written in MATLAB (The MathWorks). Proboscis extension was
noted on trials when the moth raised it for >1 s following delivery of the
tastant. Extension probability is shown; very similar results were ob-
tained when total proboscis extension duration was analyzed (Pearson’s
linear correlation coefficient for probability and duration measures =
0.85, p = 1.2e-12). To examine the dependence of proboscis extension
probability on the identity of the tastant, results for each tastant were
pooled across concentrations, and the resulting proportions were com-
pared (x” tests; see Fig. 8).

Results

Initial encoding of tastants

In moths, signals generated by GRNSs located in sensilla dotting
the distal third of the proboscis provide information needed by
the animal to discriminate tastants (Fig. la) (Dethier, 1963).
GRNs project from the proboscis to a region of the brain called
the SEZ (Ito et al., 2014) through the maxillary nerve (Davis and
Hildebrand, 2006). To observe how the gustatory system initially
represents tastants, we sought to characterize the responses of the
GRN population, including the temporal patterns of spiking elic-
ited by tastants. We thus designed new methods for delivering
discrete and precisely timed pulses of tastants and for recording
the responses of individual GRNs (Fig. 1b; see Materials and
Methods). The moth’s proboscis was sealed into a water stream,
and pulses of tastant solution were injected into the stream, stim-
ulating GRNs located in sensilla studding the distal two-thirds of
the proboscis. Using bundles of extracellular electrodes (tetrodes;
Fig. 1b) to record spiking activity from random locations in the
purely afferent maxillary nerve (Fig. 1¢), we could identify GRNs
by their specific responses to tastants and unambiguously distin-
guish them from mechanosensory and other types of neurons.
We used these methods to test the responses of 83 randomly
selected GRNs to 1 s square pulses of each of 12 diverse tastants
(Fig. 2a; 8 moths, 25 experiments). In biological terms, detection
of a “response” depends on the sensitivity of downstream neu-
rons to the spiking of GRNs; thus, we determined whether a
neuron had responded to a tastant using a broad range of thresh-
olds, from well below to well above generally accepted response
values (Perez-Orive et al., 2002) (see Materials and Methods), to
evaluate the robustness of our results.

Our recording method allowed us to characterize spiking in
GRNs before, during, and after the stimulus was delivered. We
found that GRNs displayed different levels of baseline activity
before tastant delivery, ranging from silence (e.g., Fig. 2a; GRNs
1-28) to intense spiking (e.g., GRNs 67—69). GRNs responded to
tastants with diverse sensitivities and activity patterns. Some cells
responded to none of the tested tastants (e.g., Fig. 2a; GRN 77),
indicating that they could be mechanosensory neurons, or GRNs
sensitive to tastants not delivered. Some GRNSs responded to only
a single tastant (e.g., GRNs 1-27), whereas others responded to
most tastants (i.e., GRNs 31 and 67; Fig. 2b). GRNs could respond
with bursts of spikes to different sets of chemically diverse tas-
tants (e.g., Fig. 2a; to sucrose and KAc: GRN 27; to sucrose,
maltose, NaCl, LiCl, and caffeine: GRN 31; to trehalose, maltose,
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Monitoring the responses of GRNs to timed pulses of tastant. a, Scanning electron micrographs of the proboscis. Left, Distal third (a portion of which is shown here) contains types of

sensilla associated with chemoreception and mechanoreception. Insets (clockwise from top), Examples of sunken basiconic, styloconic, chaeticonic, and spire-shaped basiconicsensilla. Right, Middle
and proximal portions of the proboscis contain primarily mechanoreceptive sensilla. Insets, Examples of chaeticonic sensilla (Faucheux, 2013). Scale bar, 50 wm. b, A schematic of the apparatus.
Dye-colored tastants were pressure injected into a water stream passing over the proboscis. The instantaneous concentration of tastant was monitored by a color sensor. Top inset, Example spiking
responses from GRNs recorded by tetrode. Calibrations: vertical = 40X channel-wise median absolute deviation, horizontal = 1s. Bottom inset, Example color sensor trace showing tastant delivery
(upward deflection, sucrose). Time axis as above. ¢, Frontal view of the moth brain. Magenta represents left maxillary nerve, filled with rhodamine-dextran. Scale bar, 100 Lum. All recordings of GRNs
were made from the exclusively afferent maxillary nerve which extends processes throughout the ipsilateral SEZ. AL, Antennal lobe; E, esophagus .

and NaCl: GRN 48), or with inhibition (e.g., to all tastants except
caffeine: GRN 67). Notably, sucrose activated ~60% of the GRNs
(Fig. 2¢), and ~50% of the GRNs that responded to sucrose did
not respond to any other delivered tastant (Fig. 2d). Other tas-
tants each activated ~30% of the GRNs, most of which re-
sponded to multiple tastants.

Our recording method also allowed us to characterize the
timing of tastant-elicited responses with respect to the onset
and offset of the stimulus. We found that a given GRN could
respond with dramatically different spiking patterns to differ-
ent tastants (Fig. 3a). For example, GRN 43 responded to
NaCl, LiCl, and caffeine with different peak rates of spiking

(32, 68, and 22 Hz respectively), to KAc with spiking that
outlasted the duration of tastant stimulation, and to lobeline
and berberine with spiking (40 and 52 Hz, respectively) that
peaked only after the tastant was removed (Fig. 3a). Different
GRNs could respond to the presentation of a single tastant
with a wide diversity of spiking patterns (Fig. 3b). These pat-
terns were reliable over repeated trials (see Fig. 2a).

The fact that different tastants activate different, but overlap-
ping, subsets of the GRN population with tastant-specific tempo-
ral patterns of spiking activity demonstrates that information
about the identity of specific tastants is contained within the GRN
population as a spatiotemporal code. Assuming independent
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GRNs responding to different numbers of tastants. ¢, Percentage of GRNs responding to each tastant. d, Percentage of GRNs responding exclusively to each tastant.

noise, we could estimate a lower bound of this encoded informa-
tion by applying a standard classification analysis (12-way; see
Materials and Methods) to our results. The identity of individual
tastants could be determined significantly better than chance,
with 62.50 = 9.97% accuracy 500 ms after tastant delivery, and
with 75.0 = 9.73% accuracy 1 s after the delivery (Fig. 4a). The
representations of different tastants were not equally separated in
GRN population space: a standard hierarchical clustering analy-
sis of the GRN tastant responses over time revealed that the re-
sponse to sucrose was well separated, under a standard Euclidean
distance metric, from the responses to all other delivered tastants
(Fig. 4b). This is largely because sucrose activated many seem-
ingly dedicated neurons (Fig. 2a). Notably, the responses of
GRNs did not separate into basic taste categories: responses to

tastants drawn from single basic taste categories were in general
no closer to each other than they were to responses drawn from
other basic taste categories.

Next, we tested the responses of GRNs to square pulses of
different concentrations of tastants. Figure 5a shows that most of
the responses to sucrose varied with concentration in a simple
and reliable way: increasing concentrations activated increasing
numbers of GRNSs to respond with increasing excitation or inhi-
bition (Fig. 5b; 3 moths, 11 experiments, 20 GRNs; Kruskal—
Wallis test, x*(6, N = 20) = 51.52, p = 2.3e-9, post hoc Tukey’s
HSD, p < 0.05); other tastants elicited similar patterns of re-
sponse (Fig. 5¢; see Materials and Methods). The predictable,
gradual manner in which GRNs responded to different concen-
trations of a tastant suggests that the GRN responses shown in
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Figure 2 do not merely reflect different sensitivities to the con-
centration of a tastant category but rather reflect selectivity to
specific tastant identities.

Transformation of tastant information

How do follower cells respond to the information available in the
activity of GRNs? We identified and recorded the activity of SON's
using blind sharp electrode intracellular recordings in the ante-
rior, ventral SEZ, to which axons of GRNs project (Fig. 1b) (Mi-
yazakiand Ito, 2010). We also made intracellular recordings from
these SONs simultaneously with extracellular recordings from
GRNs. When spikes in a GRN were followed reliably in an SON
by short latency (<5 ms) EPSPs, the pair was considered to be
synaptically connected (Jortner et al., 2007) (Fig. 6a; 18 moths, 36
experiments, 19 SONs, 70 GRNs, N = 70 paired recordings; see
Materials and Methods). Confocal reconstructions of a separate
population of dye-filled SONs revealed cell bodies in the SEZ;
most (15 of 18) clearly extended processes bilaterally into the
region overlapping GRN projections in the anterior SEZ (Fig.
6b). Often processes of SONs extended beyond this region into
the more dorsal and posterior SEZ. Some dye-filled SONs
showed positive immunostaining for the inhibitory neurotrans-

mitter GABA, and some did not (data not shown; see Materials
and Methods).

Notably, the paired simultaneous recordings showed that
SONSs nearly always responded to more tastants than their pre-
synaptic GRNs (GRNs responded to 42.86% of the tastants,
SONS to 77.55%, correlation coefficient between response pro-
files = 0.17, N = 7). Even the most highly selective GRNs were
found to synapse onto broadly responsive SONs (Fig. 6¢). Com-
paring larger populations of neurons in nonpaired experiments,
SONs responded to significantly more delivered tastants than did
GRNGs (Fig. 6d,e; x” test, x> (1, N = 83 GRNSs, 13 SONs from 10
moths) = 60.26, p = 8.33e-15). Although sucrose activated a
large subset of the GRNs (Fig. 2), sucrose did not activate signif-
icantly more SONs than any other tastant ( x> test, x2 (1, N =13
SONs) = 9.25, p = 0.16). Indeed, SONs almost never responded
exclusively to any delivered tastant (Fig. 6f). This suggests that
multiple types of GRNs make synaptic connections with single
SONS, that SONGs interact laterally, or that both forms of conver-
gence contribute to the SONs’ broad responsiveness.

Square pulses of tastant elicited responses from SONs that
often contained reliable sequences of excitation and inhibition
that were generally more complex (Fig. 7a) than the relatively
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simple response patterns of most GRNs (Figs. 2a, 3). The average  the responses of SONs could be used by the classification algo-
of GRN responses followed the temporal profile of the stimulus.  rithm to discriminate tastant identity with greater accuracy,
In contrast, the average of SON responses peaked at the onset  greater speed, and using fewer neurons, than the responses of
and, to a lesser extent, the offset of the stimulus (Fig. 7b). GRNss (Fig. 7c). These results show that SONs integrate the activ-

Given the responses of a population of SONs, our classifica- ity of multiple types of GRNs in a way that allows for the unique
tion algorithm could identify the tastant with 92.86 = 7.14%  and highly efficient representation of individual tastants through
accuracy 500 ms, and 100 = 0% accuracy 1 s, after tastant delivery ~ spatiotemporal patterns of spiking. Figure 7d presents a model
(7 tastants, 13 neurons). Notably, given the same set of tastants, =~ summarizing these findings.
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Figure8.  Proboscis extensionis elicited by specific tastants. Probability of eliciting proboscis
extension varied significantly for individual tastants (n = 95 moths/tastant). Error bars indicate
SEM. Letters indicate initials of tastants eliciting significantly different response probabilities
(p < 0.05, omnibus x? test followed by individual Bonferroni-corrected x 2 comparisons).
Inset, Proboscis extension. Moths restrained in tubes were tested with metered drops of tastant
onto the proboscis (see Materials and Methods).

Tastant-specific gustatory behavior

The presence of neural representations of individual tastants in
the first two levels of the gustatory system suggests the animal
could have access to information needed to generate behaviors
appropriate not only for broad categories of tastants, but for
specific tastants (Dethier, 1963). We examined the specificity of
unconditioned proboscis extension behavior (Daly and Smith,
2000) elicited by contact with an assortment of tastants at con-
centrations commonly used in gustatory behavioral experiments
to represent basic taste categories. A total of 171 moths were
immobilized in small tubes, and tastant solution (50 ul) was
applied to the proboscis (see Materials and Methods). Sucrose
elicited much more frequent proboscis extension than any other
presented tastant, including trehalose, glucose, and maltose, sug-
ars generally considered “sweet” (Fig. 8; omnibus x~ test, x* (7,
N = 855) = 64.76, p = 5.39¢-11, individual x* tests with Bonfer-
roni correction, p < 0.05, lobeline: p = 0.07). Lobeline elicited
significantly more extension than glucose or water (x* tests with
Bonferroni correction, p < 0.05). Thus, consistent with the in-
formation we quantified in responses of GRNs and SONs, the
animal’s behavior revealed an ability to distinguish individual
tastant chemicals.

Discussion

We developed a new, relatively simple model system and a set of
techniques to investigate fundamental questions about how the
nervous system represents tastes. Our approach allowed us to
deliver and monitor tastants with high temporal precision while
electrophysiologically recording the responses of large, random
samples of GRNs and their SON followers. Our results showed
that GRNs had a range of tuning specificity, from highly specific
to very broad. Some GRNs responded to tastants drawn from
multiple basic taste categories, and many GRNs did not respond
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to all tastants from any single category. We identified and char-
acterized gustatory SONs and found that information about tas-
tants is dramatically transformed across monosynaptically
connected first- and second-order gustatory neurons. SONs were
much more broadly tuned than GRNs, and, further, responded to
tastants from more taste categories than those eliciting responses
in their presynaptic GRNGs.

Our methods for delivering timed, discrete tastant pulses
and recording electrophysiological activity in a moth revealed
that populations of both GRNs and SON’s generated tempo-
rally structured patterns of spiking that contained informa-
tion about individual tastants. These findings are consistent
with a number of previous studies of Lepidoptera. Despite
possessing only 16 GRNs, M. sexta caterpillars have been
shown to behaviorally discriminate among aversive tastants
that elicit different temporal patterns of spiking in partially
overlapping sets of neurons (Glendinning et al., 2002, 2006).
In addition, higher-order neurons in the moth Heliothis vire-
scens, possibly analogous to the SONs we identified, respond
to both appetitive and aversive stimuli (Kvello et al., 2010), a
result consistent only with a population code. In the verte-
brate, it has not yet been possible to analyze the temporal
patterning of responses in taste receptor cells, but the timing
of spikes has been shown to contain information about tas-
tants in neurons at several subsequent stages along the gusta-
tory pathway (Katz et al., 2001; Hallock and DiLorenzo, 2006;
Lemon and Katz, 2007; Fontanini et al., 2009; Rosen et al.,
2011; Wilson et al., 2012). Thus, our results from GRNs and
SONs in Manduca, which fully characterize the temporally
structured patterns of spiking as they are generated and trans-
formed in the first two stages of processing gustatory informa-
tion, are consistent with results obtained from other insects
and vertebrates.

Historically, gustatory physiology has been understood in
terms of basic tastes, originally perceptual categories (Erick-
son, 1984) that came to provide a framework for interpreting
neural responses (Pfaffmann, 1959; Erickson, 2008). The
strategy used by the gustatory system to represent basic tastes
has long been debated; the two main proposals are that basic
tastes are represented by successive populations of neurons
dedicated to single basic tastes (labeled lines) (Yarmolinsky et
al., 2009) or by populations of neurons responsive to multiple
basic tastes (across fiber patterns) (Lemon and Katz, 2007).
For example, in the vertebrate, temporally structured patterns
of spiking across fibers have been proposed to carry informa-
tion about basic taste categories (Hallock and DiLorenzo,
2006; Lemon and Katz, 2007).

Our results are difficult to reconcile with labeled line mod-
els of gustatory processing. If the gustatory system used la-
beled lines for basic tastes, GRNs should respond similarly to
all the taste chemicals of a single basic taste category, and no
chemicals of other categories. Further, and critically, they
should synapse onto SONs that share their taste selectivity
(Chandrashekar et al., 2006). Our results are inconsistent with
these predictions. We found that both GRNs and SON’s often
responded very differently to different tastants from a single
basic taste category, resulting in population responses that did
not cluster by basic taste (Fig. 4b). Thus, our results also con-
tradict across fiber pattern models of basic taste coding
(Chandrashekar et al., 2006).

Our results instead suggest that the gustatory system gen-
erates representations of individual chemicals, not basic taste
categories. Our quantitative analysis of information content
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shows that information sufficient to identify specific, individ-
ual tastant chemicals is contained in the activity of the GRN
and SON populations. This analysis suggests chemical-specific
information might be available to the animal for generating
chemical-specific behavior. Indeed, consistent with this pre-
diction, our behavioral tests showed the animal could discrim-
inate among individual tastants drawn from a single basic taste
category (for example, sucrose vs trehalose).

Behavioral tests alone cannot resolve how an animal distin-
guishes chemical stimuli; in principle, an apparent intensity
difference evoked by two stimuli (for example, sucrose and
caffeine), rather than their chemical identities, could be the
distinguishing feature. However, the wide variety of neural
response patterns evoked by changes in tastant identity in
GRNs cannot be explained by the simple and predictable way
these neurons respond to changes in tastant concentration.
Thus, the results of our physiological and behavioral experi-
ments and analysis suggest that the gustatory system encodes
and provides information about the chemical identities of in-
dividual tastants.

To date, studies of gustatory coding in both insects and
vertebrates have nearly always been interpreted in terms of
basic tastes (Caicedo and Roper, 2001; Caicedo et al., 2002;
Dahanukar et al., 2007; Lacaille et al., 2007; Cameron et al.,
2010; Chen et al., 2011; Weiss et al., 2011; Wilson et al., 2012;
Charlu et al,, 2013; Jeong et al., 2013; Masek and Keene, 2013;
Oka et al., 2013). In light of our new results, though, these
earlier findings appear more consistent with a framework in
which individual tastes are encoded. Molecular-genetic stud-
ies in Drosophila have revealed at least 68 types of gustatory
receptors (Liman et al., 2014), far more than any proposed
number of basic taste categories. Each GRN can express sev-
eral different types of receptors, each sensitive to different
tastant chemicals (Liman et al., 2014). In Drosophila, GRNs
have been shown to respond to only some, but not all, tastants
drawn from a basic taste category (Dahanukar et al., 2007;
Weiss et al., 2011; Miyamoto et al., 2012), as well as to some,
but not all, tastants from multiple categories (Wisotsky et al.,
2011; Charlu et al., 2013; Jeong et al., 2013; Masek and Keene,
2013). Further, many GRNs respond to chemicals not readily
associated with any of the basic tastes, such as fatty acids (Car-
toni et al.,, 2010; Masek and Keene, 2013), carbon dioxide
(Fischler et al., 2007), water (Cameron et al., 2010), and con-
tact pheromones (Lacaille et al., 2007). In mammals, calcium
imaging techniques have revealed that taste receptor cells are
sensitive to specific, rather than whole categories of tastants
(Caicedo and Roper, 2001; Caicedo et al., 2002). As with GRNs
in Drosophila, mammalian taste receptor cells have also been
shown to respond selectively to tastants drawn from multiple
basic taste categories (Caicedo et al., 2002; Nelson et al., 2002;
Oka et al., 2013), as well as to chemicals like carbon dioxide
(Chandrashekar et al., 2009), fatty acids (Cartoni et al., 2010),
and calcium (Tordoff et al., 2012), that, despite readily acti-
vating taste receptors, are difficult to place in any basic taste
category. The basic taste framework has often needed ad hoc
adjustments to accommodate new findings, including varying
numbers of basic tastes (Ikeda, 2002; Sclafani, 2004) and ex-
ceptions for species-specific properties (Thistle et al., 2012).

Further, there exists no single clear definition of a basic taste.
”Bitter,” for example, is defined differently in different publica-
tions. Some define it by the behavior it elicits, equating “bitter”
and aversive (e.g., Weiss et al., 2011). Others (e.g., Glendinning,
1994) associate “bitter” with specific chemicals (i.e., caffeine is by
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definition “bitter”). Others associate “bitter” with a given recep-
tor (e.g., Lacaille et al., 2007) (i.e., the Drosophila pheromone
Z-7-tricosene is “bitter” because it activates cells expressing the
“bitter” receptor GR68a). These varying definitions can be am-
biguous, mutually contradictory, and, perhaps most critically,
can obscure the relationships between tastants and the neural and
behavioral responses they evoke. By contrast, our proposal that
the gustatory system encodes individual chemicals offers a clear,
principled, and parsimonious interpretation of the growing col-
lection of results, emerging from multiple levels of analysis and
multiple species, that fit poorly into the basic taste framework.
Given the extensive and multifaceted body of evidence presented
here and in the literature, it seems likely that the gustatory system
generates unique representations of individual tastes not only in
Manduca, but in other insects and vertebrates, as well.

Tastants with similar chemical structures may sometimes,
but certainly not always, evoke similar neural responses. In
addition, distinct tastant representations, like those we ob-
served near the sensory periphery in GRNs and SONs, may be
grouped in different ways by subsequent neural processing
stages. However, the ways such responses are grouped will
most likely vary by species.

For example, our behavioral tests (Fig. 8) showed that
Manduca could identify and show a strong preference for su-
crose, consistent with observations that, in natural settings,
Manduca prefer Datura wrightii, a flowering plant with
sucrose-rich nectar (Riffell et al., 2008). Surprisingly, though,
our results also showed that some Manduca opted to drink a
solution containing lobeline, a canonical “bitter” tastant. The
nectar of Datura, like that of many flowers (Adler, 2000),
contains a number of “bitter” alkaloids (Hare and Walling,
2006); thus, Manduca may benefit from a species-specific tol-
erance, or even preference, for some “bitter” tastants. Indeed,
the preferences of many species for different “bitter” tastants
have been well documented (Glendinning, 1993). Together,
these results suggest that taste preference is not described ide-
ally by basic taste terminology, which emerged from early
studies of how chemicals taste to people (Erickson, 1984).

In recent years, it has become widely accepted that other sen-
sory modalities (olfaction, vision, audition, and somatosensa-
tion) use combinatorial neural codes to uniquely, rapidly, and
efficiently represent sensory stimuli (Erickson, 2001). Our results
suggest that gustation is no exception.
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